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Machine-learning-based prediction models for high-need
high-cost patients using nationwide clinical and claims data
Itsuki Osawa 1, Tadahiro Goto2✉, Yuji Yamamoto3 and Yusuke Tsugawa 4,5

High-need, high-cost (HNHC) patients—usually defined as those who account for the top 5% of annual healthcare costs—use as
much as half of the total healthcare costs. Accurately predicting future HNHC patients and designing targeted interventions for
them has the potential to effectively control rapidly growing healthcare expenditures. To achieve this goal, we used a nationally
representative random sample of the working-age population who underwent a screening program in Japan in 2013–2016, and
developed five machine-learning-based prediction models for HNHC patients in the subsequent year. Predictors include
demographics, blood pressure, laboratory tests (e.g., HbA1c, LDL-C, and AST), survey responses (e.g., smoking status, medications,
and past medical history), and annual healthcare cost in the prior year. Our prediction models for HNHC patients combining
clinical data from the national screening program with claims data showed a c-statistics of 0.84 (95%CI, 0.83–0.86), and
overperformed traditional prediction models relying only on claims data.
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INTRODUCTION
Rapidly growing healthcare spending has become one of the
significant challenges in many developed countries1. Existing
evidence indicates that healthcare spending is concentrated
among a small number of costly patients, known as high-need,
high-cost (HNHC) patients—typically defined as those who
account for the top 5% of annual healthcare costs. Research
has shown that the top-1% and top-5% high-cost patients
accounted for 23% and 50 %, respectively, of all healthcare
costs2. A prediction model for future HNHC patients has been
attracting the attention of policymakers and payers in recent
years due to an expectation that interventions targeting this
population may be more effective in reducing healthcare
spending than interventions targeting the entire population3–6.
Not only the Japanese government but also the Organization for
Economic Co-operation and Development (OECD) is considering
HNHC patients as one of the policy targets priorities that have
the potential to effectively curb rapidly growing healthcare
costs7. Therefore, a valid, reliable, and implementable approach
to accurately predict HNHC patients in real-time is critically
important for designing targeted interventions that can effec-
tively lower healthcare spending.
Although studies have sought to develop accurate models for

predicting HNHC patients, their performance remains suboptimal
due to the complex interplay among predictors and the lack of
detailed clinical information (e.g., body mass index [BMI], blood
pressure level, laboratory data) in the data used to construct the
prediction models. Many of the existing studies on prediction
models of high-cost patients relied on data from claims, self-
reported data, or electronic health records that do not include
laboratory test results8–17. Evidence is limited as to whether the
data from laboratory tests—which are, arguably, more granular
and detailed clinical information—leads to the improvement of
the performance of the prediction model. A recent study using

data from the health screening program and claims data in South
Korea reported an improvement in the performance of the
machine-learning-based prediction model for the top 10% of
high-cost patients18. However, despite that many insurers and
providers globally are actively seeking for an approach that can
accurately predict HNHC patients3–6,13,19,20, it remains largely
unclear whether the machine-learning-based prediction model
using the detailed clinical information collected through a health
screening program combined with claims data could achieve
high prognostic performance for predicting HNHC patients in
subsequent years18.
In this context, we developed and evaluated machine-learning-

based prediction models for HNHC patients using data from
national screening programs and claims in Japan. A developed
model based on administrative data would be immensely helpful
for policymakers and payers to identify effective strategies to
contain rapidly growing healthcare costs.

RESULTS
Beneficiary characteristics
During the study period, the database included 363,165 adults
who underwent the national screening programs every fiscal
year (from April 1 through March 31) in 2013–2016. Of those,
we used a 10% random sample (n= 36,316) for the analyses
(Table 1). Among 36,316 individuals in our analytic cohort, 21,985
(61%) were male, and the median age in 2013 was 43 years. In
2016, the median annual healthcare cost was 43,270 JPY (376
USD; using an exchange rate of 115 yen per US dollar as of
December 2016), and the top 1%, 5%, 10% of patients accounted
for 26%, 48%, and 60%, respectively, of all amounts of annual
healthcare costs (Fig. 1).
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Prediction of HNHC patients
The discrimination ability of different models, as represented by
ROC curves, is shown in Fig. 2. The logistic regression model
(the reference model) had the lowest discriminative ability
(c-statistics, 0.82; 95%CI, 0.81–0.84), while all other machine-
learning-based models had a high discriminative ability (Table 2).
For example, the gradient-boosting decision tree model had
significantly higher c-statistics (0.84, 95%CI, 0.83–0.86; P= 0.01)
compared to the reference model. The reference model had the
highest sensitivity (0.74; 95%CI, 0.72–0.76), and the gradient-
boosting decision tree model had the highest specificity (0.88;
95%CI, 0.87–0.88). Considering the low prevalence of outcome
(5%), the highest positive predictive value was 0.22 (95%CI,
0.22–0.24) in the gradient-boosting decision tree model, and the
negative predictive values were all high (0.98 [95%CI, 0.98–0.98]
in all models). The gradient-boosting decision tree model had
the highest positive likelihood ratio of 5.5 (95%CI, 5.3–5.7), and

