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Automated screening of sickle cells using a smartphone-based
microscope and deep learning
Kevin de Haan1,2,3,9, Hatice Ceylan Koydemir 1,2,3,9, Yair Rivenson1,2,3✉, Derek Tseng 1,2,3, Elizabeth Van Dyne 4, Lissette Bakic 5,
Doruk Karinca6, Kyle Liang6, Megha Ilango6, Esin Gumustekin7 and Aydogan Ozcan 1,2,3,8✉

Sickle cell disease (SCD) is a major public health priority throughout much of the world, affecting millions of people. In many
regions, particularly those in resource-limited settings, SCD is not consistently diagnosed. In Africa, where the majority of SCD
patients reside, more than 50% of the 0.2–0.3 million children born with SCD each year will die from it; many of these deaths are in
fact preventable with correct diagnosis and treatment. Here, we present a deep learning framework which can perform automatic
screening of sickle cells in blood smears using a smartphone microscope. This framework uses two distinct, complementary deep
neural networks. The first neural network enhances and standardizes the blood smear images captured by the smartphone
microscope, spatially and spectrally matching the image quality of a laboratory-grade benchtop microscope. The second network
acts on the output of the first image enhancement neural network and is used to perform the semantic segmentation between
healthy and sickle cells within a blood smear. These segmented images are then used to rapidly determine the SCD diagnosis per
patient. We blindly tested this mobile sickle cell detection method using blood smears from 96 unique patients (including 32 SCD
patients) that were imaged by our smartphone microscope, and achieved ~98% accuracy, with an area-under-the-curve of 0.998.
With its high accuracy, this mobile and cost-effective method has the potential to be used as a screening tool for SCD and other
blood cell disorders in resource-limited settings.
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INTRODUCTION
Sickle cell disease (SCD) is the most common hematologic
inherited disorder worldwide and a public health priority1. The
majority of the world’s SCD burden is in sub-Saharan Africa,
affecting millions of people at all ages. It is estimated that
200,000–300,000 children are born with SCD every year in Africa
alone2,3. The prevalence of the disease varies across countries,
being approximately 20% in Cameroon, Ghana, and Nigeria and
even rising up to 45% in some parts of Uganda3.
SCD is an inherited disorder caused by a point mutation in

hemoglobin formation, which causes the polymerization of
hemoglobin and distortion of red blood cells in the deoxygenated
state. As a result of this, the normally biconcave disc-shaped red
blood cells become crescent or sickle-shaped in people living with
SCD. These red blood cells are markedly less deformable, have
one-tenth the life span of a healthy cell, and can form occlusions
in blood vessels. Children with SCD also suffer from spleen auto-
infarction and the burden of disease becomes significant. Loosing
splenic function, these children are at high risk for infections at an
extremely young age, which significantly increases mortality
rates4. Due to the lack of diagnosis and treatment, over 50% of
these of children with SCD in middle and low-income countries
will die5.
Various methods have been developed for screening and

diagnosis of SCD, including e.g., laboratory-based methods such
as high performance liquid chromatography (HPLC)6, isoelectric
focusing7, and hemoglobin extraction8. In addition to these

relatively costly laboratory-based methods, there have been SCD
diagnostic tests developed for point-of-care (POC) use9–14. These
POC tests are mainly based on human reading, and human errors
along with the storage requirements of these tests (involving e.g.,
controlled temperature and moisture to preserve chemical
activity/function) partially limit their effectiveness to screen SCD,
especially in resource limited settings14.
An alternative method used for screening of SCD involves

microscopic inspection of blood smear samples by trained
personnel. In fact, each year hundreds of thousands of blood
smear slides are prepared in sub-Saharan Africa to make diagnosis
of blood cell infections and disorders15. Peripheral blood smears,
exhibiting variations in e.g., the size, color, and shape of the red
blood cells can provide diagnostic information on blood disorders
including SCD16. In addition to diagnosis, inspection of blood
smears is also frequently used for evaluation of treatment and
routine monitoring of patients17. Preparation of these blood smear
slides is rather straight-forward (i.e., can be performed by
minimally-trained personnel), rapid and inexpensive. However,
this method requires a trained expert to operate a laboratory
microscope and perform manual analysis once the blood smear is
prepared; the availability of such trained medical personnel for
microscopic inspection of blood smears is limited in resource
scarce settings, where the majority of people with SCD live18. In an
effort to provide a solution to this bottleneck, deep learning-based
methods have been previously used to classify19 and segment20

