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Histopathological diagnosis of lymphomas represents a challenge requiring either expertise or centralised review, and greatly
depends on the technical process of tissue sections. Hence, we developed an innovative deep-learning framework, empowered
with a certainty estimation level, designed for haematoxylin and eosin-stained slides analysis, with special focus on follicular
lymphoma (FL) diagnosis. Whole-slide images of lymph nodes affected by FL or follicular hyperplasia were used for training,
validating, and finally testing Bayesian neural networks (BNN). These BNN provide a diagnostic prediction coupled with an effective
certainty estimation, and generate accurate diagnosis with an area under the curve reaching 0.99. Through its uncertainty
estimation, our network is also able to detect unfamiliar data such as other small B cell ymphomas or technically heterogeneous
cases from external centres. We demonstrate that machine-learning techniques are sensitive to the pre-processing of
histopathology slides and require appropriate training to build universal tools to aid diagnosis.
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INTRODUCTION

The microscopic diagnosis of lymphoma remains challenging. In
France through the Lymphopath network', contrary to the UK or
the US for example, we currently deal with a double interpretation
rather than direct cases centralisation. Therefore, a diagnostic
discrepancy is established when the referral pathologist sends the
case for a second opinion with a proposal (with or without a
signed report), which is unconfirmed by the expert'. Recent data
from our group within the French (nationwide) Lymphopath
network pointed out a 20% discrepancy between referral and
expert pathologists directly impacting on patient care'. Other
studies conducted in the US and the UK also demonstrated the
impact of expert review on lymphoma management with variable
rates of discordance (from 14.8 to 27.3%)*.

The diagnosis of lymphoma is currently based on histopatho-
logical examination of tissue sections at different magnification
levels by a pathologist whose suspicion is based upon morpho-
logical features observed on haematoxylin and eosin (H&E)
staining. Lymphoma diagnosis depends on the expertise of the
pathologist who, in the case of follicular proliferation, has to
clearly distinguish follicular lymphoma (FL) from follicular hyper-
plasia (FH), both being lesions that sometimes display very similar
features. Finally, the ultimate decision relies on the use of
immunostaining to reveal malignant germinal centres co-
expressing Bcl2 and CD10°. However, approximately 10% of cases
remain difficult (in particular those without expression of CD10
and/or Bcl2) and require additional tests such as fluorescent in-situ
hybridisation or polymerase chain reaction techniques that are
routinely unavailable in some laboratories.

Deep learning-based diagnostic systems have recently provided
automated methods for histopathology image analysis’~'?, which
may reduce inter- and intra-observer variability in cancer

diagnosis through an objective analysis'>. Furthermore, digital
microscopy allows the detection of characteristics previously
unidentified by the human being and, combined with deep
learning approaches, it could detect new morphological fea-
tures'*'®> and improve performance in histopathological inter-
pretation. In a previous study'’, the authors designed a
computational pipeline to train a deep convolutional neural
network (CNN) (inception v3)'® on whole-slide images (WSI) in
order to recognise tumour versus normal lung tissue. This way
they showed that deep learning models generated accurate
diagnoses on lung histopathological images'®. Similar deep
learning approaches were also used in other recent studies to
detect various cancer tissues, subtypes and related markers with
highly reliable accuracy®''. However, these highly-performant
networks, applied to histopathological diagnosis, have all been
designed without any method to control and quantify their
uncertainty level. Moreover, the transition between benign and
malignant tissues is not always a clear-cut issue and some images
may be more difficult to classify than others. Information about
the reliability of an automated diagnosis is essential in order this
approach to be validated and integrated into diagnostic systems
within medical practice, since the final decision must take into
account the uncertainty level. This notion has already been
addressed in recent work as a part of the automatic diagnosis of
diabetic retinopathy from fundus images'”. In the latter study, the
authors showed the feasibility of associating deep learning-based
predictions to uncertainty measures by using Bayesian approaches
in order to improve diagnostic performance'”.