the reference model had the best negative likelihood ratio of
0.34 (95%CI, 0.31–0.36). In the decision curve analysis (Fig. 2),
compared with the reference and the Lasso regression model,
the net benefit for other machine-learning-based models (e.g.,
the random forest model) was higher over the range of threshold
probabilities, with the random forest and gradient-boosted
decision tree model having the greatest net benefit. Given that
the number of HNHC patients in our cohort (1815 adults) was
substantially larger than the number of parameters used for the
prediction (25 parameters), we assumed that the risk of
overfitting was low. Indeed, the event per variable (EPV) for
our primary prediction model was 72, indicating a low risk of
overfitting (EPV < 20 is indicative of potential overfitting)21. We
found no predictors with high variance inflation factors (VIF)
(>10) among parameters included in our reference model,
indicating that collinearity is not an issue for our prediction
models (Supplementary Table 1)22.

Table 1. Predictor variables and outcome in 36,316 people.

Variables In 2013 In 2014 In 2015 In 2016

Age (year), median (IQR) 43 (37–50) 44 (38–51) 45 (39–52) –

Male gender 21,985 (61) 21,985 (61) 21,985 (61) –

Height (cm) 167 (160–173) 167 (160–173) 167 (160–173) –

Body weight (kg) 63 (54–72) 63 (54–72) 63 (54–72) –

Waist circumference (cm) 81 (75–87) 81 (74–87) 81 (75–88) –

Vital signs

Systolic blood pressure (mmHg),
median (IQR)

116 (106–127) 117 (106–127) 117 (106–127) –

Diastolic blood pressure (mmHg),
median (IQR)

72 (65–81) 73 (65–81) 73 (65–81) –

Laboratory data

Fasting blood sugar (mg/dl),
median (IQR)

91 (85–97) 91 (86–98) 91 (86–98) –

HbA1c (%), median (IQR) 5.4 (5.2–5.6) 5.4 (5.2–5.6) 5.4 (5.2–5.7) –

TG (mg/dl), median (IQR) 85 (59–129) 85 (60–129) 86 (60–129) –

LDL-C (mg/dl), median (IQR) 119 (98–141) 119 (99–141) 120 (100–142) –

HDL-C (mg/dl), median (IQR) 59 (50–71) 60 (50–72) 60 (50–73) –

AST (IU/l), median (IQR) 20 (17–24) 20 (17–24) 20 (17–25) –

ALT (IU/l), median (IQR) 18 (13–27) 18 (13–27) 18 (13–27) –

y-GTP (IU/l), median (IQR) 24 (17–42) 25 (17–42) 25 (17–42) –

ECG abnormalities 362 (1) 611 (2) 632 (2) –

Survey responses

Medications

Anti-hypertensive drugs 2,776 (8) 2,975 (8) 3,207 (9) –

Hypoglycemic drugs 738 (2) 801 (2) 895 (2) –

Anti-hyperlipidemic drugs 1697 (5) 1803 (5) 1,990 (5) –

Past medical history

Stroke 143 (0.4) 231 (0.6) 224 (0.6) –

Cardiovascular diseases 271 (0.7) 417 (1) 471 (1) –

Kidney diseases 38 (0.1) 55 (0.2) 36 (0.1) –

Current smoking 8299 (23) 8260 (23) 8158 (22) –

Exercise > 30min twice a week for a year 4301 (12) 5667 (16) 5,919 (16) –

Annual healthcare cost (JPY) [USD],
median (IQR)

32,930 [286]
(8040–100,710)

36,830 [320]
(9270–108,300)

41,860 [364]
(10,740–108,300)

43,270 [376]
(11,390–121,390)

Values represent n (%), unless otherwise indicated.
IQR interquartile range, HbA1c hemoglobin A1c, TG triglycerides, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, AST
aspartate aminotransferase, ALT alanine aminotransferase, y-GTP gamma-glutamyl transpeptidase, ECG electrocardiogram.

