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Application programming interfaces for knowledge transfer
and generation in the life sciences and healthcare
Stephen K Woody1, David Burdick2, Hilmar Lapp 3 and Erich S. Huang1,4✉

Storing very large amounts of data and delivering them to researchers in an efficient, verifiable, and compliant manner, is one of
the major challenges faced by health care providers and researchers in the life sciences. The electronic health record (EHR) at a
hospital or clinic currently functions as a silo, and although EHRs contain rich and abundant information that could be used to
understand, improve, and learn from care as part learning health system access to these data is difficult, and the technical, legal,
ethical, and social barriers are significant. If we create a microservice ecosystem where data can be accessed through APIs, these
challenges become easier to overcome: a service-driven design decouples data from clients. This decoupling provides flexibility:
different users can write in their preferred language and use different clients depending on their needs. APIs can be written for iOS
apps, web apps, or an R library, and this flexibility highlights the potential ecosystem-building power of APIs. In this article, we use
two case studies to illustrate what it means to participate in and contribute to interconnected ecosystems that powers APIs in a
healthcare systems.
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INTRODUCTION
In the late 19th and early 20th century as households became
electrified for light, the concept of “appliances”—devices that
might use electricity for other purposes, such as sewing machines
and chafing dishes—was novel. A tally by the Southern California
Edison Company reported that in 1904 there were 500 appliances
in all of Southern California.1 Surprisingly, “the appliance plug is
conspicuously absent” from Thomas Edison’s myriad patents.1 For
decades, the principle means for connecting electrical devices was
screwing them into the same Edison-type sockets used by light
bulbs. This came with attendant inconveniences and hazards: for
instance, connecting one’s flat iron meant that one would have to
remove light bulb to do so, the power cord would become
vexingly twisted when connecting it, and if the iron were dropped
there was not an easily separable connection between the
appliance and its power supply with the possibility of short circuit
or shock. It was not until 1917, 37 years after Edison’s patent for
the light bulb—that six manufacturers agreed on a standard
receptacle for separable attachment plugs.1

In healthcare and life sciences, we are currently living in an era
analogous to the early days of electricity; an uncomfortable
interregnum between the clear promise of health data appliances/
applications for improving health and the difficult reality of our
data is equivalent to one-off custom hard-wiring or twisted cords
dangling from Edison screw-type sockets. Health data are not
readily transmittable across diverse sources, systems, and
countries, and are typically housed in monolithic servers cordoned
by technical, legal, ethical, and social roadblocks.2 While we are
used to the myriad consumer “apps” that “plug-in” to the iOS or
Android ecosystems, there is no equivalent in health care and the
life sciences. Even when access to particular data is granted,
making those data readily usable for the secondary purposes of
generating and transferring knowledge is challenging. A widely
held rule of thumb is that 80% of the time spent in creating an

analytic data set is allocated to cleaning, linking, and merging
data, while only 20% of the effort is applied to analyzing the data
for insights or applying machine learning.3,4

The idea of a data warehouse for health data, developed
decades ago for periodic reporting, should be reevaluated as
applications—programs that make those data usable or action-
able on a routine basis. “Secondary” data transactions tied to
analytic workflows or triggering actions are becoming as
important as “primary” use. And we must think of data less as a
“stash” to be accessed only periodically, but as a flow of
information that is constantly being used—analogous to how
we think of electricity being ubiquitously available for everyday
tasks. Therefore, it becomes more important to think of a layer on
top of data sources that make it more easily accessed by
applications via “application programming interfaces (APIs)” to
facilitate the transaction of data to applications (see Fig. 1). These
‘interfaces’ represent the data equivalent of the ubiquitous 110 v
wall socket, and applications become the equivalent of physical
appliances.
A recent elegant example of this concept embraces the HL7’s

Fast Health Care Interoperability Resources (FHIR) standard5

(which essentially provides a standardized container for data) to
represent a patient’s entire EHR in temporal order (with all the
idiosyncratic code in the EHR intact), and applied deep learning
techniques to predict clinical outcomes (death, length of stay, and
diagnoses) in a way that out-performed other clinically used
predictive models.6

Recently, the Office of the National Coordinator for Health
Information Technology (ONC) and the Centers for Medicare and
Medicaid (CMS) announced a Proposed Rule intended to advance
interoperability and support the access, exchange, and use of
electronic health information.7 The Proposed Rule calls on health
IT developers to use APIs and mandates that information about
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the technology be “exchanged, accessed, and used without
special effort.”7

In this article, we illustrate what it means to participate in and
contribute to interconnected ecosystems powered by APIs. We
present two case studies of how we used APIs in an academic
health system, and finally, present a way forward for developing
and nurturing this ecosystem. The ONC proposed rule represents
an important start; future practices and policies will need to
advance the use of APIs for clinical data exchange from the
electronic health record and other relevant data sources, not only
for patient and clinician use, but also for other health care
providers, payers, and for research.
Healthcare systems leaders who make decisions about IT teams

and the IT teams themselves should rethink data infrastructure in
healthcare so that modern applications and analytics can be
delivered through APIs, services, and cloud-like environments. This
will support the goal of facilitating knowledge generation while
minimizing the burdens of navigating access to monolithic data
silos.

