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Deep learning (DL) has been shown to be effective in developing diabetic retinopathy (DR) algorithms, possibly tackling financial
and manpower challenges hindering implementation of DR screening. However, our systematic review of the literature reveals few
studies studied the impact of different factors on these DL algorithms, that are important for clinical deployment in real-world
settings. Using 455,491 retinal images, we evaluated two technical and three image-related factors in detection of referable DR. For
technical factors, the performances of four DL models (VGGNet, ResNet, DenseNet, Ensemble) and two computational frameworks
(Caffe, TensorFlow) were evaluated while for image-related factors, we evaluated image compression levels (reducing image size,
350, 300, 250, 200, 150 KB), number of fields (7-field, 2-field, 1-field) and media clarity (pseudophakic vs phakic). In detection of
referable DR, four DL models showed comparable diagnostic performance (AUC 0.936-0.944). To develop the VGGNet model, two
computational frameworks had similar AUC (0.936). The DL performance dropped when image size decreased below 250 KB (AUC
0.936, 0.900, p < 0.001). The DL performance performed better when there were increased number of fields (dataset 1: 2-field vs 1-
field—AUC 0.936 vs 0.908, p < 0.001; dataset 2: 7-field vs 2-field vs 1-field, AUC 0.949 vs 0.911 vs 0.895). DL performed better in the
pseudophakic than phakic eyes (AUC 0.918 vs 0.833, p < 0.001). Various image-related factors play more significant roles than
technical factors in determining the diagnostic performance, suggesting the importance of having robust training and testing

datasets for DL training and deployment in the real-world settings.
npj Digital Medicine (2020)3:40; https://doi.org/10.1038/541746-020-0247-1

INTRODUCTION

Diabetic retinopathy (DR), is a major cause of blindness'?. Cost-
effective strategies for DR management includes routine screen-
ing using retinal photographs and having referable cases (typically
moderate or worse DR and/or diabetic macular edema) managed
by eye care specialists®>. Recently, deep learning (DL) using
convolutional neural networks (CNNs) has sparked tremendous
interest in medicine®. In ophthalmology, many DL algorithms and
systems have been reported to achieve robust performances in
detecting various ocular diseases from retinal photographs’~?,
especially for DR'®'3. Despite substantial promise of DL
technology, it is unclear what factors may influence the
performance of a DL algorithm'. Currently, many research groups
have developed different DL algorithms using different datasets
and different techniques, and comprehensive guidelines on best
practices are not yet available®®'>7%°,

There have been many studies, primarily in computer vision,
exploring various factors that seek to optimize DL algorithms,
albeit individually analyzed, thus making consistency difficult to
achieve? ™, In addition, some factors involved in algorithm
design such as input size and field have been overlooked and
underestimated®®. Some groups have looked at a compilation of
technical factors postulated to be critical in the development of a
DL algorithm in the clinical setting in detection of pathologies
from radiological imaging®’~2°. However, these factors are largely
domain specific (i.e, radiology)?’?°. Thus, factors relevant in

ophthalmology and particularly in the area of fundus imaging
have yet to be explored.

The objective of this study is to systematically review current
literature investigating possible factors that may influence the
performance of a DL algorithm in detecting DR from fundus
photographs. We then specifically addressed some of these
factors that may impact on the performance of a DL algorithm.
This study provides insights into technical and image-related
factors that may impact future developments of DL systems for
retinal image analysis, especially in context of tele-ophthalmology
settings.

RESULTS

Systematic review of literature

The results of our systematic review of literature are detailed in
Fig. 1. Our search yielded 222 results, of which seven studies were
identified to demonstrate evaluation of technical or image-related
factors in DR detection by a DL algorithm. Table 1 displays the
various factors and research questions addressed by the
respective studies, demonstrating the focus on image-related
factors by previous analyses, ranging from training dataset sizes to
retinal camera specifications. Table 2 details the essential
components, outcome measurements and implications of the
articles included in the systematic review?'>2>31734,
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Patient demographics and disease breakdown of datasets
Out of a total of 38,185 eyes included in the Singapore’s national
integrated Diabetic Retinopathy Screening Program (SiDRP)

222 records identified through database searching
44 from PubMed
19 from Web of Science
44 from Scopus
74 from ProQuest
41 from IEEE Xplore

19 duplicates removed
203 records screened

196 records excluded
154 not related to detection of DR using DL
24 not related to technical/image-related factors
18 not original investigations

7 studies included

Fig. 1 Study selection. Flowchart detailing the systematic literature
review conducted to identify suitable studies that have evaluated

primary testing dataset, 8.4% had referable DR (n=3192). This
proportion is similarly reflected in the SiDRP source testing dataset
used, with 3.8% referable DR (n=1373) in 35948 eyes.
Comparably, this is likewise seen in the external testing datasets,
with African American Eye Disease Study (AFEDS) having 6.4%
referable DR (n = 90) within a total of 1403 eyes and the Singapore
Epidemiology of Eye Diseases (SEED) dataset having 8.5%
referable DR (n = 415) within a total of 4910 eyes. These datasets,
including detailed demographic characteristics, and breakdown
into training and testing subsets have been previously
published'”.

Technical factors: effect on performance

Diagnostic performances of the DL algorithms using different
CNNs and computational frameworks are shown in Table 3.
Regardless of the CNN or computational framework employed in
this study, all the DL algorithms were able to achieve high
diagnostic performance—area under the receiver operating curve
(AUQ) ranged from 0.936 to 0.944, and sensitivities and
specificities all exceeded 90% at the chosen classification

this question

Table 1. Technical and image-related challenges to development of deep learning algorithms for ocular disease detection.
Challenges Research question Paper Answer to research question
addressing

Image-
related

Technical Newer convolutional neural networks with increasing number

and complexity of layers may allow for greater depth of analysis
but may intensify burden on hardware processing power and
memory.

Differences between computational frameworks based on
flexibility, applicability, speed, ease of use, may affect choice.