different types of red blood cells from digital images that were

1Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA. 2Bioengineering Department, University of California, Los Angeles, CA
90095, USA. 3California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA. 4Department of Pediatrics, Division of Hematology-Oncology, David
Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA. 5Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University
of California, Los Angeles, CA 90095, USA. 6Department of Computer Science, University of California, Los Angeles, CA 90095, USA. 7Department of Neuroscience, University of
California, Los Angeles, CA 90095, USA. 8Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA. 9These authors
contributed equally: Kevin de Haan, Hatice Ceylan Koydemir. ✉email: rivensonyair@ucla.edu; ozcan@ucla.edu

www.nature.com/npjdigitalmed

Scripps Research Translational Institute

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-020-0282-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-020-0282-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-020-0282-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-020-0282-y&domain=pdf
http://orcid.org/0000-0002-8612-5167
http://orcid.org/0000-0002-8612-5167
http://orcid.org/0000-0002-8612-5167
http://orcid.org/0000-0002-8612-5167
http://orcid.org/0000-0002-8612-5167
http://orcid.org/0000-0001-7203-6537
http://orcid.org/0000-0001-7203-6537
http://orcid.org/0000-0001-7203-6537
http://orcid.org/0000-0001-7203-6537
http://orcid.org/0000-0001-7203-6537
http://orcid.org/0000-0002-8048-1953
http://orcid.org/0000-0002-8048-1953
http://orcid.org/0000-0002-8048-1953
http://orcid.org/0000-0002-8048-1953
http://orcid.org/0000-0002-8048-1953
http://orcid.org/0000-0003-0586-4847
http://orcid.org/0000-0003-0586-4847
http://orcid.org/0000-0003-0586-4847
http://orcid.org/0000-0003-0586-4847
http://orcid.org/0000-0003-0586-4847
http://orcid.org/0000-0002-0717-683X
http://orcid.org/0000-0002-0717-683X
http://orcid.org/0000-0002-0717-683X
http://orcid.org/0000-0002-0717-683X
http://orcid.org/0000-0002-0717-683X
https://doi.org/10.1038/s41746-020-0282-y
mailto:rivensonyair@ucla.edu
mailto:ozcan@ucla.edu
www.nature.com/npjdigitalmed


acquired using laboratory-grade benchtop microscopes equipped
with oil-immersion objective lenses. However, these earlier works
focused upon cell level detection, rather than slide level
classification and therefore did not demonstrate patient level
diagnosis or screening of SCD.
As an alternative to benchtop microscopes, smartphone-based

microscopy provides a cost-effective and POC-friendly platform for
microscopic inspection of samples, making it especially suitable
for use in resource limited settings21–23. Smartphone microscopy
has been demonstrated for a wide range of applications, including
e.g., the imaging of blood cells24,25, detection of viruses and
DNA26,27, quantification of immunoassays28–31 and microplates32

among many others33–36. Recently, machine learning approaches
have also been applied to smartphone microscopy images for
automated classification of parasites in soil and water37,38.
Here we present a smartphone-based microscope and machine

learning algorithms that together form a cost-effective, portable,
and rapid sickle cell screening framework, facilitating early
diagnosis of SCD even in resource-limited settings. The mobile
microscope (Fig. 1) utilizes an opto-mechanical attachment,
coupled to the rear camera of a smartphone, transforming it into
a portable microscope using external parts that cost ~$60 in total.
This compact microscope design has sub-micron spatial resolu-
tion39 and weighs only 350 g including the smartphone itself.
Using this cost-effective mobile microscope, we performed

slide-level automated diagnosis of SCD by rapidly classifying
thousands of red blood cells within a large field-of-view using a
deep learning-based framework that takes <7 s to process a blood
smear slide per patient. We blindly tested this approach using 96
blood smears (32 of which came from individual patients with
SCD) and achieved ~98% accuracy together with an area-under
the-curve (AUC) of 0.998. We believe that this platform provides a
robust solution for cost-effective and rapid screening of SCD,
making it especially promising for POC use in resource-limited
settings.

RESULTS
The process of screening peripheral blood smears using our
framework is illustrated in Fig. 1d. Following the imaging of the

patient slide with the smartphone-based microscope (Fig. 1a–c),
these smartphone images were rapidly enhanced using a deep
neural network as shown on the left part of Fig. 1d. This network
was trained to transform the lower resolution, spatially, and
spectrally aberrated images of the smartphone microscope into
enhanced images that are virtually equivalent to the images of the
same samples captured using a higher numerical aperture (NA)
laboratory-grade benchtop microscope. During the training phase
(see “Methods” section), which is a one-time effort, pairs of mobile
microscopy images (input to the network) were cross-registered to
the corresponding images of the same training samples, captured
using a ×20/0.75 NA objective-lens with a ×2 magnification
adapter (i.e., ×40 overall magnification), which were used as
ground truth image labels.
This intermediate image transformation is essential for not only

