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Deviations from normal bedtimes are associated with
short-term increases in resting heart rate
Louis Faust 1,2, Keith Feldman1,2, Stephen M. Mattingly1,2, David Hachen2,3 and Nitesh V. Chawla 1,2✉

Despite proper sleep hygiene being critical to our health, guidelines for improving sleep habits often focus on only a single
component, namely, sleep duration. Recent works, however, have brought to light the importance of another aspect of sleep:
bedtime regularity, given its ties to cognitive and metabolic health outcomes. To further our understanding of this often-neglected
component of sleep, the objective of this work was to investigate the association between bedtime regularity and resting heart rate
(RHR): an important biomarker for cardiovascular health. Utilizing Fitbit Charge HRs to measure bedtimes, sleep and RHR, 255,736
nights of data were collected from a cohort of 557 college students. We observed that going to bed even 30minutes later than
one’s normal bedtime was associated with a significantly higher RHR throughout sleep (Coeff +0.18; 95% CI: +0.11, +0.26 bpm),
persisting into the following day and converging with one’s normal RHR in the early evening. Bedtimes of at least 1 hour earlier
were also associated with significantly higher RHRs throughout sleep; however, they converged with one’s normal rate by the end
of the sleep session, not extending into the following day. These observations stress the importance of maintaining proper sleep
habits, beyond sleep duration, as high variability in bedtimes may be detrimental to one’s cardiovascular health.
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INTRODUCTION
Prolonged inadequate sleep habits have been repeatably linked to
serious medical conditions such as heart disease, obesity and
decreased life expectancy1–3. As such, proper sleep hygiene has
become a key component in managing personal health and
wellness. To improve our sleep habits, we are often recommended
to achieve 7–9 h of sleep per night4; however, this goal alone
neglects a less understood, yet critical aspect of proper sleep:
bedtime regularity. Prior research has observed that large
differences in bedtime regularity, even after adjusting for bedtime
duration, are linked to worsened health outcomes, particularly for
our cognitive and metabolic systems5–7. The literature has yet to
address, however, what these disparities in bedtime regularity
mean for our cardiovascular health. As such, this manuscript
serves to address this gap: specifically, examining how adherence
to a normal bedtime is associated with resting heart rate (RHR).
A body of literature has shown RHR to be an important

biomarker for cardiovascular health8–13. A meta-analysis con-
ducted by Zhang et al.9, including 46 studies involving 1,246,203
patients, observed that higher RHR was independently associated
with increased risk of all-cause and cardiovascular mortality after
adjusting for traditional risk factors9. In addition to mortality, a
study by Cooney et al.13, following over 20,000 healthy men and
women, found elevated RHR was a significant independent risk
factor for likelihood of developing cardiovascular disease.
In addition to high RHR being a significant predictor of

cardiovascular disease and mortality, studies have further shown
that it is the changes in RHR over time that are associated with
these outcomes10,11. In a meta-analysis published in the European
Heart Journal, several studies focused on reducing RHR over time
through the use of beta-blockers and calcium channel blockers,
finding the reductions in RHR were associated with reductions in
cardiovascular mortality10. A prominent work recently published
in Open Heart observed that individuals with significant increases

in RHR over time were at higher risk for all-cause and
cardiovascular mortality11, finding every beat per minute increase
was associated with a 3% higher risk for all-cause mortality, 1%
higher risk for cardiovascular disease and 1% higher risk for coronary
heart disease. The authors also highlighted the clinical utility in
capturing trends in RHR, rather than relying on a single measure.
Given the importance of RHR as a biomarker for cardiovascular

health, a better understanding of the risk factors associated with
RHR is necessary for the proper interpretation of changes in RHR
over time. As such, we examined bedtime deviations as a potential
risk factor for elevated RHR. This was accomplished through two
research questions: RQ1—Are deviations in bedtimes, relative to
one’s normal bedtime, associated with increases in resting heart
rate? and RQ2—How long does one’s resting heart rate take to
return to baseline, following bedtime deviations?