Lack of access to high quality retinal images due to poor fundus
camera specifications, reduced storage space, or compression
for tele-ophthalmology.

Different groups in various countries may possess datasets with
varying number of field of fundus views due to disparities in
protocols, resources, and manpower.

The presence of cataract may impinge on proper visualization
of the fundus and inaccurate diagnosis due to media opacity,
light scatter and aberrancies.

The range of retinal cameras available to capture fundus
images in terms of camera specifications, requirement for
mydriasis, may provide variability in degree of field of view and
image quality output.

Ethnic differences in eyes exist that affect optical systems’
ability to capture the posterior pole and the identification of
the norm (e.g. pigmentation, optic disc size, vasculature).

Different populations vary in prevalence rates of ocular disease,
thus affecting the dataset used for validation and the utility of a
clinical test deployed in that population.

Ocular diseases do not develop distinctly as many share similar
risk factors and occur concurrently in the same patient, thus
distinction between manifestations of different diseases is
paramount.

The type of study (population-based, clinic-based or screening
cohort) used to collect retinal images may influence the patient
demographics of the datasets.

Different countries may use different reference standards for
grading of diabetic retinopathy (e.g., grader or
ophthalmologist), a product of resource allocation, expertise
and training available.

Availability of large datasets in the target population may be
scarce and insufficient for the training required for a highly
performing algorithm.

With large amount of images required for training, time
constraints and reduced access to high quality retinal cameras
may limit the use of large high resolution images for training of
deep learning systems.

Mydriasis may provide greater visualization for photographic

capture of the posterior pole, potentially influencing quality of
fundus photographs.

Does altering the convolutional
neural network architecture affect
performance?

Does altering the computational
framework affect performance?

Does altering the level of
compression of the input data affect
performance?

Does altering the number of fundus
field of views of the input data affect
performance?

Does previous cataract surgery
affect performance?

Current paper

Current paper

Current paper

Current paper

Current paper

No. Different neural networks do not
affect performance.

No. Different computational
frameworks do not affect performance.

Yes. Reducing image size below 250 KB
drops performance significantly.

Yes. Performance drops in descending
order from 7-field to 2-field to 1-field.

Yes. Presence of media opacity in
phakic eyes reduces performance.

Does altering the retinal cameras Ting et al.'”>  No. Different retinal cameras do not
used affect performance? affect performance.
Do images from various ethnic Ting et al.’”>,  No. Images from different ethnic
groups affect performance? Bellemo groups do not affect performance.
et al*?
Does deployment in populations Ting et al.'”>,  No. Deployment in populations with
with different disease prevalence Ting et al®**.  different prevalence rates does not
rates affect performance? affect performance.
Does concurrent related ocular Ting et al.’® No. Other existing diseases do not
diseases affect performance in affect the algorithm’s ability to detect
detection of an individual disease? individual diseases accurately.
Does the type of studies affect the Ting et al.'”®  No. The type of study does not affect
performance? the performance.
Does the difference in reference Ting et al.'”>  No. Different reference standards used
standard used for labeling of images do not affect the performance.
affect performance?
Does a smaller dataset used for Gulshan Yes. Datasets that drop below 60,000
training affect the performance? et al’®, images produce large drops in
Burlina et al.** performance.
Does image size of the training Sahlsten Yes. Increased resolution of training
dataset affect the performance? et al.?® images produce better performance
but increases training time.
Does mydriatic photographs Gulshan No. Mydriasis does not significantly
improve performance compared to et al.?, improve performance.
non-mydriatic images? Bawankar
et al.

npj Digital Medicine (2020) 40

Scripps Research Translational Institute




np)

M.Y.T. Yip et al.

Table 2. Characteristics of included studies in systematic review.

First Factor Data points Training Number Testing Number Outcome  Results Implications

author, addressed dataset of dataset of measures

reference  of training Images images
/testing (training (testing
dataset dataset) dataset)

Gulshan®  Dataset size 0.2% EyePACS 207 EyePACS 24,360  SP (at pre- SP 60,000 Images may be
(% of total set 38% the minimum training
training 206 2073 97% SN) 61% dataset size needed for
dataset of maximum performance
103,698) 10% 10,369 77%

(Training)  20% 20,739 86%
30% 31,109 91%
40% 41,479 98%
50% 51,849 100%
60% 62,218 96%
70% 72,588 97%
80% 82,958 100%
90% 93,328 99%
100% 103,698 100%
Mydriasis ~ Mydriatic EyePACS 128,175 EyePACS-1 4236 SN SP SN SP Mydriasis may not be
(testing) 89.6% 97.9% required for optimal
Non-Mydriatic 4534 90.9%  98.5% performance
Both 8770 90.1%  98.2%

Ting'® Retinal Canon SiDRP 76,370  BES 1052 AUC SN SP AUC SN SP 88.5% Different types of retinal
cameras 0.929 94.4% cameras do not affect
(testing)  Topcon CUHK 1254 0948 993% 83.1%  the performance