the automated blood smear analysis using a subsequent
classification neural network (Fig. 1d), but is also important for
the improvement of smartphone microscopy images to a level
that can be used by expert diagnosticians for manual inspection of
the blood smears. Due to aberrations and lower resolution, the
raw smartphone microscope images of red blood cells might be
relatively difficult to interpret by human observers, who are
traditionally trained on high-end benchtop microscopes. While
our framework automatically performs cell classification and slide-
level SCD diagnosis, any manual follow-up by a trained expert
requires digital images that can be accurately interpreted. This is
an important need satisfied by our image enhancement neural
network that is specifically trained on blood smear samples to
enhance the smartphone microscope images.
Another major advantage of this approach is that the

enhancement network standardizes the microscopic images of
blood smears, making it easier for the second classification
network perform its task and more accurately classify the sickle
cells. Therefore, the enhancement network improves both the
quality and the consistency of the subsequent sickle cell
classification network by performing an image standardization at
its output. It also helps us to account for variations between
images over time. In fact, our sample collection was performed
over the course of 3 years, and the blood smear images
were captured with different smartphones (using the same

Fig. 1 Field portable smartphone based brightfield microscope and its principle of detection. a A photograph of the smartphone-based
brightfield microscope. Schematic illustration of b the design of the portable microscope in detail and c the light path. d Deep learning
workflow for sickle cell analysis. Scale bar indicates 20 μm.
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opto-mechanical attachment, same phone manufacturer, and
model number), resulting in some variations between the
acquired mobile-phone images over time. In addition to using
multiple smartphones, variations can be caused by the 3D printed
plastic attachments partially warping over time, the smartphone
heating up during its operation, and the illumination intensity
fluctuating over time. These changes can cause fluctuations in the
alignment of the lenses to occur, which in turn lowers the quality
of the captured images. The image enhancement network was
trained with blood smear samples imaged over this time period
and in different operational conditions in order to account for
these variations in the raw image quality of smartphone
microscopy, successfully standardizing the resolution and the
spatial as well as spectral features of the output images of the
network.
Using the structural similarity index (SSIM)40, we quantified the

effectiveness of this image enhancement network on unique
fields-of-view from the same slides that the network was trained
with. The neural network improved the SSIM of our smartphone
microscopy images from 0.601 ± 0.017 (input) to 0.965 ± 0.012
(output), where the mean and standard deviation were calculated
for eight smartphone microscope images, compared with the
ground truth image labels acquired with a high NA benchtop
microscope (see “Methods” section). This shows that after the
neural network-based transformation, the intensity component of
the smartphone images become highly similar to the benchtop
microscope images. Examples of these image transformations can
be seen in Fig. 2, as well as in Supplementary Fig. 1a, where direct
comparisons between the network output and the ground truth
benchtop microscope (0.75 NA) images are shown.
Following the image enhancement and standardization net-

work output, a second classification network was then used to
segment the enhanced images into three classes of objects:
normal red blood cells, sickle cells, and background. Using the
output of this network, each patient blood smear slide imaged by
smartphone microscopy was automatically analyzed and screened
for SCD using five different fields-of-view, each covering
0.51mm× 0.51 mm, i.e., a total of ~1.25 mm2 area of each blood
smear was processed by the classification network, screening on
average 9630 red blood cells per patient sample. Following this
segmentation, the number of sickle cells and normal cells
contained within each image were automatically counted. The

patient slides were classified as being SCD positive if the average
number of sickle cells within five images covering a 1.25 mm2

field-of-view was above 0.5% of the total red blood cell count for
that sample. This threshold was chosen based on the performance
of the classification neural network in the validation dataset
(separate from our blind testing data) to mostly account for sickle
shaped healthy cells found in normal blood smears.
After the training phase, we confirmed the accuracy of our

framework by blindly testing 96 blood smear slides that were
never seen by our networks before. Covering 96 individual
patients, 32 of these blood smears are from SCD patients and 64
of them are from healthy individuals. These slides were imaged
using our smartphone microscope between 2016 and 2019, and
were anonymously obtained from existing specimen at the UCLA
Medical Center; the clinical diagnosis of each patient sample was
used as the ground truth label for each slide. In this blinded test,
our framework achieved ~98% accuracy across these 96 blood
smears, where there was one false positive slide and one false
negative slide. As for our misclassifications, one healthy blood
smear was found to have a significantly higher average number of
sickle cells (0.64%) than the remaining healthy blood smears; the
one false negative sample was only slightly below our 0.5%
threshold, while exhibiting a higher percentage of sickle cells than
any of the remaining normal blood smears. The percentage of
sickle cells measured by our platform for each one of these blood
smear slides is also listed in Supplementary Table 1, and several
examples of patches from these test images, as they digitally pass
through the networks, are also shown in Fig. 2.
We also report the receiver operating characteristic (ROC) curve

of our framework in Fig. 3, which demonstrates how the SCD
diagnosis accuracy can change depending on the threshold used
to label the blood smear slide, achieving an AUC of 0.998.