In the field of haematopathology, the distinction between FL,
the second most common subtype of lymphoma, and benign FH,
is sometimes difficult to highlight on H&E-stained slides'®. In the
present study, we propose a deep learning-based framework to
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Fig. 1

Histopathological distinction between follicular hyperplasia and follicular lymphoma (FL). The distinction between reactive

hyperplastic germinal centres (a) and FL (b) can be difficult on haematoxylin and eosin (H&E)-stained slides making immunohistochemical
stains mandatory for FL diagnosis: Bcl2 expression is down-regulated within reactive germinal centres (a) while it is expressed in the

neoplastic cells in most FL cases (b).

classify morphological changes occurring in FL or FH lymph nodes.
For this purpose, H&E-stained WSI were used and processed at
different levels of resolution (for a given pyramid level n, a full
resolution image was downsized by a factor of 2") with a
stochastic Bayesian neural network (BNN). At this point, the aim of
our work was not to provide a tool specifically dedicated to FL
diagnosis but rather to explore BNN usefulness in order to classify
images sharing numerous morphological features.

RESULTS

A deep convolutional neural network enables an accurate
automatic differential diagnosis between follicular lymphoma and
follicular hyperplasia

We trained several deep CNNs to automatically distinguish FL
from benign FH in lymph nodes on H&E digital slides. We used a
total of 378 lymph nodes: 197 were infiltrated by FL (any grade,
with or without Bcl2 expression, see Supplementary Table 1 for
the clinical and histopathological characteristics) and 181 lymph
nodes with FH. Representative WSI for each diagnosis are shown
in Fig. 1. Networks were trained, validated and tested on
independent datasets using 299 x 299 pixel patches obtained
from the WSI at different resolution levels (i.e., numerical down-
sampling of the image in micron/pixel), with 100-1000 patches
per slide depending on the WSI size. A total of 320,000 patches
were extracted, 160,000 of them were used for training (20,000 for
each resolution level considered), 80,000 for validation sets and
the remaining 80,000 for testing.

These patches were analysed individually and patch-by-patch
scoring was firstly performed by the networks. In the testing
dataset, a total of 72,895 out of the 80,000 test patches were
correctly diagnosed with the CNN model, yielding an overall 91%
accuracy. Then, for a given slide and resolution level, diagnosis
was performed by averaging patch predictions of the model
trained at that level. This deep learning approach generated a
diagnosis for each slide with an area under the curve (AUQ)
between 0.92 and 0.99 depending on the resolution level with a
better diagnostic performance obtained at the lowest resolution
level (Fig. 2). With optimum settings, acceptance of 20% of false
alarms allowed 100% FL detection. Interestingly, best slide
diagnosis integration was obtained for patch classifiers with the

npj Digital Medicine (2020) 63

smallest validation accuracy (Fig. 2b): at high resolution (pyramid
level 4), more distant patches were extracted and predicted,
ending with a more robust average prediction (Fig. 2a). Visualisa-
tion of patch classification on WSI for FH (Fig. 3a) and FL (Fig. 3b)
showed that FH slides had a very low FL probability on every
patch, while FL probability was close to 1 everywhere on FL slides.

Enhanced prediction performances by dropout variance ranking
through a Bayesian neural network

Estimation of uncertainty, using a previously described BNN (see
“Methods”) to predict FL or FH on our dataset, revealed that
erroneous predictions always correlate with higher uncertainty
values, regardless of diagnosis (Fig. 4).

Dropout variance, a technique that randomly removes units
from the network to sample the posterior distribution of the
weights and approximate Bayesian inference'®, appeared to be a
powerful tool for increasing the system performance. For level
pyramids 4 and 5, percentile of variance showed that removing
10% of the most uncertain slides led to perfect FL detection with
around 2% false alarms and that AUC increased with high
certainty thresholds (Fig. 5).

In the context of lymphoma screening, the aim is not to miss
lymphoma diagnosis. Thus, it is worth noting that the system
predicted FL (o = 0.02) with more certainty than FH (o = 0.04) and
it made sense to have different certainty thresholds depending on
the network output. Hence, class-specific thresholds for dropout
variance led to a faster improvement in diagnosis, in reaching
optimum accuracy by removing 23% of the most uncertain cases.
With global thresholding, perfect accuracy was achieved only after
removing 36% of cases (Fig. 5).

Out-of-distribution inputs detection
Two types of out-of-distribution input (i.e. data different from
those used in training and validating steps) were likely to alter the
diagnostic performance and had to be considered: slides pre-
processed in other centres (external data) subject to different
staining protocols, and lymph nodes with lesions other than FL or
FH (unfamiliar data).