Carl Zeiss HKU 7706 0.964 100% 81.3%
Fundus Vue Guangdong 15,798 0.949 98.7% 81.6%
Study type Clinic-based SiDRP 76,370 CUHK 1254 AUC SN SP AUC SN SP The study type does not
(testing) 0.948 99.3% 83.1% affect the performance
Community- BES 1052 0929 944%  885% In detection of disease
based
Population-based Guangdong 15,798 0.949 98.7% 81.6%
Reference  Retinal Specialists SiDRP 76,370 CUHK 1254 AUC SN SP AUC SN SP If minimally professional
Standard 0.948 99.3% 83.1% graders with >7 years’
(testing)  Ophthalmologists BES 1052 0929 94.4%  885% eXperience grade,
. performance may not be
Optometrists HKU 7706 0.964 100% 81.3% affected
Graders RVEEH 2302 0.983 98.9% 92.2%
Prevalence 5.5% (BES) SiDRP 76,370 BES 1052 AUC SN SP AUC SN SP Lower prevalence rate
rate 0.929 94.4% 88.5% does not greatly affect
(testing) g 195 (SCES) SCES 1936 0919 100%  763% Performance
12.9% (AFEDS) AFEDS 1968 0.980 98.8% 86.5%
Concurrent  Mixed SiDRP 76,370 DR 37,001 AUC SN SP AUC SN SP Concurrent ocular
diseases pathologies 0.936 90.5% 91.6% pathologies in the same
(testing) AMD 773 0.942 96.4% 87.29, IMage doe,s not affect
the model’s detection of
Glaucoma 56 0931 932%  88.7% either disease
Ethnicity Malay SiDRP 76,370  SIMES 3052 AUC SN SP AUC SN SP Despite difference in the
(testing) 0.889 97.1% 82.0% retina between
Indian SINDI 4512 0917 993% 7339 ethnicities, this does not
) influence the
Chinese SCES 1936 0919 100%  763% performance in
African American AFEDS 1968 0.980 98.8% 86.5% detection
White RVEEH 2302 0.983 98.9% 92.2%
Hispanic Mexico 1172 0.950 91.8% 84.8%
Bawankar®' Mydriasis Non-mydriasis (vs Eye- 80,000 India 1084 SN SP SN SP Despite no mydriasis of
(testing) ETDRS mydriatic  PACS1, India 91.2% 96.9% testing dataset, the DLS
reference was able to perform
standard) highly when compared
to mydriatic 7-field
ETDRS grading
reference standard

Burlina®? Dataset size Real AREDS 119,000 AREDS 13,302 AUC AC AUC AC Creating proxy datasets

(training) 0.971 91.1% using GANs may provide
Synthetic Image 119,000 0.924 82.9% a solution to those with
limited access to large
generated -
with GANs number of images
Sahlsten® 256x256 24,806 7118 AUC AUC0.961
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Table 2 continued
First Factor Data points Training Number Testing Number Outcome  Results Implications
author, addressed dataset of dataset of measures
reference  of training Images images
/testing (training (testing
dataset dataset) dataset)
Image pixel 299x299 Digifundus 24,806 Digifundus 0.970 Training with higher
size 512x512 Ltd 24,806 Ltd 0.979 resolution images may
(training) 1024x1024 (Finland) 24806 (Finland) 0.984 improve performance
2095x%2095 24,806 0.987
Bellemo®?  Ethnicity African SiDRP 76,370 Zambia 4504 AUC SN SP AUC SN SP Differences in ethnicity
(testing) 0.973 92.3% 89.0% between training and
testing dataset does not
affect performance
Ting34 Prevalence 4.1% (VTDR) SiDRP 76,370 Pooled 93,293 AUC AUC Prevalence rate of
rate dataset 0.950 diseases may be
(testing) 6.5% (RDR (SiDRP, 0.963 estimated
5% (RDR) SIMES, ’ accurately by DLS
15.9% (ADR) SINDI, SCES, 0.863
BES, AFEDS,
CUHK, DMP)
AUC area under curve of receiver operating curve, AC accuracy, SN sensitivity, SP specificity, EyePACS Eye Picture Archive Communication System, SiDRP
Singapore’s National Integrated Diabetic Retinopathy Screening Program, BES Beijing Eye Study, CUHK Chinese University Hong Kong, HKU Hong Kong
University, RVEEH Royal Victoria Eye and Ear Hospital, AFEDS African American Eye Disease Study, SCES Singapore Chinese Eye Study, SIMES Singapore Malay Eye
Study, SINDI Singapore Indian Eye Study, DMP Diabetes Management Project Melbourne, DLS Deep Learning System, ETDRS Early Treatment Diabetic
Retlnopathy Study, AREDS Age Related Eye Disease Study, DR dlabetlc retlnopathy, AMD age- related macular degeneration, VTDR vision threatening diabetic

thresholds. Newer CNNs showed no significant improvement in
diagnostic performance. Compared to the oldest CNN VGGNet
(AUC 0.938), ResNet (AUC 0.936; P=0.581), and DenseNet (AUC
0.941; P=0.410) have similar performance to VGGNet despite
their increasing complexity in layers. However, an Ensemble of the
three networks showed higher performance at detecting referable
DR (AUC 0.944; P=0.02). Sensitivities ranged from 91.9 to 94.0%
with Ensemble producing the highest sensitivity, and specificities
narrowly ranged from 90.7 to 91.0%. To illustrate this consistency
in the performance between the different CNNs, an example is
shown in Fig. 2a.

Similarly, changing the computational frameworks used did not
result in significant differences in diagnostic performance. Caffe
and TensorFlow showed comparable performances with similar
AUCs (0.936 vs 0.938; P = 0.736), sensitivities (90.5% vs 92.1%) and
specificities (91.9% vs 91.0%). An example is displayed in Fig. 2b.

Image-related factors: effect on performance

Diagnostic performances of the DL algorithms using different
image sizes, numbers of fields, and prior cataract surgery are
shown in Tables 4-6, respectively. Variation of these image
characteristics had significant effects on diagnostic performance
of the DL algorithms. With progressive reduction in image size
from the original 350kilobytes (KB) to 300, 250, 200, and 150 KB,
AUC dropped progressively from 0.936 to 0.921, 0.900, 0.896, and
0.891 respectively with decreases amounting to statistical
significance below 250KB in size (P<0.001) and falling below
the AUC 0.9 mark. Although sensitivities were maintained high,
ranging from 83.5 to 90.5%, due to the previously fixed operating
point, specificities dropped culminating in a specificity of 72.4%
when images of 150 KB in size were used. Figure 2c illustrates this
threshold with examples of retinal images of referable DR that
were identified correctly as referable in minimal compression, but
subsequently misclassified as non-referable when compression
increased beyond 250 KB in image size, and vice versa.
Providing the DL algorithm with an increased number of fields
of fundus photography similarly showed better performance.
Comparing 2-field with 1-field in SiDRP dataset, AUC (0.936 vs
0.908; P < 0.001), sensitivity (90.5% vs 89.4%) and specificity (91.9%

npj Digital Medicine (2020) 40

vs 89.4%) were higher for the former. Examples of the effect of
fundus field of views on outcome are represented in Fig. 2d. This
trend is similarly seen in the AFEDS dataset as the AUC (0.949 vs
0911 vs 0.895), sensitivity (90.0% vs 82.6% vs 78.4%) and
specificity (86.5% vs 84.4% vs 86.1%) improved when using 7-
field images compared to 2-field and 1-field images respectively.
Overall, this shows that the DL model’s performance was best for
the 7-field, followed by 2-field then by 1-field input images.