A brief overview of APIs
APIs are analogous to standardized electrical sockets, but instead
of electricity, APIs perform the service of moving data. APIs are
software ports that provide secure routes for moving data around
a network or the internet; they are a mechanism by which an
external program invokes another program’s function or methods.
Accordingly, moving to an IT strategy that supports APIs is
important because it standardizes the “socket” for sharing and
using data.

Case Study #1: data provenance solution at Duke using APIs and
microservices. In response to an incident of research misconduct
at Duke University where a researcher altered data sets,8 our
research team conducted a project called the “Duke Data Service”
to capture data provenance from the time of data creation
through to publication. Based on two of the authors’ early
experience in developing a system for tracking provenance at
Sage Bionetworks (where they have been working on the
problem), we embarked on creating a solution using APIs and
microservices. This was Duke’s first enterprise, service-based
application, the first application designed and built from the
ground up to implement a service-based architecture, and the first

time we used cloud services as part of the deployment and
execution process.

Methods
At Duke University, much of the original data surfaces in core labs
across campus (e.g., next gen sequencing). To limit the opportunity
to corrupt data, we set out to capture and “fingerprint” data at the
earliest possible point in the process. Our intent was to automate
the process of taking data off of the equipment, create a hash, and
store the data in a secure storage system. On the deployment side,
we used the Heroku platform. Execution services include Ruby
(Rails), RabbitMQ, PostgreSQL, Neo4j and Elasticsearch. Adhering to
a service-based architecture meant that we would encapsulate all
functions within services with clearly defined APIs. (We posted all
documentation on the GitHub repository https://github.com/Duke-
Translational-Bioinformatics/duke-data-service). Documenting a
specification for each API is the genesis of each service. We used
Blueprint (https://apiblueprint.org) to document our APIs and
Dredd (https://dredd.readthedocs.io/en/latest/) to test them. We
automated the process of testing and deployment. Today, the APIs
go through over 5000 tests prior to deployment. Once passed, the
process deploys the code. This process improves quality and
facilitates quick deployment of fixes and new functions.
Duke Data Service breaks down into the following functional

categories:

● Authorizations
● Projects
● Folders and files
● Storage (Swift object storage)
● Metadata
● Search
● Provenance
● Core facility workflow

The University IT group provides the authentication service for
user and service accounts. The Data Service employs a project
concept and provides folder structures and access management.
In addition, the Data Service provides a flexible metadata layer
allowing the user to store and query any desired metadata.
OpenStack’s Swift object storage is our original storage imple-
mentation, however, we designed the Data Service to easily add

Fig. 1 APIs and an abstraction layer on top of source data. An application programming interface (API) abstraction layer on top of data
sources can help make data accessible through applications to facilitate the transaction of data via APIs.
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new data storage options such as cloud object storage (Amazon’s
S3), archive storage (Amazon’s Glacier), etc.

Results
Our research community easily understands the base data services
and file services grouped by project with some metadata. There is
an easy-to-use mobile device and web-based interface allowing
access to projects with folders and files. APIs are straightforward,
documented with examples and easy to use. Using these basic
storage services provides initial provenance. As data moves
through various transitions and translations, researchers need a
more sophisticated provenance capability. Based on the W3C
standard for provenance (https://www.w3.org/2001/sw/wiki/
PROV), we are adding new provenance services.
The result of our work is a service-based provenance storage

called the Duke Data Service. The Duke Data Service provides,
through a service-based API, access to significant storage (120
terabytes), and the ability to assign/move data from one custodian
(for example, the core lab) to another (for example, a researcher).
We recently added another storage provider, Dell/EMC’s Elastic
Cloud Storage (1.8 petabytes) without affecting existing users and
simply adding another storage option.
The Data Service team designed the services with the

expectation that others outside of the Data Service team would
eventually utilize Data Service’s capabilities. During the first seven
months of 2019, the Data Service received on average 46,300 files
per month totaling almost 7500 GB per month.