In order to evaluate the ability of our algorithm to assess data
coming from other centres, we deliberately created a biased
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Fig. 2 Learning and final ROC curves for slide diagnosis. a The model learns relevant information for patch classification as the patch level
accuracy on the validation set increases with the number of learning iterations, at different resolution levels (7.84 pm/pixel to 62.72 um/pixel).
b Final ROC curves showing that the area under the curve (AUC) depends on the resolution level and could reach 0.99. Best slide diagnosis
integration is obtained from patch classifiers with the smallest validation accuracy: at high resolution (pyramid level 4) more independent/
non-overlapping patches are extracted and predicted, resulting in a more robust average prediction.
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Fig. 3 Patch classification visualisation on WSI for follicular hyperplasia (FH) and follicular lymphoma (FL) from the test set. Each
predicted patch at resolution 7.84 um/pixel is coloured by FL probability predicted by the system. a and b FH slide has very low FL probability
on every patch. ¢ and d FL probability is close to 1 everywhere on the FL slide.

dataset with training/validation slides taken exclusively from our
centre and a test set comprising external cases. After training, all
the models showed perfect validation accuracies (AUC = 1.0) but
were ineffective on external cases with an AUC falling between
0.63 and 0.69, depending on the resolution level (Fig. 6a, b).
Nevertheless, a significant difference in uncertainty distributions
appeared between internal and external data (Fig. 6¢). In this
experiment, setting t =0.03 as a threshold on variance values led
to the removal of no more than 10% of the internal data
predictions, while it triggered the rejection of more than 50% of
external data predictions. Yet, the uncertainty distribution of
external cases appeared to be rather different compared to the
ones of internal datasets and the break-up of unfamiliar data was
at least partially possible by setting the appropriate threshold on
the dropout variance. Thus, dropout variance in this case
constituted an important statistical index of predictability of a
set of cases by the algorithm.

Scripps Research Translational Institute

Other out-of-distribution inputs also comprised slides of lymph
nodes affected by lesions other than FL or FH. To illustrate this
purpose, we compared the uncertainty distributions between
familiar FL/FH test data and unfamiliar non-FL/FH data for global
(Fig. 7a) and class-specific (Fig. 7b, c) diagnosis. Non-FL/FH slides
were still inherently diagnosed as FL or FH by the system, but
decisions in that case correlated with higher values of uncertainty
more likely than the one encountered with usual FL/FH test data.
Hence, this finding proved the dropout variance ability to reject
the out-of-scope dataset.

DISCUSSION

It is now widely admitted that most recent deep neural networks
surpass humans in terms of visual recognition. Inter-observer
variability amongst human beings is a very important issue, in
particular for microscopic diagnosis with a direct impact on
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Improvement of Receiver-Operating Characteristics (ROC) via uncertain data removal. a ROC-Area under the curve (AUC) increases

with uncertain data removal at different resolutions. b In the model trained at 15.68 um/pixel (level 5), removing uncertain slides increases
other slide diagnosis performance. Class-specific uncertainty thresholding (orange curve) appears to be superior to global uncertainty
thresholding (blue curve) due to differences in FL/FH uncertainty distributions.

patient management. Several studies conducted in different
countries have corroborated the impact of expert review on
lymphoma management by comparing tumour diagnosis on
referral with diagnosis of the same sample by an expert, and have
reported variable discrepancy rates (from 14.8 to 27.3%) with an
impact on patient care'™. FL diagnosis might not be difficult in
routine practice since many FL are readily suspected on H&E
slides. Nevertheless, as shown in Fig. 1, histopathological
distinction between FL and benign FH can be challenging and
the absence of robust and definitive morphological features on
conventional optical microscopy makes necessary the use of
immunohistochemical staining in order to confirm diagnosis®.
However, difficult FL cases may be overlooked if the pathologist
does not suspect lymphoma and does not perform complemen-
tary immunohistochemical analyses. In addition, 10% of cases are
Bcl2 negative and entail diagnostic issues. Providing an auto-
mated and exhaustive WSI analysis and exploring characteristics
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that cannot be identified by a pathologist on conventional optical
microscopy, deep learning approaches add a new dimension to
morphological analysis. Herein we have demonstrated the
effectiveness of deep learning in the diagnosis of FL on H&E
digital slides, including Bcl2-negative FL that are often difficult to
diagnose despite the use of immunohistochemistry. Noting that
malignant tissues have both cellular and structural atypia and thus
different magnifications would each confer important information,
WSI were processed at multiple resolution levels.