Previous cataract surgery showed improvement in the DL
algorithm’s ability to detect DR in the pseudophakic eyes
compared to phakic eyes as AUC (0.918 vs 0.833; P<0.001),
sensitivity (93.4% vs 91.1%), specificity (84.2% vs 76.1%) were
remarkably higher. It is of note that the specificity of detecting DR
in phakic eyes falls below 80%, representing a large number of
false positives, non-pathological images misclassified to be
referable DR.

Heatmaps

Subsidiary heatmap analysis was conducted to explore the
rationale for the decrease in performance observed in images of
increasing compression. An example of the heatmaps is shown in
Fig. 3. This displayed a heatmap of a healthy retina that was
accurately classified by the DL model as having no DR when the
original 350 KB image was provided. Once provided with the
compressed image of 150 KB in size, this was falsely classified as
positive for referable DR. The heatmap showed that pixelation of
the retina caused by the Joint Photographic Experts Group (JPEG)
lossy compression was perceived by the DL algorithm as a
pathological manifestation of DR, thus resulting in the conversion
from a true negative case to a false positive case.

DISCUSSION

Our study provides insights that are useful for the development of
DL algorithms for detecting DR from retinal photographs. Overall,
for DR detection from retinal images, technical factors (CNN and
computational framework) do not appear to impact on diagnostic
performance of the DL algorithm, but image-related factors (e.g.,
image compression, number of fields, prior cataract surgery) had a

Scripps Research Translational Institute
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@ S 5 2 greater and significant impact. First, our study shows that it is
& 42 5o indifferent to utilize different CNNs and computational frame-
& o ES works to build the DL algorithm, as all show comparable
_% a Q9 T diagnostic performance in detecting referable DR (AUC, sensitivity
% % ° < < $§* and specificity >0.90). Although combining three CNNs into an
2|&|lao :’: 3 = z Ensemble model yielded a statistically higher performance (AUC
’g g|lc o a o g’a 0.944 vs 0.938), this may not be clinically significant. Second,
g S reduction in image size below 250 KB results in significantly lower
@ 3 ) v L performance of the DL algorithm, especially reducing specificity to
“_; S - oo = 2 88.8, 85.3, 72.4%. From the heat map analysis, compressed retinal
5 o i @ 28 images with lower image size were more pixelated and had more
g a 85 5 sy activity areas, although the changes were not obvious on the color
2 % § 2 < ri"; 2 photographs. Third, the performance of DL algorithm showed
g % 5 L °3 ) &8 g improved performance with increased number of fields (7-field is
Olo|oc x & o %E, z more superior than 2-field than 1-field), demonstrating the
Tg"gg importance of covering more retina areas for DR screening.
=} T g < Fourth, lens status has important implications, with pseudophakic
) [N £ 1] ’ ’
& S 2 g'&’ §- eyes associated with improved diagnostic performance when
& 2 i g g £ compared to phakic eyes.
o | & 5 S >3 G Our study further supports existing literature demonstrating
1S T e 55‘_5 that utilization of newer CNNs with increasing complexity does
g § N Ebr. ‘:r; e S % not greatly improve the performance of DL algorithms®. This is
u|c oo & 572 with the exception of an Ensemble of multiple networks which
38 often demonstrated superior results**>°. Previous studies examin-
N g :N\C? 3 ‘g g ing different computational frameworks in the accuracy at general
S g 5 2. g image classification tasks also showed comparable perfor-
o & ol sE5¢ mance®’?8. Although there have not been specific studies
s | & g g sx 2E addressing the effect of compression of retinal images in the
z|e 5 o 283 ‘g, context of DL algorithms detection of DR, our study reinforces
g | = 2 . .
. cl3 s ?2 é Egrsg previous studies that have demonstrated the robustness of DL
g 0| oo o 5 E52 models with compression of general non-medical images up to a
o $E3 8 compression threshold®.
g g ;f Zﬁ 28% 2 Possible explanations for our findings are as follows. Advances
h S < 5 a s £y in DL methods have made it possible to exceed human
S Loaa| g8y performance with error rates below 5%>°. CNNs that belong to
E o g 9 28¢8 this era include ResNet and DenseNet, with VGGNet falling close
51251 T3] Bes? behind*®*'. It could be postulated that changes in DL model
Q o) XX c o]
£ g % KR 50073 architecture may not affect the performance significantly because
clg|x|cS oo ZEETE the limiting factor is the quality information the input images
g = ; £ g provide. To some extent, heatmaps provided the rationale behind
wl 3 o ) c Q5= the performance observed when utilizing compressed images.
B 5 @ Sgz¢ | i i lted in | lution t tent
5| £ p < = 534%5 ncreasing compression resulted in lower resolution to an exten
% e o E 1\ g £ % § where the image may not hold enough information to distinguish
c| L & v a o cE S5 C hemorrhages from the background, thus causing a decrease in
=| 5|2 |c g2 Vggn s 9 9 9 . .
g ) 2|5 g S = Toce sensitivity from 90.5 to 83.5%. It may also result in increasing
1R |9 @ =22 © 89 distortion of the picture where normal retina or vascular
< ClO | T [9) %)
s|VI>|c oo 08 architecture may be misinterpreted as pathological manifestations
QuwsTw® y
_5 5.—5—2 g of DR such as hemorrhages or venous bleeding, causing a
5 § ESEE decrease in specificity*>. United Kingdom national screening
g = “_z o9 guidelines recommends retinal images to be compressed to no
9 = c5E 5 less than 400KB, implying the importance of image size in
o £ o= T y
> S Sxf€ adequate assessment of DR™.
E Y 53 2¢8 It is apparent that a greater view of the retina allows for more
S < SETET accurate diagnosis due to an increase in information***>. There-
=X S22 'g' ssEe8 fore, this would explain the findings that when provided with only
0 v 2 8 3% 3 1-field, the DL models’ performance dropped (from AUC 0.911 to
5 S =2 E]lasocV ' .
8 Y T 2% g:&f c£e 2 0.895) and why when provided with 7-fields, the performance
— T8I §‘§ SS® improved (from AUC 0.911 to 0.949). With additional evidence that
S Q< = %“g’. suggest an estimated 30% of lesions located around the Early
s 5 22798 iabetic Reti hy Study (ETDRS) 7-fields, this furth
< S 2580 5 Treatment Diabetic Retinopathy Study elds, this further
g 2 FEREE supports the improvement in increased number of fields*.
A £ 80 Q0Y P . .
S o 23 @ @ o However, it is interesting to note the high performance of the
© I =8FS 5 DL algorithm despite providing only 1-field. Our study shows that
£ S z 2°% 'g the DL system yielded best performance on 7-field retinal images,
. 2 § ég s although this may not be practical to do that in the routine setting
~ a S9ESS as it requires pupil dilation, experienced photographers and
2 [oa TET=uU . B . . . .
= a >5 2T patients’ compliance. Despite this, this DL system showed
= hdl 0% oS clinically acceptable outcome (AUC > 0.90) on 1-field and 2-field
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a Different Convolutional Neural Networks