DISCUSSION
Through blind testing spanning 96 unique patient samples we
have shown that the presented framework can consistently
achieve high accuracy even using a limited training dataset.
Similar to human diagnosticians examining blood smears under a
microscope, screening through a large number of cells (on
average 9630 red blood cells per patient sample) helped us
achieve a high accuracy for automated diagnosis of SCD. In

Fig. 2 Example image patches. Demonstration of various test image patches that passed through the various steps of the automated sickle
cell analysis framework. The smartphone microscopy images are first passed through an image enhancement and standardization network.
Following this step, the images are segmented using a second, separate neural network. This segmentation network is in turn used to
determine the number of normal and sickle cells within each image; five fields-of-view together covering ~1.25 mm2 is automatically
screened, having on average 9630 red blood cells to make a diagnosis for each patient blood smear. Scale bar indicates 20 μm.
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general, by using more training data containing a larger number
of labeled sickle cell images, one can further improve our SCD
detection accuracy and make it more efficient, requiring the
capture of fewer smartphone images covering an even smaller
field-of-view. On the other hand, acquiring a large training dataset
with accurate labels at the single cell level is a challenge in itself; in
fact, single cell level ground truth labels from blood smear
samples clinically do not exist, and are not being recorded.
Although one could perform single cell level molecular analysis on
blood samples of patients, creating a sufficiently large scale image
library backed up with such single cell level ground truth labels
would be very costly and time consuming. As an alternative, one
can use multiple diagnosticians to establish a clinical ground truth
at the single cell level by statistically merging the decisions made
by a panel of diagnosticians. A similar multi-diagnostician-based
decision approach has previously been used to detect malaria
infected cells in blood smears, rather than relying on a single
expert41,42. This approach mitigates the fact that single cell level
labeling which is performed by a human can be highly subjective
and inconsistent even for highly-trained experts41. Therefore, an
accurate patient diagnosis can be difficult to perform with only a
limited number of cells screened per slide, particularly with
diseases such as SCD, where normal/healthy blood can also
contain cells showing sickle cell like microscopic features. For

example, children with normal blood were shown to have on
average 0.28% sickle cells43. Due to this variation, a large number
of cells must be screened per patient slide to better evaluate the
rate of occurrence and make an accurate diagnosis.
Given these aforementioned challenges in obtaining large scale

ground truth labeled image data from blood smears, our image
enhancement and standardization network is particularly vital for
SCD screening, helping the subsequent red blood cell segmenta-
tion network to better generalize sickle cell features and be
efficient with limited training data by standardizing the input
images that are fed into the classification network.
In this work, the blood smear slides were classified by

measuring the percentage of sickle cells over a field-of-view of
~1.25 mm2, covering on average 9630 red blood cells. Figure 4a
reports how our diagnostic accuracy and AUC would change as a
function of the number of cells that are screened per patient,
further demonstrating the importance of inspecting a large
sample field-of-view, and therefore a large number of cells for
accurate SCD diagnosis (see “Methods” section). Without inspect-
ing an average of a few thousand red blood cells per patient slide,
the accuracy of our automated SCD screening platform can drop
significantly. Figure 4b also reports how the ROC curves are
impacted as a function of the number of cells being screened per
patient slide, confirming the same conclusion that both the
sensitivity and the specificity of the test steadily drop as the
number of inspected cells decreases.
Our results and analysis demonstrate that the presented

method, enabled by smartphone microscopy and deep learning,
is robust to perform SCD diagnosis by automated processing of
blood smears. However, there are also some drawbacks to using a
blood smear to diagnose sickle cell disease, which our automated
system is unable to overcome. One of these is that using blood
smear slides to diagnose sickle cell disease or sickle cell anemia is
not effective for infants and can cause false negatives. Therefore,
the method presented in this paper is not to be used in newborn
screening programs, and has been designed for use with older
children and adults. While newborn screening programs are rather
important, there are many areas where they have not been
implemented due to e.g., cost and logistical issues. Furthermore,
even in areas where newborn screening programs have been
implemented, there are still adults and children who have not
been screened due to a lack of supplies, power outages, or lack of
complete coverage, which makes a mobile phone-based cost-
effective SCD screening technology ideal to serve such patients.