RESULTS
Participant characteristics
Table 1 provides an overview of our study cohort broken into
three categories: demographics, behaviors and sleep character-
istics. As the participants involved in this study were followed for
multiple semesters, mutable attributes are presented for each
semester, corresponding to repeated surveys. A summary of these
demographics and their relationship with RHR is available in
Supplementary Table 5.
In Table 2, we also provide the number of instances of each

bedtime deviation and overall percentages. We also note that on
time is defined as occurring within ±30min of an individual’s
normal bedtime. Therefore [1, 30) min could also be thought of as
[31, 60] min outside the individual’s median bedtime.
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Bedtime deviations and resting heart rate (RQ1)
For earlier bedtimes, we observe, on average, higher RHRs the
earlier one goes to bed relative to their normal bedtime. Referring
to Table 3, no significant differences were observed in RHR for

bedtimes within 30min of one’s normal bedtime. However, for all
bedtimes earlier than 30min, we observe significant increases in
RHR. For the following day, we observe no significant differences
in RHR regardless of earliness of bedtime compared to going to

Table 1. Overview of study cohort demographics, behaviors and sleep characteristics across duration of study.

Wave 1
(Fall 2015)

Wave 2
(Spring 2016)

Wave 3
(Fall 2016)

Wave 4
(Spring 2017)

Wave 5
(Fall 2017)

Wave 6
(Spring 2018)

Wave 7
(Fall 2018)

Demographics

Age, µ ± σ 17.90 ± 0.47 years (when first entering the study)

Sex, n (%)

Male 277 (50)

Female 280 (50)

Ethnicity, n (%)

White 360 (65)

Latino 74 (13)

Black 35 (6)

Asian 51 (9)

Other 1 (<1)

Foreign 36 (6)

Behaviors

Caffeine consumption, n (%)

Not at all 89 (20) 112 (22) 77 (20) 84 (24) 72 (21) 68 (23) 48 (19)

Less than 1–2 times
a month

60 (14) 63 (12) 30 (8) 24 (7) 35 (10) 21 (7) 16 (6)

1–2 times a month 71 (16) 44 (9) 46 (12) 35 (10) 41 (12) 26 (9) 36 (14)

1–2 times a week 104 (24) 119 (23) 73 (19) 61 (17) 51 (15) 50 (17) 37 (15)

3 times a week
or more

118 (27) 172 (34) 155 (41) 147 (42) 145 (42) 137 (45) 117 (46)

Alcohol consumption, n (%)

Not at all 177 (40) 150 (30) 94 (25) 100 (28) 85 (25) 52 (17) 37 (15)

Less than 1–2 times
a month

109 (25) 58 (11) 51 (13) 36 (10) 49 (14) 27 (9) 22 (9)

1–2 times a month 93 (21) 78 (15) 57 (15) 44 (13) 56 (16) 56 (19) 59 (23)

1–2 times a week 56 (13) 197 (39) 144 (38) 149 (42) 131 (38) 128 (42) 101 (40)

3 times a week
or more

7 (2) 25 (5) 34 (9) 22 (6) 23 (7) 39 (13) 35 (14)

Physical activity

[0, 1) h 115 (26) 79 (19) 108 (25) 73 (20) 51 (16) 32 (10) 19 (10)

[1, 2) h 160 (36) 161 (38) 159 (37) 146 (40) 141 (44) 135 (44) 77 (39)

[2, 3) h 90 (20) 94 (22) 81 (19) 83 (22) 88 (27) 93 (30) 71 (36)

>3 h 76 (17) 88 (20) 79 (18) 66 (18) 44 (14) 45 (15) 28 (14)

Sleep characteristics

Duration, n (%)

<6 h 15 (3) 16 (4) 13 (3) 5 (1) 5 (2) 3 (1) 3 (2)

[6, 7) h 165 (37) 143 (34) 105 (25) 78 (21) 60 (19) 57 (19) 35 (18)

[7, 8) h 216 (49) 209 (50) 239 (56) 206 (56) 200 (62) 177 (58) 110 (56)

[8, 9) h 43 (10) 52 (12) 64 (15) 71 (19) 57 (18) 62 (20) 44 (23)

>9 h 2 (0) 2 (0) 3 (1) 8 (2) 2 (1) 4 (1) 3 (2)

Normal bedtime, n (%)

Before 11 pm 5 (1) 4 (1) 3 (1) 5 (1) 3 (1) 5 (2) 4 (2)

[11 pm, 12 am) 24 (5) 26 (6) 24 (6) 24 (7) 24 (7) 27 (9) 16 (8)

[12 am, 1 am) 126 (29) 119 (28) 137 (32) 113 (31) 94 (29) 88 (29) 66 (34)

[1 am, 2 am) 187 (42) 162 (38) 157 (37) 135 (37) 127 (39) 105 (34) 65 (33)

[2 am, 3 am) 75 (17) 83 (20) 80 (19) 57 (15) 51 (16) 50 (16) 28 (14)