Referable DR Non-Referable DR

VGGNet: Referable
ResNet: Referable
DenseNet: Referable
Ensemble: Referable

VGGNet: Non-Referable
ResNet: Non-Referable
DenseNet: Non-Referable
Ensemble: Non-Referable

b Different Computational Frameworks

Referable DR Non-Referable DR

Caffe: Referable
TensorFlow: Referable

C Different Compression Levels
Referable DR

Caffe: Non-Referable
TensorFlow: Non-Referable

Non-Referable DR

350KB: Referable
300KB: Referable

350KB: Non-Referable
300KB: Non-Referable

250KB: Non-Referable 250KB: Referable
200KB: Non-Referable 200KB: Referable
150KB: Non-Referable 150KB: Referable

d Different Fields of View

Referable DR

Non-Referable DR

2-field: Referable
1-field: Non-Referable

photographs for DR screening. A possible reason for this high
performance could be due to the distribution of manifestations of
DR important for diagnosis. This is because some studies report a
skewed topological distribution of DR lesions concentrating in the
areas lateral to the macula and in the temporal retina, those areas
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2-field: Non-Referable
1-field: Referable

visible to the macula-centered image*’*%. It should be noted that
there is a possible confounding factor of increased number of
fields providing increased number of images per eye, thus
providing a better result. Phakic lens status and cataract, with
resultant impact on media opacity and the gradability of retinal
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Fig. 2 Retinal image examples. a Our results showed that using different CNNs show complementary classification of referable or non-
referable DR, and these two images exhibit this agreement. b Using either computational framework similarly does not affect performance
significantly as many images such as those depicted above are correctly classified as non-referable or referable DR by either framework.
¢ Altering the image compression level does affect the DL model’s performance significantly beyond the threshold of 250 KB with a drop in
sensitivity and specificity. These two photographs illustrate examples where a referable DR image is correctly identified as referable by the DL
model when mild compression is introduced (i.e., a true positive case), but with further compression beyond 250 KB, this is misclassified as
non-referable (i.e., a false negative case). This supports the drop in sensitivity beyond the 250 KB threshold. Similarly, this is demonstrated for a
case of non-referable DR, where higher compression of the image causes a previously correctly classified image to subsequently be incorrect
(i.e., a previously true negative result, now falsely classified as positive with disease), supporting the drop in specificity. d Another amendment
to the image characteristics, in this case the field of view, showed reduced sensitivity and specificity when using 1-field instead of 2-field
images. This example of referable DR had significant lesions present in the inferior-nasal quadrant, which were likely to be missed if using
simply a macula-centered image, supporting the drop in sensitivity with the solitary use of 1-field images. Conversely, this example of healthy
retina captured some dust particles in the superior and inferior nasal quadrant that might have inadvertently been misinterpreted by the DL

algorithm as a lesion, prompting the misclassification as referable DR, thus supporting the drop in specificity.

Table 4. Effect of image-related factors specifically compression levels.

Compression level - image file size

350 KB

300 KB

250 KB 200 KB 150 KB

SiDRP Value (95% CI) AUC
P value for AUC comparison

0.936 (0.927-0.944)
Reference

90.5% (87.3-93.1%)
91.9% (91.6-92.2%)

Sensitivity
Specificity

0.921 (0.908-0.932)
0.261

85.9% (82.2-89.0%)
92.5% (92.3-92.8%)

0.900 (0.885-0.913)
<0.001

83.5% (79.7-86.9%)
88.8% (88.5-89.2%)

0.896 (0.881-0.910)
<0.001

85.6% (81.9-88.8%)
85.3% (84.9-85.7%)

0.891 (0.876-0.905)
<0.001

90.5% (87.3-93.1%)
72.4% (71.9-72.8%)

P value was calculated by bootstrap method, taking 350 KB as the reference for comparison against.
Dataset used for evaluation of different compression levels is Singapore integrated Diabetic Retinopathy Programme (SiDRP) 2014 to 2015.
AUC area under receiver operating curve, C/ confidence interval, KB kilobytes, SiDRP Singapore integrated Diabetic Retinopathy Programme.