I. Osawa et al.

2

npj Digital Medicine (2020)   148 Seoul National University Bundang Hospital

1
2
3
4
5
6
7
8
9
0
()
:,;



Variable importance
The variable importance in the random forest and gradient-
boosted decision tree model (model 1) was demonstrated in
Fig. 3. In both models, healthcare cost in the previous year was the
most important predictor for HNHC patients. In the random forest
model, obesity-related metrics (e.g., body weight and waist
circumference), gender, and blood pressure were significant in
addition to healthcare cost. In the gradient-boosted decision tree
model, age, the use of anti-hypertensive drugs, and predictors
related to blood sugar level (e.g., Hb1Ac, fasting blood sugar, and
hypoglycemic drugs) were important in addition to healthcare
cost.

Sensitivity analyses
We found a similar high performance of the machine-learning-
based prediction models when we used different thresholds for
defining HNHC patients (Table 3). The Lasso regression model had
the highest prediction performance (c-statistics, 0.86; 95%CI,

0.84–0.88) for predicting those who account for the top 1% of
healthcare cost, and the gradient-boosted decision tree model
had the highest prediction performance (c-statistics, 0.88; 95%CI,
0.87–0.88) for predicting those who account for the top 10% of
healthcare cost. We found no qualitative differences in the
discriminative ability between the prediction models using single-
year data and those using consecutive 2-year data (Tables 4 and 5).
Annual healthcare cost in the previous year was the most
important predictor for HNHC patients in the subsequent year
(Fig. 3). The machine-learning-based prediction models using
both clinical data from the screening program and healthcare
cost calculated using claims data marginally improved the
prediction performance compared to the models using only
patient age, gender, and healthcare cost calculated using claims
data (Tables 6 and 7). We found that adding 21 major diagnosis
categories and 22 major procedure categories to a set of
predictors included in our model did not improve the prediction
ability significantly compared with the reference model

Fig. 1 Distribution of annual healthcare costs in the working-age population in Japan, 2016. In 2016, the top 1%, 5%, 10% of patients
accounted for 26.4%, 47.7%, and 60.0% of total annual healthcare costs.

Fig. 2 Prediction ability of the reference and machine-learning-based prediction models for HNHC patients. A Receiver-operating-
characteristics (ROC) curves. The corresponding values of the area under the receiver-operating-characteristics curve for each model (i.e., the
c-statistics) are presented in Table 2. B Decision curve analysis. The X-axis indicates the threshold probability for HNHC patients. The Y-axis
indicates the net benefit. The curves (decision curves) indicate the net benefit of models (the reference model and four machine-learning-
based models) as well as two clinical alternatives (classifying no people as HNHC patients vs. classifying all people as HNHC patients) over a
specified range of threshold probabilities of outcome. Compared to the reference model, the net benefit, which is defined as the following
equation, for all machine-learning-based models was greater across the range of threshold probabilities. “net benefit= (1− false negative) ×
prevalence− false positive × (1− prevalence) × the odds at the threshold probability”. HNHC patients= high-need, high-cost patients.
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(i.e., model using the healthcare cost data) (e.g., c-statistics [95%
CI] of random forest model, 0.83 [0.82–0.85] vs. 0.84 [0.83–0.85];
Supplementary Table 2).

DISCUSSION
Using the nationally representative data of individuals who
underwent the national screening program in Japan, we found
that HNHC patients accounted for almost half of all annual
healthcare costs, similar to the findings from other developed
countries2,4,13. Machine-learning-based prediction models using
both clinical data and healthcare cost calculated using claims data
exhibited good prognostic performance for predicting HNHC
patients in the subsequent year, compared with the prediction
models relying only on claims data. The prediction models using
consecutive 2-year data did not significantly improve the
prediction performance compared to the models using single-
year data. Taken together, these findings highlight the importance
of incorporating clinical data—such as laboratory test results—in
developing machine-learning to achieve high performance in
predicting HNHC patients.
We found that adding clinical data from the screening program