Discussion
Because our solution used APIs and microservices, it enabled an
ecosystem where others could build off our work. For example,
the data-producing core labs at the Duke University Center for
Genomics and Computational Biology (GCB), sought to better
automate its genomics data management and delivery processes.
GCB’s research IT group (note that this team is entirely separate
from the team that built Duke Data Service), without our
prompting, recognized that the Duke Data Service provides key
enterprise-level infrastructure building blocks that enabled it to
create an application on top of the Duke Data Service API that
focuses on uploading, sharing, transferring, and downloading
high-volume genomics data from a command-line shell environ-
ment. In essence, GCB has independently written a series of
“appliances” or applications leveraging the Duke Data Service
“sockets” or APIs. The applications were subsequently integrated
into the core lab’s data generation and delivery pipeline. By
connecting to the Duke Data Service for storage of laboratory
output, it automatically starts a provenance chain for these data,
one of our original motivating goals. The application created by
the GCB team is written in the Python language, and thus uses a
technology stack distinct from the Duke Data Service. Such loose
coupling, and ability for client applications to use the technology
stack most appropriate for them (Python is much more widely
used in the computational genomics domain than, for example,
Ruby), is among the key benefits enabled by a service-based
architecture. In GCB’s latest release, they added a web-based user
interface connecting into the same APIs making it even easier for
the cores’ lab staff to manage data delivery, and for research labs
to receive the data at the most useful location.

Data provenance API source code
Because data provenance is important for all research institutes,
we share the source code, the architecture and the methods by
which we are attempting to solve the problem publicly on Github
(https://github.com/Duke-Translational-Bioinformatics/duke-data-
service).

Case Study #2: providing up-to-date Institutional Review Board (IRB)
information through APIs—an useful abstraction layer. A more
recent implementation of an API strategy demonstrates the value
of an API as an abstraction layer. Internal audit cited a department
for not keeping access privileges to private health information
(PHI) in sync with the IRB’s official record of key personnel. To
address this issue, we created two API endpoints that provide the
status of the IRB approval (active or not active) and a list of current
key personnel (those that may access PHI). Our prior IRB system
and database did not provide any programmatic mechanism or
direct insight to this information. Moreover, understanding the IRB
approval status was not as simple as looking up a status. There
were other statuses that, in combination with the expiration data,
indicated that the IRB approval was active.

Methods
Instead of replicating this business logic in multiple systems, we
centralized it in the API. We were fortunate that a number of years
ago we contracted with the IRB vendor to help us create an
extract of the data into a reporting data mart, which was the
source of data for the API. The reporting data mart is updated
daily, which is adequate for our purposes. Systems that needed
the active status of a protocol and the key personnel list can
simply call the API. The API is REST-based and does not require the
calling program to be written in any particular language. Most
modern programming languages support REST calls.
Not only were we able to encapsulate the business logic, but

during the implementation, we changed IRB vendors. The change
involved creating a new reporting database and changes in logic
determining if the IRB is active. We modified the API to access the
new data mart and the business logic. No changes were necessary
to any application using the API, and everything was completely
transparent.
Implementation of this new API added an API manager or

service bus, Kong. The API manager authenticates each call and
performs message traffic regulation such as load balancing and
throttling. The API manager provides greater insight into
communication and message traffic.
On the user side, a few lines of code—without the need for a

professional programmer—can be used to populate up-to-date
IRB data even to database-style applications. In fact, most modern
frameworks for API documentation now automatically provide
code that can be readily used to access those APIs.9

Discussion
In this example, we see two clear benefits of the API model: (1)
keeping IRB business logic out of other applications by centraliz-
ing it in one place and (2) isolation of the IRB application allowing
us to swap IRB vendors without impacting applications using
the API.
As with many institutions like Duke, there are API construction

activities in many departments. These activities tend to be
disjointed, lack common standards, and have no mechanisms
for preventing redundancy. The next two major challenges we
plan to address in institutionalizing the API-based architecture are
(1) organizing information and documentation on APIs in a
common location so others can search for and use existing APIs
(rather than creating new APIs every time) and (2) improving the
maturity of APIs.

DISCUSSION
To recall our earlier analogy using the 110 Volt AC socket,
providing standardized and well-documented “data sockets” via
APIs provides many benefits in healthcare and the life sciences
that are similar to the benefits that sockets have provided for
electrical appliances in our daily life.
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1. Standardized API interfaces simplify building applications: as
we note in our examples, once a uniform and documented
set of APIs was created it became very easy for developers
from an entirely different team than the API developers to
create fit-for-purpose applications such as an application for
delivering large next generation sequencing data to
customers from a genomic core laboratory or incorporating
up-to-date IRB status and key personnel to a research
database.

2. Applications become easier to maintain: since applications
are built against APIs, if the system behind the API interface
layer changes, there are minimal if any changes the
developer must make. To use the AC socket analogy, if
you add solar panels to your house or your power company
switches to a different plant, your microwave oven
continues to function without any intervention. As noted
in our IRB example, even though the underlying IRB system
changed entirely, the were no changes necessary for the
consumer of the API.