After 3 am 24 (5) 28 (7) 23 (5) 34 (9) 25 (8) 30 (10) 16 (8)

L. Faust et al.

2

npj Digital Medicine (2020)    39 Scripps Research Translational Institute

1
2
3
4
5
6
7
8
9
0
()
:,;



bed on time, with the exception of the [1, 30) min category (Table 4).
Regarding later bedtimes, we again observe, on average, higher
RHRs the later one goes to bed relative to their normal bedtime
(Table 3). However, bedtimes within even 1–30min later show
significant increases in RHR and are exacerbated as the deviation
increases. Further, we observe that increased RHR persists into the
following day, remaining significant across each of the bedtime
deviation categories (Table 4).

Return to baseline (RQ2)
Moving to our second research question (RQ2), we evaluated time
for RHR to return to baseline following a bedtime deviation using
a series of linear mixed effects models. A single mixed effects
model was fit for each hour of sleep and consecutive hour awake
up until midnight of that day. This approach allowed us to
examine each hour independently and capture nonlinear trends in
RHR over time. Again, we note a comprehensive description is
provided in the Methods section. Considering these associations
at the hourly level, for earlier bedtimes, differences in RHR are
most distinct across the first few hours and slowly re-converge
across one’s sleep session (Fig. 1a). We also note that by the
seventh hour of sleep, on time bedtimes appear to have a higher
RHR than earlier bedtimes. Regarding the following day, no
significant patterns were observed (Fig. 2a). For details on hourly
level coefficients, we refer the reader to Supplementary Tables 6
and 7. Regarding hourly level differences for later bedtimes, the
increased RHR persists across one’s entire sleep session, remaining
significantly different at the seventh hour mark, suggesting
differences in RHR do not typically converge over one’s sleep
session (Fig. 1b). Moving into the following day, we find these
differences persist until roughly 6:00 pm at which time RHRs begin
to re-converge (Fig. 2b). Again, we note hourly level coefficients
can be found in Supplementary Tables 6 and 7.
Finally, as it is reasonable to assume bedtime deviations may

occur in succession, such as Friday and Saturday night, we
performed an additional analysis to assess whether these
observations would manifest after a single bedtime deviation.

We observed that bedtime deviations, even after a night with a
regular bedtime, were still associated with increases in RHR across
the sleep session and into the following day. These observations
suggest that increases in RHR are associated with an isolated
deviation from one’s normal bedtime. Details for this analysis can be
found in the supplementary materials: Supplementary Methods 1.

DISCUSSION
The observations from this work suggest deviations from an
individual’s normal bedtime may prohibit RHR from slowing to its
normal pace, resulting in a higher RHR throughout one’s sleep
session. Further, this short-term change to RHR may persist into
the following day, with RHR returning to its normal pace by early
evening. However, this extension only manifests when individuals
go to bed later than their normal bedtime as opposed to earlier.
While previous studies have shown pharmacological interventions
and lifestyle factors such as BMI and endurance training can affect
RHR, to our knowledge, this is the first study to show that
variability in bedtime (after controlling for sleep duration and
circadian effects) may also affect RHR10,13–15. It is important to
note that inferring causality was outside the scope of this work.
Therefore, we are unable to address the physiological association
between bedtime deviations and changes in RHR. Particularly the
higher RHR observed in the last hour of sleep by those going to
bed on time compared to those going to bed slightly earlier.
However, it remains an important question for future studies.
Further, despite RHR functioning as a useful predictor of

cardiovascular health, the best practices for implementing the
knowledge of RHR in clinical settings remain an open question12.
Physicians often recommend the adoption of healthy behaviors
such as adequate sleep and physical activity which in turn may
lower RHR. However, the notion of determining and recommend-
ing “optimal” target RHRs requires further investigation12.
Regarding bedtime as a primary component of sleep hygiene,

our observations align with work that shows poorer sleep hygiene,
specifically variability around bed and wake times, can be

Table 2. Number of instances for each bedtime deviation category (%).

≥3 h earlier [2, 3) h
earlier

[1, 2) h
earlier

[30, 60) min
earlier

[1, 30) min
earlier

On time [1, 30)
min later

[30, 60)
min later

[1, 2) h
later

[2, 3) h
later

≥3 h
later

2211 (1) 5015 (2) 18,403 (7) 20,626 (8) 32,753 (13) 83,766 (33) 33,308 (13) 23,251 (9) 24,796 (10) 9087 (4) 2520 (1)

Table 3. Within-person differences in average resting heart rate
during sleep across bedtime deviations.