Table 5.

Effect of image-related factors specifically fundus fields of view.

Fundus fields of view

7-field (ETDRS standard)

2-field (Optic disc and macula-centered) 1-field (Macula-centered)

AUC
P value for AUC comparison

SiDRP  Value (95% ClI)

Sensitivity
Specificity

AFEDS Value (95% CI) AUC 0.949 (0.923-0.968)
P value for AUC comparison  Reference
Sensitivity 90.0% (81.9-95.3%)
Specificity 86.5% (84.6-88.3%)

0.936 (0.927-0.944)
Reference

90.5% (87.3-93.1%)
91.9% (91.6-92.2%)
0.911 (0.877-0.937)
<0.001

82.6% (72.9-89.9%)
84.4% (82.3-86.3%)

0.908 (0.894-0.920)
<0.001

89.4% (86.0-92.2%)
89.4% (89.0%-89.7%)
0.895 (0.852-0.931)
<0.001

78.4% (67.3-87.1%)
86.1% (84.0-88.0%)

P value was calculated by bootstrap method.

Datasets used for evaluation of different fundus field of views were Singapore integrated Diabetic Retinopathy Programme (SiDRP) 2014 to 2015 to evaluate 2-
field and 1-field, and African American Eye Disease Study to evaluate 7-field ETDRS standard retinal images in addition to 2-field and 1-field.

AUC area under receiver operating curve, C/ confidence interval, ETDRS Early Treatment Diabetic Retinopathy Study, SiDRP Singapore’s national integrated
Diabetic Retinopathy Screening Program, AFEDS African American Eye Disease Study.

images would also result in a decrease in specificity from the
increased false positives observed and this supports the better
performance reported in pseudophakic eyes®.

There is an increasing desire for research groups around the
world to develop their own DL algorithms tailored to their specific
purpose with aspiration to emulate the successes of previously
published DL algorithms. In addition, many clinicians, healthcare
professionals and policymakers making decisions on the adoption
of a DL algorithms increasingly require a comprehensive guide on
the clinical translatability of these algorithms in the specific clinical
context they operate in. This paper provides a broad guidance in
the technical and image-related factors that should be considered
during the development and deployment of DL models,
concentrating on factors that would vary based on the intended
purpose of the DL models and the resources available.

Scripps Research Translational Institute

Subsequent investigations may consider expanding on this study
to explore the effect of altering other factors governing the
characteristics of the input images such as comparisons between a
myriad of fundus cameras: non-mydriatic and mydriatic, table top
and handheld, color and mono-chromatic. This is due to the
finding that specifications of input images may be deemed to be
the main limiting factor to improving the algorithm'’s performance.

Our current study has several limitations which should be
acknowledged. The analysis of the following five described factors:
choice of CNN, computational framework, image compression,
field of view, and previous cataract surgery is not exhaustive.
There are other computational frameworks (e.g., PyTorch, CNTK),
CNNs (e.g., Inception, AlexNet), and variations in number of fundus
fields of view (e.g., wide and ultrawide field retinal imaging) that
were not included in this analysis. Inclusion of these would not be
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Table 6. Effect of image-related factors specifically previous cataract surgery.

Lens Status

Phakic

Pseudophakic

SEED Value (95% Cl) AUC

Sensitivity
Specificity

P value for AUC comparison

0.833 (0.811-0.853)
Reference

91.1% (84.6-95.5%)
76.1% (73.8-78.3%)

0.918 (0.887-0.940)
<0.001

93.4% (85.3-97.8%)
84.2% (81.4-86.8%)

Study, Singapore Indian Eye Study and Singapore Chinese Eye Study.

P value was calculated by bootstrap method, using the phakic eyes as the standard.
Dataset used for evaluation of phakia compared to pseudophakia is Singapore Epidemiology of Eye Diseases study, which comprises of Singapore Malay Eye

AUC area under receiver operating curve, C/ confidence interval, SEED Singapore Epidemiology of Eye Diseases study.

Fig.3 Heatmaps generated for compressed images. Heatmaps showing the ‘hot’ areas that the DL algorithm focuses its attention on when
making a diagnostic assessment on the retinal image. This was created using the Integrated Gradient method®®. The colors on the greyscale
retina image show the region of interest, with the red showing peak areas of region of interest while the blue shows the background areas of
the region of interest. The white box isolates an area of the image to illustrate the difference between images of 350 and 150 KB in size. a A
fundus photo of a healthy retina that was provided to the DL model as a 350 KB image. This was correctly classified by the DL model as a
healthy retina with no DR. The heatmaps show focus on the normal optic disc and vasculature. b The same healthy retina is shown but
compressed into a 150 KB size. This was misclassified by the DL algorithm as a retina with referable DR. The heatmaps show other regions of
interest aside from the normal optic disc. The magnification of one of these anomalous regions of interest depicts pixelations as identified by
the white arrows and ovals. These pixelations amalgamate into a mistaken pathological manifestation of DR, resulting in its false positive

status.

pragmatic given the wide range of technologies currently
available with novel ones being introduced frequently. In our
investigation into the features of the input image and the effect
on performance, we considered factors that would be clinically
relevant and beneficial for real-world applications>°. For example,
the potential of DL to expand coverage of healthcare services to
rural areas with limited access required compromise on the image
size and the number of fields captured per eye for screening
purposes to compensate for limited economic resources such as
manpower, data storage, and connectivity. Although our study
shows that the DL performed better in the pseudophakic than
phakic eyes, this may not change how we would screen for
patients with diabetes. In addition, the patients with early cataract
could still have clear media to allow good quality retinal images,
although we do not have such information captured in our study.

npj Digital Medicine (2020) 40

Another limitation is this study focused only on DR detection
from fundus imaging, thus the findings may not be applicable to
other ocular conditions and imaging modalities. Nevertheless, we
feel that the technical and image-related factors that we have
identified as important in this study may be extrapolated to DL
algorithms being applied for diagnosis of other ocular diseases
from retinal images. The relative importance of these factors when
applied to detection of other ocular diseases, or using alternative
imaging modalities (such as optical coherence tomography) is an
interesting area for further study.