Another innovative approach has been the use of BNN,
providing a level of uncertainty regarding output data. In our
model, and as previously observed by Leibig et al.'’, incorrect
predictions of the algorithm on familiar data were characterised
by higher variance values (i.e. uncertainty level), and ROC AUC
increased for all networks as uncertainty tolerance decreased. On
the one hand, the effectiveness of this approach confirms our
model validity. On the other hand, this implementation of

Scripps Research Translational Institute
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Fig. 6 Receiver-Operating Characteristics (ROC) and uncertainty distribution for the biased dataset. a ROC curves on the biased validation
dataset (composed exclusively by internal slides). b ROC curves on the biased test dataset (composed by internal and external slides).
¢ Uncertainty distribution for validation data (blue curve) and test data (orange curve).
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Fig. 7 Comparison of uncertainty distributions between familiar test data (composed by FL and FH) and other unfamiliar data
(non-FL/FH). Uncertainty distributions are shown for global (a) and class-specific (b and c) diagnosis. We separate test distribution (blue
curves) and unfamiliar distribution (orange curves) on each plot. Non-FL/FH slides are diagnosed with higher values of uncertainty than the

one encountered in usual FL/FH test data.

certainty in our network enables the identification of cases that
had not been used for training (external cases or other diagnosis)
in order to disregard predictions on these cases. For example, our
BNN has been trained to separate FL from FH but its uncertainty
level did not allow any consideration of the diagnoses proposed
on slides of lymph nodes affected by other subtypes of small B-cell
lymphomas (important decreases in AUC and certainty levels).

The visualisation of patch classification on WSI showed that FH
slides had very low FL probability on every patch whereas FH
probability was very low everywhere on FL slides. Thus, it is
tempting to speculate that the algorithm should also be effective
on smaller samples such as needle biopsies, for which immuno-
morphological interpretation may be very challenging, even for an
expert pathologist.

By building a biased dataset, we also confirmed that these
machine-learning techniques were very sensitive to the pre-
processing steps. Despite their evolution out from Bayesian
frameworks'®'?, neural networks abide by the laws of statistics
and require a representative sample to achieve coherent inductive
reasoning. Therefore, efforts to adapt the system to different
staining protocols or different types of scanners are facilitated by
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training on multi-centre datasets. However, universal applicability
is never guaranteed. As an extreme example, our biased dataset
experiment showed that, despite relative differences in their
certainty distribution, case-by-case separation of external test data
from internal data remained impossible considering dropout
variance only. Indeed, removing 10% of the most uncertain
internal slides (in the validation set) fixed a threshold on variance
values which led to the rejection of 50% of external test cases.
Moreover, the accuracy on the remaining 50% of the most certain
predictions was as low as on the entire test set (between 63 and
69%), showing that certainty did not even correlate with
prediction accuracy on external cases. Yet, dropout variance still
stood as a relevant index of predictability since the 10-50% ratio
was statistically favourable. Given that total removal is impossible
and that, in any deployment scenario, it only acts as a temporary
solution, dropout variance may be used in a pre-production phase
to automatically collate uncertain slides that the system has not
been properly trained to evaluate. Thus, these uncertain slides
could be collected to build a complementary dataset that may
eventually be used to compile a new training stage to fit with data
from new centres. The most relevant issue in this kind of approach

npj Digital Medicine (2020) 63
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is the quality and homogeneity of input data. Indeed, the best
accuracy was reached with training, validation and test sets of
slides homogeneously processed in the same pathology depart-
ment. In those particular conditions, maximum accuracy was
achieved with a limited number of training cases. However, when
the slides used for testing were processed in laboratories other
than training ones, the accuracy dropped dramatically. This
drawback, which has also been recently reported by Jones
et al.?°, is easy to understand but difficult to explain as CNNs
represent black boxes in which decisions are made on features
automatically extracted by networks. In other words, CNNs are
able to precisely detect and integrate slide technical variability in
their decision making process. In our study, we clearly show that
this problem could be solved when training and validation sets
were composed of slides from multiple origins. This strongly
suggests that the development of robust artificial intelligence
solutions helping pathologists in their diagnostic decision making
should rely on large training sets with diverse microscopic features
and heterogeneous technical processing.