to the data on healthcare cost from claims marginally improved
the performance of the prediction models. On the other hand, we
found no meaningful improvements in prediction ability by
adding the extra information on diagnosis and procedure to our
prediction models—the finding consistent with prior studies12,18.
This is probably because healthcare cost is a function of the
individual billing codes (e.g., the diagnosis, procedures, and
medications billed during hospitalization or the outpatient visit)
available in the claims data, and therefore, once the healthcare
cost in the preceding year is included as a predictor, the additional
benefit of adding a broad set of variables from the claims may be
negligible. On the contrary, clinical data from the national
screening program used in our study may provide complementary
information about the participants’ health status that are not
available in the claims data (e.g., HbA1c level), and thus, the
inclusion of both clinical data from the screening program and
healthcare cost data from claims led to a better performance of
the prediction model compared to the models that used only one
of these two databases.
Multiple studies to date have sought to identify future HNHC

patients using conventional approaches such as logistic regression
models9,11,12,14. For example, a study that developed a model
using logistic regression to predict the top 25% of HNHC patients
of employees among the United Auto Workers using claims data
and self-reported health data reported the c-statistics of 0.78 and
0.73, respectively14. While these conventional approaches had
moderate prognostic performance, advanced machine-learning-
based approaches have the potential to improve their prediction
ability8,12,15,18 and possess scalability (e.g., extracting important
features from a prediction model using many variables without
physicians’ interpretations)23. Tamang et al. developed a model
using elastic-net penalized logistic regression to predict the top
10% of HNHC patients using claims data in Denmark and showed
the best c-statistics of 0.8412. The prediction ability of our
prediction model for HNHC patients was better than similar
machine-learning-based prediction models reported in previous
studies12,16. The difference is likely due to the inclusion of detailed
clinical data collected through the screening program. Until
recently, there have been some studies that developed a
machine-learning-based prediction model for HNHC patients
using clinical data from administrative claims data8–17; however,
few studies developed prediction models incorporating laboratory
data to claims data. In 2019, Kim and colleagues analyzed the
data from South Korea and found a marginal improvement
in prediction ability for the top 10% of HNHC patients by adding
clinical data from the screening program to claims data18.Ta
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Our findings using Japan’s data were consistent with what they
found using South Korean data, which supports the robustness
and generalizability of our findings.
Our study has limitations. First, our data mainly consisted of the

working-age population aged 18–75 years who underwent the
national screening program. Therefore, our findings may not
be generalizable to other age groups such as children and the
elderly. This is particularly important as elderly people often
account for a large proportion of healthcare expenditures in
developed countries24,25. Second, our data from the national
screening program included missing data (0.1%–36% of data in
continuous variables), which could be a potential source of bias.
However, we believed this issue could be minimized in our
analyses under the use of random forest imputation for missing
continuous variables (known to be a rigorous technique for the
imputation of missing data)26. Lastly, given that we used
nationwide data from Japan, our findings may not be generalized
to the prediction of HNHC patients in other countries. However,
our findings were consistent with a recent study conducted in
South Korea18, which suggests potentially high generalizability of
our findings in other contexts.
In summary, using nationally representative data from Japan,

machine-learning-based models for predicting HNHC patients
using clinical data from the national screening program and
claims yielded a good prediction performance. In Japan, the time
between the submission of claims by healthcare providers to
insurers and the data to be available for the analysis is approximal
two months. Therefore, our prediction models have the potential
to inform policymakers and insurers by accurately predicting
future HNHC patients in real-time and intervene if necessary, with
the aim of curbing rapidly growing healthcare costs due to the
aging population.

METHODS
Data source and study population
We analyzed data from the nationwide claims database (MinaCare database)
from April 1, 2013, to March 31, 2016. The MinaCare database collects claims
from large employers and currently covers ~7.3% of the Japanese working
population. This database includes working individuals and their dependent
family members, with a wide range of age groups27. From the nationwide
claims database, we used a 10% random sample of 363,165 adults aged 18
years and older who underwent the national screening programs every year
from 2013 through 2016 (~45% of participants who received the screening
in 2013 were included in our final sample).
In Japan, all adults are required by law to undergo the national

screening program at least once a year, according to the Industrial Safety

and Health Act enacted in 197228. The screening program is standardized
nationally, and includes several examinations, tests, and surveys, including
demographics (height, body weight, waist circumference), eyesight,
hearing, chest X-rays, blood pressure, laboratory tests (blood tests and
urinalysis), electrocardiograms, past medical history, occupational history,
and subjective and objective symptoms (Supplementary Table 3).