Bedtime deviation Earlier bedtimesa,b Later bedtimesb,c

Coeff (95% CI) Coeff (95% CI)

On time Reference Reference

[1, 30) min 0.03 (−0.04, 0.10) 0.18 (0.11, 0.26)

[30, 60) min 0.24 (0.15, 0.33) 0.57 (0.47, 0.66)

[1, 2) h 0.59 (0.49, 0.69) 1.11 (1.01, 1.22)

[2, 3) h 1.10 (0.93, 1.27) 2.01 (1.84, 2.16)

≥3 h 2.67 (2.42, 2.93) 2.74 (2.48, 3.01)

aN= 557 participants, 153,385 nights.
bCoefficients are representative of differences in resting heart rate bpm
adjusting for sleep duration, naps, sex, prior day’s physical activity and
frequency of caffeine and alcohol consumption.
cN= 557 participants, 166,292 nights.

Table 4. Within-person differences in average resting heart rate
during the next day across bedtime deviations.

Bedtime deviations Earlier bedtimesa,b Later bedtimesb,c

Coeff (95% CI) Coeff (95% CI)

On time Reference Reference

[1, 30) min −0.09 (−0.19, 0.002) 0.07 (−0.02, 0.17)

[30, 60) min −0.04 (−0.16, 0.07) 0.21 (0.09, 0.32)

[1, 2) h 0.08 (−0.05, 0.21) 0.35 (0.24, 0.47)

[2, 3) h 0.16 (−0.07, 0.40) 0.62 (0.44, 0.79)

≥ 3 h 0.31 (−0.05, 0.68) 0.91 (0.58, 1.23)

aN= 557 participants, 131,079 days.
bCoefficients are representative of differences in resting heart rate bpm
adjusting for sleep duration, naps, sex, prior day’s physical activity and
frequency of caffeine and alcohol consumption.
cN= 557 participants, 141,511 days.
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detrimental to one’s health (for review, see ref. 16). While previous
work on healthy participants relies heavily on subjective measures,
variability around bedtime has been shown to be associated with
decreased sleep quality17, increased daytime sleepiness18, poorer
lifestyle (e.g. increased alcohol consumption, fewer nights of
sufficient sleep, etc.)19, and poorer sleep quality20. Interestingly,
our results align with other findings that show timing of sleep and
regularity of sleep (rather than duration) is important for academic
performance21,22. However, improving sleep hygiene may or may
not influence physiology in the short term23.
The observations in this work further mirror investigations into

the relationship between heart rate variability (HRV) and sleep.
While HRV was not captured among this population, HR and HRV
are physiologically and mathematically related: with higher HRV
generally observed among lower HR24. This is an important
relationship to note, as higher HRV in the high frequency spectral
band is associated with improved subjective and objective
measures of sleep as well as physical and mental health15,25. In
addition, high RHR and low HRV independently contribute to
mortality10,12,26.
With ties to physical and mental health, our observations further

stress the importance of maintaining proper sleep hygiene. Given
the association to RHR, over time, high variability in bedtimes,
such as those among shift workers, frequent travelers, or even
those staying up later on weekends, could result in changes to
baseline RHR as high bedtime variability becomes a trait of one’s
chronic sleep behavior. On the other hand, reducing variability
and maintaining consistent bedtimes may lead to modest
reductions in RHR, suggesting sleep hygiene as an additional
factor to consider regarding cardiovascular health.
All participants in this study were among the same age and

observed in the same environment. Therefore, additional studies
across different age groups and backgrounds are necessary before
determining the extent to which these results can be generalized.
In particular, this research would benefit from being conducted on
a non-student population, as well as specifically investigating the
association between bedtime deviations and HRV, as this is
another important biomarker for health and mortality.
Further, it is important to note the limitations of the devices

used in the study. While Fitbits have previously been shown to
provide reasonable estimates of sleep onset and offset in free
living conditions, recent comparisons to gold-standard polysom-
nography tests have shown Fitbits to overestimate total sleep time
by more than 10%27–30. Extending this to bedtimes, while no

studies to date have specifically investigated the accuracy of
bedtimes, it can be reasonably assumed that this overestimation is
primarily the result of estimating bedtimes as earlier than normal
and wake times as later than normal. Despite these errors in
estimation, evidence from studies suggest Fitbit devices may
provide similar measures for time in bed and time sleeping
compared to research-grade accelerometers30. Further, as our
study focuses on deviations within an individual, we are primarily
focused on the internal consistency within an individual’s day-to-
day measurements, which has been shown to be reliable31.
Moreover, we note our comparisons of RHR among demo-

graphics and behaviors (see Supplementary Table 5) still fall in line
with prior observations. Specifically, females have, on average,
higher RHR32 and RHR increases with the consumption of caffeine
and alcohol32,33. Additionally, the sinusoidal curves in RHR
resulting from circadian rhythm (Fig. 2) follow the same pattern
as the clinical-grade wearable devices utilized in ref. 34.