In conclusion, our study provides a guide for researchers to
understand the factors that may impact the development of DL
algorithms for detection of DR and other conditions from retinal
photographs, particularly when using images from real-world
populations. Various image-related factors play more significant
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roles than technical factors in determining the diagnostic
performance, suggesting the importance of having robust training
and testing datasets for DL training and deployment in the real-
world settings. In order to ensure a successful translation of a DR
screening algorithm, it is important to consider technical factors
(e.g., types of CNN, computational framework) and image-related
factors (e.g., compression levels, number of fields, media clarity,
mydriatic status, retinal cameras, pigmentation of different races,
disease prevalence, systemic vascular risk factors, concurrent
ocular diseases and reference standards).

METHODS

We first conducted a systematic literature review on factors affecting DL
algorithms in detection of DR using search engines PubMed, Web of
Science, Scopus, ProQuest and IEEE Xplore searching for peer-reviewed
studies up to 20 September 2019. Keywords used were ‘diabetic
retinopathy’, ‘deep learning’, ‘technical factor’ and ‘image-related factor'.

Based on the systematic literature review (Fig. 1), we then selected the
following factors to conduct the following analyses. First, we looked at
different CNNs within the DL algorithm architecture: VGGNet, ResNet,
DenseNet and Ensemble (a combination of the aforementioned three
CNNs). Second, we evaluated the impact of altering the computational
framework used to implement the coded CNNs: Caffe and TensorFlow.
Third, we analyzed the effect of different image sizes generated through
the process of compression, specifically looking at the five image sizes 350
(original), 300, 250, 200, 150 KB. Fourth, we looked at various numbers of
input field of views captured per eye: 1-field macula-centered image, 2-
field macula-centered and optic disc-centered images, 7-field ETDRS
standard fields. Fifth, we looked at the impact of eyes with prior cataract
surgery compared to eyes with cataract on the ability of the DL algorithm
to accurately detect DR.

Study population dataset: training dataset

The DL algorithm was trained to detect referable DR with 76,370 retinal
fundus photographs obtained from 13,099 patients from the database of
SiDRP between 2010 and 2013. The definition of DR was made based on
the International Classification Diabetic Retinopathy Severity Scale (ICDRSS)
(Supplementary Fig. 1). SiDRP is a national screening program in Singapore
established in 2010 which utilizes a tele-ophthalmology platform where
fundus photographs captured in primary care clinics are transmitted to a
centralized team of trained graders'>*". The 45 degree angle retinal fundus
photographs are all taken with Topcon TRC-NW8 Non-Mydriatic Retinal
Cameras in two fields of view per eye, an optic disc-centered image and a
macula-centered image, with both eyes taken per patient. These two-field
images in the training dataset were notably 350 KB average in size each.
This training dataset included phakic and pseudophakic eyes. One round
of training was conducted with no further re-training of the algorithm. For
the purposes of collating a robust training dataset for the DL algorithms,
two senior certified non-medical graders with more than five years’
experience were tasked to grade each eye. Discordant grades between the
two graders were arbitrated by a retinal specialist. Poor quality images
deemed ungradable to senior non-medical professional graders were
removed from the training and testing dataset, especially if the images had
more than a third of the photograph obscured. These images were not
used in the analysis of the DL algorithm.

Technical factors: different CNNs

Three CNNs were explored in this study, namely VGGNet, ResNet and
DenseNet. Additionally, the three CNNs were further combined into an
Ensemble model. The CNNs were built using TensorFlow with Keras API
specification (Fig. 4). Pre-trained models with transfer learning were
available in the Keras library. All models had a final max-pooling layer
added before the output layer.

(1) VGGNet: This is a 16-layered network, designed by the Visual
Geometry Group in Oxford in 2014. VGGNet has been popular due
to its excellent performance on the classification of retinal
images'>°%°3, An overview of the architecture can be seen in Fig. 4a.

(2) ResNet: For this study, we used ResNet-50 consisting of 50 layers which
surpassed human performance with an error rate of 3.6%. Recently, it
has been widely used to detect age-related macular degeneration,
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diabetic macular edema, and glaucoma®**>*°. ResNet’s rise in popularity
is attributed to its ability to increase depth of the network architecture
through ‘skip’ residual connections equipped to perform identity
mappings, thus increasing accuracy whilst still being easy to train (Fig. 4b).

(3) DenseNet: This CNN consisted of 121 layers densely connected
through concatenating sequential layers in a feedforward fashion to
achieve increased depth of deep CNNs efficiently (Fig. 4c)*°.

(4) Ensemble: Ensemble consists of the above three networks’ (VGGNet,
ResNet, and DenseNet) and its output is established as an average
over outputs of the component networks per eye. Performance is
expected to match or exceed single CNNs (Fig. 4d)*’.

Technical factors: different computational frameworks

The DL algorithms were then constructed using two open-sourced
computational frameworks—Caffe and TensorFlow to compute VGGNet
using Python (a programing language).

(1) Caffe: This was reconstructed from the reference paper, initialized
with Xavier initialization and included an extra module of
convolutional and pooling layer to cater for increased resolution
of input images to 512 x 512°%, This VGGNet Caffe DL algorithm
was the control architecture for analysis of the image-related
factors.

(2) TensorFlow: In this study, TensorFlow was implemented with Keras
API specification. In addition, a single pooling layer preceding the
output layer in VGGNet was added°.