Fig. 4 Accuracy as a function of the number of cells counted. a Plot of how the accuracy and AUC change as a function the number of cells
(and the blood smear area) inspected by our method. b ROC curves for various simulated blood smear areas. These plots (except the 1.25 mm2

one, which is our experimental result) are based on the average of 1000 Monte Carlo simulations performed by removing the red blood cells
from the imaging fields-of-view at random to change the number of cells inspected by our method. As the cells are relatively monodisperse,
this random removal of the cells simulates a reduction in the inspected blood smear area per patient. Error bars represent the standard
deviation (s.d.) across the 1000 Monte Carlo simulations.

Fig. 3 ROC curve. Demonstration of the false positive rate versus
the true positive rate for our sickle cell detection framework.

K. de Haan et al.

4

npj Digital Medicine (2020)    76 Scripps Research Translational Institute



Blood smears also cannot be used to distinguish between sickle
cell genotypes, and therefore patients may need follow up testing.
However, for critical clinical management of e.g., an initial episode
of stroke, chest syndrome, or hand-foot syndrome, it may not be
clinically necessary to know the sickle cell genotype immediately.
Therefore, this technology would ideally be targeted towards

adults and older children who have not undergone newborn
screening. We believe that it would be particularly useful in
settings, where the existing point of care technologies are not
ideal due to cost, need for reagents etc. as the presented SCD
screening method is rapid, cost-effective and the required sample
preparation is minimal. It would be particularly useful in locations
where operators are already trained to use thin blood smears to
perform diagnoses of other diseases. The preparation of blood
smears is being routinely performed in resource limited settings
for the diagnosis of other diseases such as malaria (thick/thin
smears) and complete blood counts (when specialized machines
are not available), resulting in hundreds of thousands of blood
smears prepared per year just in sub-Saharan Africa44. Our method
is also quite fast to compute an answer: each one of the five
images passes through the neural networks in 1.37 s using a single
Nvidia 1080 Ti GPU. This results in a total analysis time of 6.85 s per
patient, which is significantly faster than any manual inspection by
experts. While in the current implementation the analysis is
performed on a computer (which can be a local or remote server),
a smartphone application could be also used to perform the
processing on the phone itself with an increase in the slide
processing time.

METHODS
Study design
The objective of the research was to perform automated diagnosis of SCD
using blood smear slides imaged with a smartphone-based microscope
and analyzed by deep learning. The test dataset was made up of 96 unique
patient samples involving 32 SCD thin blood smears and 64 normal thin
blood smears. The blood smears were obtained from the UCLA Ronald
Reagan Hospital, and no sample selection criterion was applied. Both the
normal and SCD blood smears came from patients with a mix of gender
and wide range of ages (<5 years to >60 years old).

Ethics approval and consent to participate
De-identified blood smears from existing human samples were obtained
from the UCLA Ronald Reagan Hospital. No patient information, or any link
to it, was disclosed to the research team. General consent for the samples
to be used for research purposes was obtained. Due to these factors, no
specific IRB from UCLA was required.

Design of the smartphone-based brightfield microscope
We used a Nokia Lumia 1020 smartphone attached to a custom-designed
3D-printed unit to capture images of the blood smear slides. An RGB light
emitting diode (LED) ring (product no. 1643, Adafruit) was utilized to
illuminate the sample in a transmission geometry and a microcontroller
(product no. 1501, Adafruit) was used to adjust the illumination intensity.
To ensure uniform illumination of the sample, a diffuser (product no. SG
3201, American Optic Supply, Golden, CO, USA) was placed in between the
LEDs and the specimen. An external lens with a focal length of 2.6 mm (LS-
40166—M12xP0.5 Camera Lens) was used for magnification and was
coupled to the rear camera of the smartphone. This design has a field of
view of ~1mm2 per image. However, each one of our mobile phone
images is cropped to the center ~0.5 × 0.5 mm2 in order to avoid increased
aberrations toward the edges of the field of view; per patient slide, we
capture five independent images, covering a total of ~1.25mm2. The
microscope is also equipped with a custom-designed manual translational
stage to laterally move the sample. This stage, which was also 3D-printed,
also contained a microscope slide holder. In total, the smartphone-based
microscope weighs 350 g, including the phone itself, and the total cost of
the device parts is ~$60 (excluding the smartphone).