METHODS
Study objectives
To address the research questions outlined in the introduction of this
manuscript, we utilized a data set comprised of 255,736 nights of sleep
across 557 participants. Sleep and HR data were measured utilizing Fitbit
Charge HRs, providing highly granular measurements of RHR and
reasonable estimates of sleep duration27. The minimally invasive nature
of these sensors allowed us to capture uninterrupted streams of
participants RHR: providing measures across an individual’s entire night’s
sleep and throughout the following day. This continuity allowed for a
comprehensive study around not only how RHR may change following
bedtime deviations, but also the average time window needed for RHR to
return to baseline.

NetHealth study
The data utilized in this manuscript come from the NetHealth study
conducted at the University of Notre Dame. The study followed college
students for up to 4 years, beginning the data collection in the summer of
2015 and ending in May of 2019. The most recent snapshot of the data,
however, included data only up to the Fall 2019 semester. Data collection
included demographic, psychometric, social network and physical activity
data for the purpose of modeling the coevolution of health behaviors and
social networks35. Participants’ sleep, heart rate and physical activity were
monitored using Fitbit Charge HRs. Upon entering the study, participants
were provided a Fitbit, along with a username and password to create their
account with. This allowed the investigators to pull data directly from each
account through Fitbit’s web API and store the data on a university server.

Fig. 1 Resting heart rate across bedtimes. The panels show the hourly differences in resting heart rate across an average sleep session
stratified by bedtime. a Resting heart rate curves as one goes to bed earlier than normal; b curves as one goes to bed later than normal.
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To collect demographic and behavioral data, surveys were administered
once per semester that students could complete online. To ensure
completeness in the data collected, participants were asked to wear their
Fitbit as much as possible and sync their device every 4−7 days.

Ethics
This observational study was approved by the University of Notre Dame’s
IRB after a full board review under protocol number 17-05-3912. All
participants provided written informed consent prior to taking part in
the study.

Participants
Participants included 698 individuals who entered the university as first-
year students over the course of the 2015–2016 academic year. The
NetHealth cohort was split across three recruitment phases or “tiers”
outlined below.

Tier 1: A total of 391 tier 1 participants were recruited via interest
surveys, e-mail, and a Facebook page in June 2015. Selection was on a
first come, first served basis in keeping with the overall demographic
distributions of the university.
Tier 2: Next, 97 tier 2 participants were then recruited in November and
December 2015, nominated by existing participants in the study.
Tier 3: Finally, 210 tier 3 participants were recruited via e-mail in
April 2016.

Despite enrolling a total of 698 participants, not all were eligible for
analysis. A total of 65 participants were excluded as they were not issued
Fitbits (Fig. 3A), with reasons ranging from participants declining them to
dropping the study before the device could be issued. Among the
participants who received Fitbits, an additional 23 were excluded (Fig. 3B),
as they did not wear their device while asleep. Finally, 11 participants were
excluded as they did not report the demographic and behavioral data
necessary for these analyses (Fig. 3C, D) and an additional 2207 sleep
sessions were removed as physical activity data were missing for the
previous day (Fig. 3E). At this stage, a cohort of 599 participants remained
eligible for analysis.

Normal bedtime
To determine how deviations from one’s normal bedtime may affect RHR, a
definition for “normal bedtime” was first necessary. To provide a standard
measure across participants, with minimal influence from outliers, the
median of a participant’s bedtimes was chosen to represent their normal
bedtime. However, utilizing a single median bedtime to represent multiple
years of sleep habits is likely insufficient. Participant’s may have adjusted
their sleep schedules over time in response to changes in class schedules
across semesters or in absence of class schedules during the winter and

summer breaks. To adjust for these potential variations, participant’s
median bedtimes were computed within each of these respective time
periods, specifically, for each semester and winter/summer break.