Image-related factors: different image compression

Increasing compression may allow ease of transmission in tele-
ophthalmology but may compromise image quality. To investigate the
effect of input image compression on performance, 71,896 original images
(35,948 eyes of 14,880 patients) taken from SiDRP between 2014 and 2015
were used as the archetype to create five distinct sets of fundus images
with different compression levels. These were 45 degree angle fundus fields
taken with Topcon TRC-NW8 Non-Mydriatic Retinal Cameras. In total,
359,480 retinal fundus images were generated. These five sets were then
used to test the DL algorithm. It should be noted that the DL algorithm was
previously trained on the original 350KB images. These images were
compressed from an average of 350KB JPEG images to four additional
levels of compression, averaging 300, 250, 200, 150KB in image size
respectively. This was achieved with the use of a standard JPEG
compression algorithm using the Independent JPEG Group's library of
quality levels. We used a publicly available algorithm on the OpenCV library.

Image-related factors: different fundus field of view

We evaluated the effect of different fundus field of views on the
performance of the DL algorithm by comparing (1) 1-field macula-centered
and (2) 2-field optic disc and macula-centered fundus photographs. Both
subsets were taken from data collected from SiDRP between 2014 to 2015
containing 35,948 eyes. Macula-centered or optic disc-centered is defined
as the macula or the optic disc, respectively, located less than one disc
diameter circumferentially from center of the image. In addition, we also
looked at increasing number of fields, comparing (1) 1-field, (2) 2-field, and
(3) 7-field fundus imaging. For this analysis, we used an external testing
dataset from the AFEDS that obtained the ETDRS stereoscopic reference
standard of 7-field fundus imaging®®®'. 7-field, 2-field, and 1-field retinal
images collected from a fixed set of 1403 eyes in this dataset were used. A
total of 9821 images were used.

Image-related factors: previous cataract surgery

To assess the impact of previous cataract surgery on the ability for the DL
algorithm to detect DR on fundus photographs, we employed an external
testing dataset using retinal images from participants of SEED Study (baseline,
2004-11). The SEED study is a population-based epidemiologic study that
comprised three major ethnic groups in Singapore — Malay patients were
recruited from 2004 to 2006, Indian patients from 2007 to 2009, and Chinese
patients from 2009 to 2011°%°%°, Phakic and pseudophakic eyes in this dataset
were separated and analysis was conducted to compare one group with
relation to the other. Among the 4910 eyes (9820 images) included, 1612 eyes
were phakic and 3298 eyes were pseudophakic.
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Fig. 4 Convolutional neural networks investigated. The architecture of convolutional neural networks (CNNs) are based on few general
principles. The network is composed of mathematically weighted neurons that form sequential layers where there is linear transfer of signal
from the input through to the output layers. For this study, each input image was pre-processed by scaling to a fixed template of 512 x 512
pixels in resolution. These images were subsequently represented as a matrix of Red Green Blue (RGB) values in the input layer. Sequential
convolutions were conducted by superimposing a weighted kernel over these input maps, with our study using a 3 x 3 weighted kernel with
subsequent max-pooling. The output layer utilizes a softmax classifier to generate probability values for the pre-defined output classes'>3%°2,
a VGGNet is the oldest CNN used in this comparlson, released in 2014. Despite its standard uniform architecture composed of 16 layers, it has
had great success at feature extraction®. b ResNet has been highly favored since its introduction in 2015, with its atypical architecture
utilizing sk|p residual connections (V|suaI|zed as blue arrows) to bypass signals across layers. Th|s allows for increase in layers without
compromising the ease of training, resulting in supra-human performance of 3.6% top-5 error rate®*. ¢ DenseNet is a newer CNN released in
2017 that has been shown to perform better than ResNet. Its architecture builds on a similar prlnaple to the one capitalized by ResNet, but
rather has a dense connectivity pattern where each layer receives information from all preceding Iayers as shown by the green arrows. This
allows concatenation of sequential layers and compacting the network into a ‘denser’ configuration®°. d Ensemble is a combination of the
three networks’ probability output scores generated per eye, through the acquisition of the mean vaIue.
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Heatmap

Heatmaps were generated to provide insight into the conundrum of DL, the
black box of learning, as they demonstrate focus areas visualized by the DL
system. The method of Integrated Gradient was used to generate these
heatmaps®.

Reference standard of testing dataset

The reference standard of the severity of DR of each eye in the SiDRP and
SEED testing datasets was set as the grading assessment by an
ophthalmologist sub-specializing in retinal diseases, with over five years’
experience in assessing DR. For the AFEDS testing dataset, concurring
assessments from two retinal specialists were used as the reference
standard. The grading was conducted in accordance to ICDRSS. However,
for the purposes of this study, we reclassified this scale to a binary outcome
measure of referable DR or non-referable DR. Referable DR is defined as
moderate non-proliferative DR or worse, including diabetic macular edema.

Statistical analysis

We used the following primary outcome measures as a marker for DL
algorithm’s performance in detecting referable DR: AUC, sensitivity and
specificity of the algorithm at detecting DR with respect to the reference
standard. The operating thresholds were pre-set during training of each
modification of the DL algorithms’ technical parameters. During training,
AUCs were determined for the training dataset while sensitivities and
specificities were calculated across a range of thresholds. The optimal
threshold for each DL algorithm was chosen to achieve 90% sensitivity. The
95% confidence intervals (Cl) for sensitivity and specificity were calculated
with the exact Clopper-Pearson method and for AUC, empirical bootstrap
with 5000 replicates was used. To evaluate statistical significance of
difference in results for comparison of AUCs, the empirical bootstrap with
5000 replicates was used. All statistical analyses were performed using the R
statistical software (version 3.5.1; R Foundation for Statistical Computing,
Vienna, Austria). P value less than 0.05 was considered statistically significant.

Ethics approval

Our study was approved by the centralized institutional review board (IRB)
of SingHealth, Singapore (IRB reference number 2018/2433). It was
conducted in accordance with the Declaration of Helsinki. Informed
consent by the patients were exempted by the IRB because it used fully
anonymized images retrospectively.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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