Candidate predictors
We selected the candidate predictors from a broad set of variables based
on our clinical knowledge. Specifically, from the national screening
program data, we selected patient demographics (age, gender, body size
measurements [height, body weight, waist circumference], systolic and
diastolic blood pressure levels, laboratory data (fasting blood glucose,
hemoglobin A1c [HbA1c], triglyceride [TG], high-density lipoprotein
cholesterol [HDL-C], low-density lipoprotein cholesterol [LDL-C], aspartate
aminotransferase [AST], alanine aminotransferase [ALT], gamma-glutamyl
transpeptidase [γGTP]), electrocardiogram [ECG] abnormalities, and survey
responses (medication use [anti-hypertensive, hypoglycemic and anti-
hyperlipidemic drugs], past medical history [stroke, cardiovascular
diseases, kidney diseases], current smoking, exercise status [>30min twice
a week for 1 year]). From the claims data, we included annual healthcare
cost in the prior year, which includes all healthcare costs (except for a very
small proportion of healthcare services that were not covered by health
insurance [e.g., costs for cosmetic surgeries, the costs of over-the-counter
drugs]) and has been shown to be one of the strongest predictors of future
healthcare costs7,15,18. We decided to use only the data on healthcare cost
in prior years the development of our primary prediction models because
prior studies found no meaningful improvements in the prediction ability
by adding a large number of variables available in the claims data (e.g., the
diagnosis, procedures, and medications billed during hospitalization or the
outpatient visit) to the data on healthcare cost12,18.

Outcomes
The outcome was becoming an HNHC patient in the subsequent year. We
defined HNHC patients as those who account for the top 5% of annual
healthcare costs, an approach used in prior studies4,6.

Statistical analysis
Machine-learning-based models. We developed five machine-learning-
based models to predict HNHC patients in the subsequent year: (1) logistic
regression (used as the reference model), (2) logistic regression with Lasso
regularization (Lasso regression)29, (3) random forest30, (4) gradient-
boosted decision tree31, and (5) deep neural network32. Lasso regulariza-
tion is an extended standard regression model with the regularization
parameter (lambda) to shrink large coefficients toward zero and minimize
potential overfitting in the model by using a glmnet package29,33. Random
forest is an ensemble of decision trees created by bootstrap aggregation
and random feature selection34. Gradient-boosted decision tree is an
additive model of decision trees estimated by gradient descent31,35.

Fig. 3 Importance of each predictor in the random forest and gradient-boosted decision tree model. A The Random forest model. B The
Gradient-boosted decision tree model. The variable importance is a measure scaled to have a maximum value of 100. HbA1c hemoglobin A1c,
TG triglycerides, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, AST aspartate aminotransferase, ALT
alanine aminotransferase, GammaGTP gamma-glutamyl transpeptidase, ECG electrocardiogram.
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We used a grid search strategy to identify the best tuning hyperpara-
meters by using ranger and caret packages for the random forest and
gradient-boosted decision tree model30,36. Deep neural network is a
machine-learning algorithm using multiple layers to model the nonlinear
relationship between predictors and outcome37. We constructed a
multiple-layer, feedforward model with adaptive moment estimation
optimizer38 using a keras package for R version 3.6.132 and developed the
final models by manual tuning of the hyperparameters (i.e., the number
of layers, hidden units, learning rate, learning rate decay, dropout rate,
batch size, and epochs).

Model development, validation, and assessment. We first developed
prediction models using predictors in the 2014 data and the outcome in
the 2015 data (i.e., HNHC patients in 2015). Next, we validated these
prediction models using predictors in the 2015 data and the outcome in
the 2016 data. All predictors we used and the number of missing and non-
responded data are shown in Supplementary Table 4. We conducted
multiple imputations for missing data in continuous variables by using the
random forest method39, and used the following variables for multiple
imputations: patient demographics, blood pressure levels, laboratory data,
and survey responses. Random forest imputation is a nonparametric
algorithm that can accommodate nonlinearities and interactions and does
not require a particular parametric model to be specified26. The single
point estimates were generated by random draws from independent
normal distributions centered on conditional means predicted using
random forest. Random forest uses bootstrap aggregation of multiple
regression trees to reduce the risk of overfitting, and it combines the
estimates from many trees39. On the contrary, all non-responded data in
survey responses (i.e., questionnaires for past medical history, social
history) and ECG abnormalities, were assumed to be normal based on
clinical reasoning. In model development and validation, we used several
techniques to minimize potential overfitting—e.g., (1) Lasso regularization,
(2) cross-validation (Lasso regularization, random forest, and gradient-
boosted decision tree), (3) out-of-bag estimation (random forest, and
gradient-boosted decision tree), (4) dropout and batch normalization
(artificial neural network), and (5) validation of each model by using the
data in different years. To address the potential collinearity of parameters
included in our prediction model, we calculated the variance inflation
factor (VIF)22.
The prediction performance of each model was assessed by