Deviations from normal bedtime
With normal bedtimes established, bedtime deviations were then
measured by calculating the difference (in min) between a participant’s
normal bedtime and recorded bedtime for each respective night. To avoid

Fig. 2 Resting heart rate across the following day. The panels show the hourly differences in average resting heart rate across the following
day stratified by bedtime. a Resting heart rate curves as one goes to bed earlier than normal; b curves as one goes to bed later than normal.

Excluded (55,531 sleep sessions, 141 par�cipants)
A) Not issued Fitbits

65 par�cipants
B) Provided no sleep data

23 par�cipants
C) Missing sex 

83 sleep sessions, 1 par�cipant
D) Missing caffeine/alcohol consump�on 

1,671 sleep sessions, 10 par�cipants
E) Missing previous day’s physical ac�vity

2,207 sleep sessions
F) Naps 

50,895 sleep sessions, 3 par�cipants
G) Mul�ple sleep sessions on same day 

176 sleep sessions
H) Compliance threshold (<30 sleep sessions)

499 sleep sessions, 39 par�cipants

Sleep Analysis (RQ1) Next Day Analysis (RQ2)

Sleep Analysis Cohort
240,859 sleep sessions

557 par�cipants

Next Day Analysis Cohort
204,368 days,

557 par�cipants

I) Excluded missing RHR data
14,877 sleep sessions, 

NetHealth Par�cipants
311,267 sleep sessions, 698 par�cipants

Study Cohort
255,736 sleep sessions, 557 par�cipants

J) Excluded missing RHR data
51,368 days

Fig. 3 Flow diagram. Outline of cohort selection and data pre-
processing steps with the number of participants/data points
removed at each step.
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the assumption of a linear relationship between the degree of bedtime
deviation and RHR, bedtime deviations were discretized: binned into 11
categories to be examined separately. The first category provided our
baseline, which was nights when the participant went to bed reasonably
close to their median bedtime. We allotted a range of 30min earlier to
30min later than one’s normal bedtime to be defined as an on time
bedtime. The remaining ten categories focused on deviations from this
baseline, occurring earlier or later. The intervals for these deviation
categories were [1, 30) min, [30, 60) min, [1, 2) h, [2, 3) h, and ≥3 h.

Naps
Among the 311,267 total sleep sessions, 66,552 records (21%) occurred on
the same day, likely indicating days in which a nap was taken. Although
naps are commonly raised in literature, a formal definition regarding their
duration or timing throughout the day remains to be agreed upon36.
Further, as Fitbit devices do not allow for the annotation of sleep periods,
an unsupervised approach was taken to more rigorously identify and
remove such noise.
This was accomplished by utilizing a Variational Bayesian estimation of a

Gaussian Mixture Model (BGMM) for clustering each sleep session by their
duration and bedtime deviation. Gaussian mixture models (GMM) have
repeatably demonstrated success in modeling data generated by an
arbitrary number of distinct Gaussian processes. Which, as we have seen in
prior processing steps, can reasonably be expected to hold true for the
approximately normal distributions of each student’s sleep records.
Further, as variational inference adds a level of regularization beyond
traditional GMM approaches, the BGMM is able to provide a more robust
estimate of the true underlying sleep patterns needed to remove the
ambiguous notion of naps from the data. Moreover, to avoid making
assumptions about the underlying nature of the sleep clusters, the BGMM
was fit with full covariance structures, allowing each identified component
to vary in both direction and shape.
Finally, to evaluate the appropriate number of components (clusters)

retrieved by the model, we defined a metric focused on rewarding the
creation of distinct, nonoverlapping clusters in the data, a necessary
addition, as Bayesian information criterion (BIC) is not applicable to BGMM.
In an effort to identify stable, nonoverlapping clusters, we computed the
average probability that each training point belonged to its respective
cluster. To bound this, the average probability value is subtracted from 1,
as the optimal situation would occur when every point is 100% likely to
belong to its predicted cluster. Then, sweeping from 1 to 5 components,
we selected the configuration that minimized this value, finding it to be 2
components (Fig. 4).
Among these two clusters, cluster 1 had a mean sleep duration of 7.03 h

and mean bedtime difference of 1.04 h, while cluster 2 had a mean sleep
duration of 2.26 h and mean bedtime difference of 6.7 h. Given the sleep
sessions in cluster 2 had, on average, shorter durations and greater
deviances from normal bedtimes, we removed sleep sessions within this

cluster from our analysis as they more closely resembled characteristics of
naps (Fig. 3f). In doing so, this also removed three participants, these
participants likely only wore their device during naps, but removed the
device before bed, failing to capture any full nights of sleep. Further, we
removed the few remaining sleep sessions in which multiple sessions still
occurred on the same day (Fig. 3g).