Our approach is really unique and innovative since it considers
tissue section/image processing heterogeneity as a major drawback in
the design of robust diagnostic assistance tools based on deep
learning. Indeed, with the advance of digital pathology, various
machine learning models have been developed to try to automate
histological images analysis. While accuracy is optimised by most of
these algorithms, few of them provide the reliability level of their
predictions, a feature we deem essential in order to consider the
deployment of these tools in medical practice. Bayesian approaches
have recently been successfully used for whole-slide segmentation?’,
but to our knowledge, they have never been employed to diagnose
malignancy on WSI. Another major novelty in our approach is to
weight the predictions with a level of certainty. We also show that
uncertainty measurements can be used to detect “outsider” images
that should not be interpreted, whether it is a different pathology or
FL/FH samples with image heterogeneity due to different technical
procedures. Our findings need to be strengthened over multiple
independent cases cohorts. Nevertheless, they suggest that this
innovative deep-learning model, that combines extracted data at
different resolution levels, may be a promising tool for lymphoma
screening in the age of digital pathology, after an appropriate
learning process. In the French Lymphopath network, we have
collected more than 100,000 lymphoma cases encompassing all the
clinical-pathological entities listed in the WHO classification®® from
multiple sources. This dataset represents unique material that could
be used to provide a robust supportive framework for lymphoma
diagnosis in routine practice and this approach should also be used in
diagnosing other pathologies on H&E digital slides.

METHODS
Image datasets
To develop and evaluate our diagnostic algorithm, we retrospectively
collected a total of 378 H&E-stained WSI of lymph nodes with a
diagnosis of FL (n=197) or FH (n=181). All FL cases were retrieved
from the lymphopath database in two pathology departments
(Toulouse University Cancer Institute and Dijon University Hospital,
France) and were previously investigated by immunohistochemistry.
The FH cases, including reactive lymph nodes with few hyperplastic
reactive germinal centres to florid FH, were collected in the pathology
department of Toulouse University Cancer Institute, France. In another
step, in order to assess our system ability to detect out-of-distribution
inputs, we also included 65 H&E-stained WSI of lymph nodes affected
by other small B cell lymphomas (referred to in the text as unfamiliar
non-FL/FH) such as chronic lymphocytic leukaemia/lymphoma, mantle
cell and marginal zone lymphomas diagnosed at the University Cancer
Institute of Toulouse.

Tissue samples were collected and processed at the “CRB Cancer des
Hoépitaux de Toulouse”, following ethical procedures (Declaration of
Helsinki) and after obtaining written informed consent from patients. In
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accordance with French law, the “CRB Cancer des Hopitaux de Toulouse”
Cancer collection was reported to the Ministry of Higher Education and
Research (DC 2009-989). A transfer agreement (AC-2008-820) was
obtained following approval by the ethics committees. Similarly, CRB
Cancer du CHU de Dijon (University Hospital Centre) data has been
reported to the Ministry of Higher Education and Research (DC-2008-508)
and a transfer agreement (AC-2008-750) was granted too. Clinical and
biological annotations of the samples have been declared to the “Comité
National Informatique et Libertés” (CNIL—French Data Protection Author-
ity). The study was approved by the local ethical committee (Comité de
Protection des Personnes Sud-Ouest et Outremer ll). After anonymization,
the H&E-stained slides were digitised with a Panoramic 250 Flash Il digital
microscope (3DHISTECH, Budapest, Hungary) equipped with a Zeiss Plan-
Apochromat 20x NA 0.8 objective and a CIS VCC-FC60FR19CL 4 megapixel
CMOS sensor (unit cell size 5.5 x 5.5) mounted on a 1.6x optical adaptor, to
achieve a scan resolution of 0.24 um?/pixel in the final image.