computing (1) c-statistics (i.e., the area under the receiver-operating-
characteristics [ROC] curve), (2) prospective prediction results (i.e.,
sensitivity, specificity, positive predictive value, negative predictive
value, positive likelihood ratio, and negative likelihood ratio), and (3)
decision curve analysis. To address the class imbalance in the outcome
(e.g., the low proportion of individuals who were classified as HNHC), we
chose the threshold of prospective prediction results based on the ROC
curve (i.e., the Youden index)40. The decision curve analysis is a measure
that takes into account the different weights of different misclassifica-
tion types with a direct clinical interpretation (e.g., trade-offs between
under- and over-estimation for each model)41,42. Specifically, the
relative impact of false-negative (under-estimation) and false-positive
(over-estimation) results given a threshold probability (or clinical
preference) was accounted to yield a “net benefit” in each model. The
net benefit of each model over a specified range of threshold
probabilities of outcome was defined as “Eq. (1)” and graphically

displayed as a decision curve41,42.

net benefit ¼ 1� false negativeð Þ ´ prevalence
�false positive ´ 1� prevalenceð Þ ´ the odds at the threshold probability

(1)

To gain insights into the contribution of each predictor to machine-
learning-based models, we also computed the variable importance in
the random forest and the gradient-boosted decision tree. The variable
importance is a scaled measure to have a maximum value of 10036,43.
DeLong’s test was used to compare ROC curves44.

Sensitivity analyses
We conducted several sensitivity analyses. First, we used different
thresholds for defining HNHC patients: those who account for the (1)
top 1% and (2) top 10% of annual healthcare costs. Second, as the
prediction models using longitudinal data may have better prediction
ability, we developed prediction models using consecutive two-year data
(i.e., data in 2013–2014) and the outcome in 2015. We then validated the
models using predictors in 2014–2015 and the outcome in 2016. To assess
the benefit of including clinical data from the national screening programs
as predictors, we compared three machine-learning-based prediction
models: (1) the model using only clinical data collected through the
screening program, (2) the model only using patient age, gender, and
healthcare cost data from claims data and (3) the model using both clinical
data from the screening program and healthcare cost data calculated
using claims data. Lastly, we developed the prediction models additionally
including the data on diagnosis and procedure available in the claims data
(21 major diagnosis categories and 22 major procedure categories) as
predictors to investigate whether adding detailed claims data to our
primary models improves the prediction performance.
A P-value of < 0.05 was considered statistically significant. All analyses

were performed with R version 3.6.1. (The R Foundation for Statistical
Computing). This study was a secondary data analysis of de-identified data
(fully anonymized prior to receiving the data), and therefore, it was exempt
from The University of California, Los Angeles Institutional Review Board
review and participant consent was not required.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.

DATA AVAILABILITY
The MinaCare data are the proprietary of MinaCare, Co., Ltd. and not publicly
available for the research purpose. The researchers who would like to access the data
for the research purpose should contact Dr. Yuji Yamamoto (mc_info@minacare.co.jp)
in order to make a data use agreement and pay fee to have the data available.

CODE AVAILABILITY
Statistical codes and machine learning algorithms will be made available upon
request submitted to the author.

Table 5. Comparison of the prediction ability for HNHC patients between the model using single-year and consecutive 2-year data.

c-statistics P-valueb

Using single-year data Using consecutive 2-year data

Reference modela 0.824 (0.813–0.835) 0.829 (0.818–0.840) 0.56

Logistic regression with Lasso regularization 0.824 (0.813–0.835) 0.830 (0.818–0.841) 0.52

Random forest 0.837 (0.826–0.848) 0.839 (0.828–0.850) 0.80

Gradient-boosted decision tree 0.844 (0.833–0.855) 0.845 (0.834–0.856) 0.96

Deep neural network 0.842 (0.831–0.853) 0.840 (0.828–0.851) 0.81

aWe used a non-penalized logistic regression model as the reference model.
bWe compared the area under the curve between each machine-learning-based prediction model and the logistic regression model (the reference model)
using the DeLong’s test.
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