Compliance
Finally, while NetHealth participants were followed for multiple years, not
all participants were present for the full duration of the study. Reasons for
this extended from participants entering the study late or having poor
compliance to the study (not wearing their Fitbits) and abandonment of
the study. To ensure participants with poor compliance would not bias the
fixed effects of our models, we removed any participants with fewer than
30 sleep records, as having at least 30 units within each cluster is a
commonly cited recommendation (Fig. 3H)37.
Following our compliance threshold, our data set consisted of 557

participants and 255,736 sleep sessions upon which we conducted our
analyses. A distribution of the total sleep records contributed by
participants is provided in Fig. 5, with the interquartile range for number
of records contributed as follows: (Q1= 161 records, Q2= 379 records,
Q3= 736 records).

Resting heart rate
Our second research question focused on the amount of time for RHR to
return to baseline, defined as the point in time when RHR following a

Fig. 4 Clustering of sleep sessions by duration and deviation from normal bedtime. a The stability score as the number of components
increases. b The distribution of sleep sessions for the optimal number of clusters, organized by sleep duration (y-axis) and deviation from
normal bedtime (x-axis).

Fig. 5 Boxplot of total sleep records contributed by participants.
Boxplot statistics are as follows (Min = 31, Q1 = 161, Median = 379,
Q3 = 736, Max = 1201).
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bedtime deviation converged with RHR following no bedtime deviation. To
ensure this return was fully captured, we examined, approximately, the 24-h
period following one’s bedtime. Specifically, we monitored participant’s
RHR beginning when they first went to bed until midnight of the following
day. In doing so, it was necessary to examine RHR across periods when
participants were asleep and awake. Given a variety of factors may
influence RHR depending on when an individual is asleep or awake, we
partitioned them into two separate analyses, taking two different
approaches to best capture RHR for each state.

Sleep: Beginning with sleep, we assumed sleep stages: light sleep, REM
and deep sleep, to be one of the primary factors influencing changes in
RHR over one’s sleep session38,39. To minimize the potential for
differences in RHR to be the result of comparing participants at different
sleep stages, all sleep sessions were aligned by bedtimes. Next, sleep
sessions were partitioned by hour (first hour of sleep, second hour of
sleep, etc.), allowing each hour of sleep to be examined separately. RHR
was then measured by computing the median RHR for each hour of
sleep within each nightly record. Sleep sessions were truncated at 7 h to
avoid missing data resulting from variations in lengths of sleep sessions.
Seven hours was chosen specifically, as this was the median sleep
duration across participants. Finally, we note that in examining RHR
across sleep, 14,877 sessions were missing RHR data, likely stemming
from device failure rather than failure to wear the device, as bedtimes
and sleep durations were still recorded (detected by the Fitbit
accelerometer). As such, these sessions were excluded (Fig. 3I).
Awake: As factors influencing RHR throughout one’s sleep are primarily
relative to when one begins sleeping, the same does not hold for when
one is awake. Specifically, factors influencing one’s RHR throughout the
day are not necessarily relative to when one wakes up. Instead,
individuals tend to keep with a daily social rhythm, where events
correspond more to time of day, than when one wakes up40,41. For
example, because one wakes up an hour later than usual, this does not
necessarily mean they will also have lunch 1 h later than usual, as lunch
time is determined more by time of day. Additional facets of these
social rhythms can include adherence to a class schedule, leaving and
returning from work, etc. which can affect RHR40,41. Therefore, when
measuring RHR over the following day, we instead computed the
median RHR for each hour of the day (9:00 am to 9:59 am, 10:00 am to
10:59 am, etc.) to better compare RHR across these social rhythms.
Further, to capture RHR instead of HR, we only considered periods in
which the participant had been inactive (no steps) for at least 30 min, in
line with prior literature, with measurements ending when the
participant began moving again42–44. Lastly, we note that in examining
RHR across the following day, 51,368 days were excluded due to
missing data as participants likely failed to wear their device throughout
that day (Fig. 3J).