Imaging of thin blood smears
We used thin blood smear slides for image analysis. Our ground truth
microscope images were obtained using a scanning benchtop microscope
(model: Aperio Scanscope AT) at the Digital Imaging Laboratory of the
UCLA Pathology Department. The standard smartphone camera applica-
tion was used to capture the corresponding input images using the
smartphone-based microscope, using auto focus, ISO 100, and auto
exposure.
Areas of the samples captured using the smartphone microscope were

co-registered to the corresponding fields-of-view captured using the
benchtop microscope (please refer to “Image co-registration” in “Methods”
section for details). Three board-certified medical doctors labeled the sickle
cells within the images captured using the benchtop microscope using a
custom-designed graphical user interface (GUI). As the images are co-
registered, these labels were used to mark the locations of the sickle cells
within the smartphone images, forming our training image dataset. We
captured the images on the feathered edges of the blood smear slides,
where the cells are dispersed as a monolayer.
Images from blood smears containing cells, which have been scraped

and damaged were excluded from the dataset, as the cut cells can appear
similar to sickle cells (see e.g., Supplementary Fig. 2). One normal blood
smear was accordingly excluded as we were unable to capture a sufficient
number of usable fields-of-view due to the poor quality of the blood
smear, with many scratches on its surface. Blood smears from four patients
who were tested positive for SCD and were taking medicine for treatment
were also excluded from the study since their smears did not contain sickle
cells when viewed by a board-certified medical expert.

Image co-registration
The co-registration between the smartphone microscope images and
those taken by the clinical benchtop microscope (NA= 0.75) was done
using a series of steps. For the first step, these images are scaled to match
one another by bicubically down-sampling the benchtop microscope
image to match the size of those taken by the smartphone. Following this,
they are roughly matched using an algorithm which creates a correlation
matrix between each smartphone image and the stitched whole slide
image captured using the benchtop lab-grade microscope. The area with
the highest correlation is the field of view which matches the smartphone
microscope image and is cropped from the whole slide image. An affine
transformation was then calculated using MATLAB’s (Release R2018a, The
MathWorks, Inc.) multimodal registration framework which extracts feature
vectors and matches them to further correct the size, shift, shear, and
account for any rotational differences45. Finally, the images were matched
to each other using an elastic pyramidal registration algorithm to match
the local features39. This step accounts for the spherical aberrations, which
are extensive due to the nature of the inexpensive optics coupled to the
smartphone camera. This algorithm co-registers the images at a subpixel
level by progressively breaking the image up into smaller and smaller
blocks and uses cross-correlation to align them.

Image enhancement neural network
Due to the variations among the images taken by the smartphone
microscope, a neural network is used to standardize images and improve
their quality in terms of spatial and spectral features. These variations stem
from e.g., changing exposure time, aberrations (including defocus),
chromatic aberrations due to source intensity instability, mechanical shifts,
etc. Some examples of the image variations that these aberrations create
can be seen in Supplementary Fig. 3. The quality of the images taken by a
smartphone microscope can be improved and transformed so that they
closely resemble those taken with a state-of-the-art benchtop microscope
by using a convolutional neural network39. Our image normalization and
enhancement network uses the U-net architecture as shown in Fig. 5a46.
The U-net is made up of three “down-blocks” followed by three “up-
blocks”. Each one of these blocks is made up of three convolutional layers,
which use a zero padded 3 × 3 convolution kernel and a stride of one to
maintain the size of the matrices. After each of the convolutional layers,
the leaky ReLU activation function is applied, which can be described as:

Leaky ReLU ðxÞ ¼ x where x>0

0:1x otherwise

�
; (1)

where x is the tensor that the activation function is being applied to.
In the case of the down-block, the second of these layers increases the

number of channels by a factor of two, while the second convolutional
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layer in the up-block reduces the number of channels by a factor of one
quarter. The down-blocks are used to reduce the size of the images using
an average pooling layer with a kernel size and a stride of two, so that the
network can extract and use features at different scales. The up-blocks
return the images to the same size by bilinearly up-sampling the images by
a factor of two. Between each of the blocks of the same size, skip
connections are added to allow information to pass by the lower blocks of
the U-net. These skip connections concatenate the up-sampled images
with the data from the down-blocks, doubling the number of channels. As
the up-blocks reduce the number of channels by a factor of four and the
skip connections double the number of channels, the total number of
channels in each subsequent up-block is halved. Between the bottom
blocks, a convolution layer is also added to allow processing of those large-
scale features. The first convolutional layer of the network initially increases
the number of channels to 32, while the last one reduces the number back
to the three channels of the RGB color space to match the benchtop
microscope images (ground truth). The network was trained using the
adaptive movement estimation (Adam) optimizer with a learning rate of
1 × 10−4.
The image enhancement network is trained using a combination of two

loss functions, described by the equation:

LNetwork ¼ L1 z;G xð Þf g þ λ � TV G xð Þð Þ; (2)

where an L1 (mean absolute error) loss function is used to train the
network to perform an accurate transformation, while the total variation
(TV) loss is used as a regularization term. λ is a constant set to 0.03; this
constant makes the total variation ~5% of the overall loss. G(x) represents
image generated using the input image x. The L1 loss can be described by
the following equation47:

L1 z;G xð Þf g ¼ 1
Nchannels ´M´N

XNchannels

n¼1

XM;N

i;j¼1

GðxÞi;j;n � zi;j;n
��� ���; (3)

where Nchannels is the number of channels, n is the channel number, M and
N are the width and height of the image in pixels, and i and j are the pixel

indices. The total variation loss is described by the following equation48:

TVðG xð ÞÞ ¼ 1
Nchannels ´M ´N

PNchannels

n¼1

PM;N

i;j¼1
GðxÞiþ1;j;n � GðxÞi;j;n
��� ����

þ GðxÞi;jþ1;n � GðxÞi;j;n
��� ����;

(4)

The network was trained for 604,000 iterations (118.5 epochs) using a
batch size of 16. The data were augmented through random flips and
rotations of the training images by multiples of 90 degrees.
For this image enhancement network training, there is no need for

manual labeling of cells by a trained medical professional, and therefore
this dataset can be made diverse very easily. Because of this, it can also be
expanded upon quickly as all that is required is additional images of the
slides to be captured by both microscopy modalities and co-registered
with respect to each other. Therefore, the network was able to more easily
cover the entire sample space to ensure accurate image normalization and
enhancement. The training image dataset consisted of 520 image pairs
coming from ten unique blood smears. Each of these images have 1603 ×
1603 pixels, and are randomly cropped into 128 × 128 pixel patches to
train the network. Several examples of direct comparisons between the
network’s output and the corresponding field of view captured by the
benchtop microscope can be seen in Supplementary Fig. 1a.

Mask creation for training the cell segmentation network
Once the cells were labeled by board-certified medical experts and the
images were co-registered, the cell labels were used to create a mask
which constitutes the ground truth of the segmentation network; this
mask creation process is a one-time training effort and used to train the
cell segmentation neural network used in our work. These training masks
were generated by thresholding the benchtop microscope images
according to color and intensity to determine the locations of all the
healthy and the sickle cells. The exact thresholds were chosen manually for
each slide due to minor color variations between the blood smears; once

Fig. 5 Deep neural network architecture. Diagram detailing the network architecture for both a the image enhancement network and b the
semantic segmentation network. The numbers above the layers represent the size of the tensor dimensions at that point in the network, in
the format: length × width × number of channels. N was chosen to be 128 during training and can be set to any arbitrary size during testing.
Scale bar indicates 20 μm.
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again, this is only for the training phase. As the centers of some red blood
cells were the same color as the background, holes in the mask were filled
using MATLAB’s imfill command, a morphological operator. Following this,
the mask was eroded by four pixels in order to eliminate sharp edges and
eliminate pixels misclassified due to noise. Any cell labeled by the medical
expert as a sickle cell was set as a sickle cell, while any unlabeled red blood
cell was set as a normal cell for training purposes. White blood cells,
platelets and the background were all labeled as a third background class.
As the medical experts might have randomly missed some sickle cells
within each field of view, a 128 × 128 region around each labeled sickle cell
was cut out of the slide for training, reducing the unlabeled area contained
within the training dataset. The remaining sections of the labeled slides
were removed from the training dataset. At the end of this whole process,
which is a one-time training effort, three classes are defined for the
subsequent semantic segmentation training of the neural network: (1)
sickle, (2) normal red blood cell, and (3) background.

Semantic segmentation
A second deep neural network is used to perform semantic segmentation
of the blood cells imaged by our smartphone microscope. This network
has the same architecture as the first image enhancement network (U-net).
However, as this network performs segmentation, it uses the SoftMax cross
entropy loss function to differentiate between the three classes (sickle cell,
normal red blood cell, and background). In order to reduce the number of
false positives as much as possible, the normal cell class is given twice the
weight of the background and the sickle cells in the loss function.
The overall loss function for the segmentation network, LSegmentation, is
described in Eq. 5:

LSegmentation ¼ � 1
M ´N

XM;N

i;j¼1

ai;j;1 log pi;j;c¼1
� �þ 2ai;j;2 log pi;j;c¼2

� �þ ai;j;3 log pi;j;c¼3
� �

;

(5)

where M and N are the number of pixels in an image, and i, and j are the
pixel indices as above. ai,j,c is the ground-truth binary label for each pixel
(i.e., 1 if the pixel belongs to that class, 0 otherwise), and c denotes the
class number (c= {1,2,3}), where the first class represents the background,
the second class is for healthy cells, and the third class is for sickle cells.
The probability pi,j,c that a class c is assigned to pixel i, j is calculated using
the softmax function:

pi;j;c ¼
exp yi;j;c

� �
P3

k¼1 exp yi;j;k
� � ; (6)

where y is the output of the neural network.
A visual representation of the network architecture can be seen in Fig.