In the first experiments, all H&E WSI of FL and FH (from the pathology
departments of the University Cancer Institute of Toulouse and
University Hospital of Dijon, France) were randomly divided into
training (50%), validating (25%), and testing (25%) datasets. For each
WSI, we sampled 299 x 299 pixel image patches over a regular grid,
removing the patches covered with less than 50% tissue. Unaware of
the amount of context and spatial resolution required by networks to
recognise FL and FH patterns, all patch images were extracted at eight
resolution levels (i.e. numerical image down sampling) ranging from
0.49 to 125.44 um/pixel, enabling model fitting and evaluation over
these resolutions for later selection or combined predictions.

Machine-learning algorithms can be very sensitive to multi-centre
deployment. In a final experiment and for illustrative purposes, we
deliberately constructed a biased dataset with training and validation sets,
each containing slides exclusively picked from our centre (internal cases).
The biased test set comprised a mixture of other internal (i.e. from the
University Cancer Institute of Toulouse, n = 24) and external (i.e. from the
University Hospital of Dijon, n = 24) FL cases. This experiment enabled us
to assess the diagnostic performance of our network on samples that the
system has not been properly trained to predict.

From patch prediction to whole-slide diagnosis integration

Following the probabilistic formalism of diagnosis, trained deep-learning
classifiers are usually considered as final decision makers given their ability to
produce accurate class predictions from images®>. As the computational
cost of forwarding WSI at sufficient resolution to a CNN remains prohibitive, we
therefore placed our work in the patch-based classification framework. This
approach has already been extensively explored in the domain of remote
sensing and recently implemented with success in digital pathology'®. We thus
proposed to train deep CNN architectures to predict the presence of FL/FH
patterns in non-overlapping tiles of WSI. All of the architectures studied had a
final layer with 2 softmax activated units coding for the probable presence of
FL and FH. Final tile labelling was allocated by the unit with maximum output.

Datasets were built with the objective of minimal slide annotation,
without manual selection of slide regions by a pathologist. In this
respect, in the training dataset, all patches extracted in an FL slide were
labelled as “FL”, and conversely, “FH” label was given to all patches
extracted from a FH WSI. According to common histopathological
notions, we assumed that, when present, FL pattern involved almost all
the specimen surface, and that the system did not need any region
delineation to perform its classification.

WSI patch classification generally leads to semantic segmentation where
the most represented label is likely to be the correct disease. However,
considering the spatial constancy of a given pattern in a WSI, CNN
predictions of non-overlapping tiles can also be seen as multiple
independent measurements statistically centred on the correct diagnosis.
Intuitively, and in accordance with coherent Bayesian inference, the
average measurement appears to be a favourable estimation of global WSI
diagnosis, leading to an increase in confidence related to the number of
observations (i.e. number of predicted patches). Consequently, with our
CNN, each WSI classification was performed by averaging individual patch
predictions over the whole slide.

Risk assessment

Effective uncertainty estimation from deep neural network models is an
active topic of research and appears to be a key-concept for their settlement
in practical healthcare systems. One way to provide certainty information

Scripps Research Translational Institute



from a deep learning model is to use a BNN that models the system weights
as random variables with densities conditioned by the training data'®. The
model is said to be “confident” about its predictions if they remain consistent
while sampling the weights distribution. However, the evaluation of the
posterior distribution of weights, even for simplistic priors (typically Gaussian),
remains computationally expensive and BNN properties are therefore
obtained by approximations. We implemented the approach developed by
Gal and Ghahramani'® who proposed the use of dropout, a technique that
randomly removes units from the network, to sample the posterior
distribution of the weights and approximate Bayesian inference. Despite
being controversial for using the term “uncertainty” with the incompatible
“Bayesian uncertainty” definition*, this method has proved to be practically
useful for automating medical decisions with almost no implementation or
computation time overheads'®. Thus, for a single input image, multiple
forward passes were performed with different dropout draws. Average value
(1) and variance (o) over the multiple dropout predictions were respectively
taken as final decision and uncertainty. The notion of uncertainty can be split
up into two practical requirements; one being its ability to estimate the
difficulty of classifying an input belonging to its application scope, which is
related to the network calibration and relates prediction values to its true
accuracy®®. The other consists in predicting whether an input image is close
enough to the training data to ensure reliable classification by the system. In
our study case, dropout network prediction variance handles both
specifications, which seem to support its utility in the field of automatically
assisted medical decisions. The plots for all uncertainty distributions were
obtained by probability density approximation from histograms (Gaussian
kernel fitting) provided by the Seaborn Python package.

Reporting summary

Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.
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