APIs encourage ecosystems: from the time of Edison on,
standardized methods for storing and delivering electricity has
encouraged an ecosystem of devices that make that electricity
useful in our daily lives, whether via appliances or now,
automobiles. As data acquires the same ubiquity and utility as
electricity, APIs represent a standard for making data useful
through applications. Alphabet, the parent company of Google,
provides public access to close to 200 different APIs, many of
which will be familiar to the reader (at least through apps such as
Google Maps or Google Assistant), such as those for street view,
directions, and search. While Google itself uses these APIs for its
own apps, other companies use them as well through their own
applications, such as Uber or AirBnB.
Assuming one accepts the general principle of APIs, an

important issue to be addressed is the lack of data standards.
This is a fair question and addresses a fundamental “chicken or the
egg” problem in health informatics. Do we await standards before
exposing them via application programming interfaces? Or do we
“prime the pump” and begin exposing data via interfaces and
allow standards to develop with increasing ubiquity and use of
data? HL7’s FHIR standard is an important first step for health-
related data and is widely embraced as a proposed standard even
while its actual use is still very limited. In many ways, FHIR
embraces many best practices learned from the widespread
adoption of APIs outside of healthcare. One of the most important
of these principles is providing human and machine-readable
documentation of an API. Whether an API exposes data as XML
(Extensible Markup Language), JSON (Javascript Object Notation),
YAML (YAML Ain’t Markup Language), or Protobuf (Protocol
Buffers), if it is readily parse-able, API documentation can make it
relatively easy for application developers to consume those data.
In fact, many modern frameworks for building APIs automatically
generate documentation, and further, generate programmatic
libraries such that programmers merely need to install a pre-built
library to use an API. Therefore, all the tools to make an API
immediately useable by someone else can be seamlessly
produced as artifacts of building an API.
This begs an additional consideration: the Google Maps API, as

well-documented and understood as it may be, is not useable by a
layperson; software engineers must write an application—
whether it is the Google Maps app or the AirBnB app on one’s
phone—to make it useful to non-programmers. Application
programming interfaces are necessary, but not sufficient, for
making data readily useable. Just as electricity requires engineers
and manufacturers with special capabilities to produce refrigera-
tors or plug-in hybrids, producers of health data APIs require
counterparts with the skills to write health data applications for
use cases such as AI-driven clinical decision support or clinical trial

matching. In healthcare and the life sciences, creating this new
category of application developers requires recognition of this
need and a cultural evolution that embraces a new professional
category of personnel who have both domain expertise in the
health and life sciences and software engineering skills.
Some sectors in life sciences are building data ecosystems, for

example, in 2015, the National Institutes for Health Big Data to
Knowledge (NIH BD2K) Center for Big Data in Translational
Genomics (CBDTG) pioneered the development of shared APIs
to connect genomics repositories.2 Genomic data sets suffered
from siloed systems that lacked common standards across diverse
and geographically disparate sites, and there were clear incentives
for facilitating access to the data so they could be compared.

CONCLUSION
Our colleague, Amy Abernethy, notes in an AMIA keynote that
“the more that we use data, the clearer the river of data gets”.10

We suggest that APIs for life science and health data provide the
wellspring for such a river. At the same time, APIs by themselves
are not enough. Developers who are skilled at both creating and
consuming APIs and are conversant in the health and life sciences
are necessary too. As with any new technology, new job
categories are essential to making them useful to our commu-
nities. Standards are necessary too, and the question arises
whether standards need to occur first or whether increasing data
liquidity will provide opportunity for the community to develop
standards informed by real-world usage. If this is the case, we will
also need to learn from our peers in the technology sector the
best practices for API design and documentation that facilitate
active use and a crowdsourcing of effective standards. FHIR
represents a promising start in this direction.
Undoubtedly, significant culture change is required to build

toward a vision of API-driven data interchange. Again, there is
much to learn from the technology sector in observing the pace of
innovation that has accompanied widespread adoption of APIs.
Companies like Stripe or Twilio provide myriad customers
capabilities for their apps via the Stripe payment or Twilio
messaging APIs. Traditional industries such as automobile
manufacturing or banking are responding to this by rapidly
expanding their cohorts of API and application developers; it is
clear that applications are the “appliances” of our time. Our
experience in an academic health system is that API development
is a means to begin developing an ecosystem and culture that
focuses on the usage as opposed to the warehousing of data. No
doubt, as with any culture change, it will take time to live up to the
promise of APIs and applications in health, but the historical
parallels of electrification and the tech sector’s API economy
provide reassurance that the investment will be rewarded.

DATA AVAILABILITY
For Duke Data Service, we posted all code and documentation on the GitHub
repository https://github.com/Duke-Translational-Bioinformatics/duke-data-service.
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