5b. Several examples of direct comparisons between the network’s output
at the single cell level and the corresponding field of view imaged by the
clinical benchtop microscope can be seen in Supplementary Fig. 1a.
This network was trained for 80,000 iterations (274 epochs) using a

batch size of 20. The training dataset for this network was made up of
2660 sickle cell image patches (each 128 × 128 pixels) from a single blood
smear slide, each one containing a unique labeled sickle cell. An additional
3177 image patches (each 128 × 128 pixels) coming from 15 unique slides
containing solely normal cells were also used. Separate from our blind
testing image dataset which involved 96 unique patients, 250 labeled
128 × 128-pixel sickle cell image patches and two 1500 × 1500-pixel
images from healthy image slides were used as validation dataset for
the network training phase. The classification algorithm was validated
using these images alongside five unique fields-of-view from ten
additional blood smear slides of healthy patients. The network was trained
using the Adam optimizer with a learning rate of 1 × 10−5.

Classification of blood smear slides
Once the images have been segmented by the second neural network, the
number of total cells and sickle cells must be extracted. The algorithm first
uses a threshold to determine which pixels are marked as cells. Areas
where the sum of the sickle cell and normal cell probabilities is above 0.8
are considered to be part of a red blood cell, while areas below this
threshold are considered as background regions. Connected areas which
contain more than 100 pixels above the 0.8 threshold are then counted to
determine the total number of cells. Sickle cells are counted using a similar
methodology: connected areas where there are over 100 pixels above a
sickle cell probability threshold of 0.15 were counted as sickle cells. This

threshold is set to be low since significantly more number of healthy red
blood cells is used to train the network. A slide is classified as being
positive for sickle cell disease, when the percentage of sickle cells among
all the inspected cells (sickle and normal red blood cells) over a total field-
of-view of ~1.25 mm2 is above 0.5%. The 0.5% threshold was chosen using
the validation image dataset, i.e., it was based on the network’s
performance in classifying the ten healthy validation slides to account
for false positives and the occurrence of sickle-shaped cells in normal
blood smears. Several examples of direct comparisons between the
network’s output and the ground truth labels for blindly tested regions of
the labeled slides are shown in Fig. S1b.

Structural similarity calculations
The SSIM calculations were performed using only the brightness (Y)
component of the YCbCr color space as we expect the intensity contrast
component to remain similar, while the chroma components (Cb, Cr) to
depend on other factors, including variability in the slide’s staining. The
color difference between the smartphone microscope images and the
benchtop microscope images is also significant. The smartphone micro-
scope images appear with a blue background, and should not directly be
compared against the benchtop microscope images in the RGB color
space. Therefore, using a color space where the brightness component can
be extracted separately is necessary.
The calculations were performed upon eight unique fields-of-view from

the same slides which were used to train the enhancement network. SSIM
is calculated using the equation:

SSIM x; zð Þ ¼ 2μxμz þ c1ð Þ 2σx;z þ c2
� �

ðμ2x þ μ2z þ c1Þðσ2x þ σ2z þ c2Þ ;
(7)

where x and z represent the two images being compared, as above. µx and
µz represent the average values of x and z, respectively, and σx and σz are
the variance of x and z, and σz is the covariance of x and z. c1 and c2 are
dummy variables, which stabilize the division from a small denominator.

Monte Carlo simulation details
The Monte Carlo simulations reported in Fig. 4 demonstrate how the
accuracy of the presented technique changes as a function of the number
of cells analyzed by our neural networks; these simulations were
implemented by beginning with the full cell count from the five fields-
of-view tested for each patient slide. This total cell count was reduced by
randomly eliminating some of the cells to evaluate the impact of the
number of cells analyzed on our accuracy. As the cells are relatively
monodisperse, this random removal of red blood cells was used as an
approximation of a reduction of the inspected blood smear area per
patient. The results of 1000 simulations were averaged since the accuracy
can fluctuate significantly, particularly at low numbers of cells. The total
number of cells within the five fields-of-view that we used for SCD
diagnosis varies from 4105 to 13,989.

Implementation details
The neural networks were trained using Python 3.6.2 and the TensorFlow
package version 1.8.0. The networks were trained and test images were
processed on a desktop computer running Windows 10 using an Intel I9-
7900X CPU, 64 GB of RAM and one of the computer’s two GPUs (NVIDA
GTX 1080 Ti). The enhancement network infers each field of view in 0.73 s
while the classification network inference takes 0.64 s per field of view,
taking a total of 6.85 s to process the entire 1.25mm2 area of the blood
smear. For both of the neural networks, the training image data were
augmented by using random rotations and flipping. The hyperparameters
and network architecture were chosen specifically for the datasets used in
this paper, adjusted through experimental tuning.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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