Previous days’ physical activity
As detailed in the next section of the manuscript, we adjusted for several
additional variables associated with RHR. Among these was the amount of
physical activity the participant engaged in the day before, as physical
activity has been shown to have an association with sleeping heart rate45.
Fortunately, Fitbits also capture levels of physical activity based on heart
rate readings. Fitbit partitions a user’s physical activity into three different
heart rate zones based on the intensity of their activity: Fat Burn, Cardio,
and Peak46. Therefore, we represent physical activity as the total amount of
minutes a participant spent in any of these zones for each day. While a
participant would predominantly spend their time in the Fat Burn range, as
this can be accomplished through walking, this zone was included to
adjust for the association of even light levels of physical activity, as any
even light physical activity will increase heart rate.
Overall, our cohort eligibility requirements and preprocessing steps left

us with two overlapping data pools: a total of 240,859 sleep sessions for
assessing RHR over sleep and a total of 204,368 days for assessing RHR
when awake over the following day.

Modeling
To evaluate the association between bedtime deviations and RHR, we fit a
series of linear mixed effects models, one for each hour of sleep and one
for each hour of the following day up until midnight. This approach
allowed us to assess both of our research questions simultaneously. For
each hour following a deviation, we could examine whether differences in

RHR were present (RQ1) and how long they persisted for (RQ2). Further,
examining each hour independently allowed us to capture nonlinear
trends in RHR over time. To supplement the models capturing these hourly
level changes, we fit two additional mixed effects models for mean RHR:
one over participants entire sleep session and the other over the following
day; these models provided us a broad overview of the associations.
The decision to employ linear mixed effects models allowed us to

account for the inter-instance correlation of sleep session data recorded
multiple times for each individual. Further, they accounted for an
additional source of variance. Specifically, the latent relationship between
the time of day and an individual’s RHR moderated by their circadian
rhythm.
A naturally occurring biological pattern, the circadian rhythm, dictates

changes in the behavior and/or physiology of most species and has been
shown to account for hourly variations in HR38,41,47,48. Unfortunately, rather
than simply a global shift based on the absolute time of day, each
individual can be expected to experience slightly differing effects at
different times of day based on a broader consideration of their
chronobiology49. As such, we extend the repeated measure mixed effects
model to a multilevel model in which we nest observations for each
absolute time of day under each individual. By accounting for variability in
RHR by each hour of the day for a specific individual, we reduce the
likelihood of finding a difference in two RHR measures because they were
simply measured at different points of an individual’s circadian rhythm.
Following this, we nest observations within individuals to account for the
variability in RHRs between individuals. Ultimately, this approach provides
a significantly more robust estimation of the unbiased effects of each
covariate on the RHR based on deviations in bedtimes.

Covariates
In addition to circadian rhythm, we also adjusted for several confounding
variables, including features of one’s sleep session and external influences
on RHR. External influences, such as sex and caffeine and alcohol
consumption, were collected via the biannual surveys administered to
participants. In the case of participants missing a survey, fill-forward/
backward imputation was utilized, allowing these imputed values to most
closely reflect participants true scores at the time and satisfy model
requirements. We detail each of these variables below.

Sleep duration—as prior work has associated insufficient sleep with
increases in RHR, sleep duration was included in the model50.
Naps—as some individuals may regularly account for sleep debt with
naps in between nightly sessions, we include a binary flag for whether
an individual had taken a nap over the previous day to adjust for this
alternative sleep schedule.
Sex—prior works have found differences in RHR between sexes with
women having, on average, a higher RHR of 3–7 bpm32.
Caffeine and alcohol consumption—we further adjusted for participants
frequency of caffeine and alcohol consumption as both compounds
have been found to be associated with increases in heart rate32,33.
Prior day physical activity–as prior studies have found an association
between physical activity and sleeping heart rate, the amount of
physical activity engaged in the previous day was included in the
model45.

The last covariate considered for the model was day of the week, as
weekend nights may be more likely to bring about behaviors associated
with increased sleeping heart rate, such as alcohol consumption. However,
bedtime deviations and weekends are likely to be highly correlated given
the natural tendency to stay up later on weekends, resulting in stronger
bedtime deviations on the weekends. We find this assumption holds true
among this cohort, as performing a chi-square test of independence on
the frequencies of bedtime deviations stratified by weekday and weekend
shows the difference between the distributions to be statistically
significant (P < 0.001), with individuals going to bed later more frequently
on the weekends.
To ensure increases in RHR were not solely a product of weekend

behavior, we reconducted our analysis, this time using only weeknights
(Sunday–Thursday). From our results, we observed similar changes in RHR
using only weeknights suggesting the increases in RHR following a
bedtime deviation are independent of weekend behaviors. Details for this
analysis are provided in the supplementary materials: Supplementary
Methods 2.
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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