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Handling missing MRI sequences in deep learning
segmentation of brain metastases: a multicenter study
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The purpose of this study was to assess the clinical value of a deep learning (DL) model for automatic detection and segmentation
of brain metastases, in which a neural network is trained on four distinct MRI sequences using an input-level dropout layer, thus
simulating the scenario of missing MRI sequences by training on the full set and all possible subsets of the input data. This
retrospective, multicenter study, evaluated 165 patients with brain metastases. The proposed input-level dropout (ILD) model was
trained on multisequence MRI from 100 patients and validated/tested on 10/55 patients, in which the test set was missing one of
the four MRI sequences used for training. The segmentation results were compared with the performance of a state-of-the-art
DeeplLab V3 model. The MR sequences in the training set included pre-gadolinium and post-gadolinium (Gd) T1-weighted 3D fast
spin echo, post-Gd T1-weighted inversion recovery (IR) prepped fast spoiled gradient echo, and 3D fluid attenuated inversion
recovery (FLAIR), whereas the test set did not include the IR prepped image-series. The ground truth segmentations were
established by experienced neuroradiologists. The results were evaluated using precision, recall, Intersection over union (loU)-score
and Dice score, and receiver operating characteristics (ROC) curve statistics, while the Wilcoxon rank sum test was used to compare
the performance of the two neural networks. The area under the ROC curve (AUC), averaged across all test cases, was 0.989 + 0.029
for the ILD-model and 0.989 + 0.023 for the DeeplLab V3 model (p = 0.62). The ILD-model showed a significantly higher Dice score
(0.795 £ 0.104 vs. 0.774 £ 0.104, p = 0.017), and loU-score (0.561 £ 0.225 vs. 0.492 + 0.186, p < 0.001) compared to the DeepLab V3
model, and a significantly lower average false positive rate of 3.6/patient vs. 7.0/patient (p < 0.001) using a 10 mm? lesion-size limit.
The ILD-model, trained on all possible combinations of four MRI sequences, may facilitate accurate detection and segmentation of

brain metastases on a multicenter basis, even when the test cohort is missing input MRI sequences.
npj Digital Medicine (2021)4:33; https://doi.org/10.1038/s41746-021-00398-4

INTRODUCTION

Advances in artificial intelligence (Al) are suggesting the possibility
of new paradigms in healthcare and are particularly well-suited to
be adopted by radiologists'™. In recent years, there has been
significant effort in utilizing the next-generation Al technology,
coined deep learning, to learn from labeled magnetic resonance
imaging (MRI) data®~. One key advantage of Al-based radiology is
the automatization and standardization of tedious and time-
consuming tasks, most clearly exemplified in the tasks surround-
ing detection and segmentation®'%. Several deep learning
approaches have successfully been developed and tested for
automatic segmentation of gliomas''™'3, thanks in part to the
publicly available brain tumor segmentation (BraTS) dataset’®. In
recent years, studies have also shown the potential of Al-based
segmentation in patient cohorts comprising tumor subtypes, such
as brain metastases, which may pose a greater challenge in terms
of segmentation performance given their wide range of sizes and
multiplicity'>'®. Delineation of initial metastatic lesion size and
changes related to disease progression or response are key
neuroradiology tasks'’. Traditionally, the metrics used for asses-
sing brain metastases are based on unidimensional measure-
ments, and although the value of using volumetric measurements
has been increasingly discussed, expert groups remain reluctant
to endorse a universal requirement of volumetric criteria for

assessing brain metastases. One concern often raised is that
volumetric analysis, as performed manually by radiologist, adds
cost and complexity, and is not available at all centers.
Consequently, there has been a strong need to develop an
accurate pipeline capable of automatic detection and segmenta-
tion of brain metastases. In a recent study, we trained a fully
convolution neural network (CNN) for automatic detection and
segmentation of brain metastases using multisequence MRI'®,
While our DL-approach showed high performance, the robustness
and clinical utility needs to be challenged in order to fully
understand its strengths and limitations. In fact, many Al-based
segmentation studies are limited in terms of generalizability in
that the algorithms are trained and tested on single-center patient
cohorts. In some studies, the training-sets and test-sets are even
limited to a single magnetic field strength, a single vendor, and/or
a single scanner for data acquisition. A key step towards
understanding the generalizability and clinical value of any deep
neural network is by training and testing using real-world
multicenter data. Another limitation of these Al-based segmenta-
tion networks is that they are trained on a distinct set of MRI
contrasts, which limits the use of the networks to sites acquiring
the same sequences. However, deep neural networks should be
able to handle missing model inputs. To this end, this work tested
an Al-based segmentation model, called input-level dropout (ILD),
in which a neural network with an input dropout layer is trained
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on the full set of four distinct MRI sequences, as well as every
possible subset of the MRI sequences. Hence, our proposed model
can improve the generalizability of deep learning segmentation
models by enabling inference at imaging sites missing MRI
sequences used for training. This proposition was investigated by
testing the trained ILD-model on a patient cohort acquired at a
different site and missing one of the four MRI sequences used for
training. To evaluate this network’s performance, a second neural
network was trained and tested using state-of-the-art architecture
without applying the input-level dropout strategy, i.e., only trained
on the limited sequences corresponding to those in the test set.
We hypothesize that the ILD-model will yield segmentation
performance comparable to that of a state-of-the-art segmenta-
tion network, while at the same time being robust towards
missing input data and allow it to generalize to multicenter MRI
data.

RESULTS

Training and inference time

The total time used for training was approximately 20 h for both
the ILD-model and the DeeplLab V3 network. For processing a test

case using the ILD-model, the forward pass on a system with two
NVIDIA GTX 1080Ti GPUs took approximately 250 ms per slice.

Network performance

Figure 1 shows six example cases demonstrating the resulting
probability maps, as well as maps representing the performance in
terms of true positive, false positive, and false negative, as an
overlay on the post-Gd 3D T1-weighted spin echo image-series.
The ILD- and DeeplLab V3 model performance are summarized in
Table 1. Both the ILD- and DeepLab V3 models show a high voxel-
wise detection accuracy, yielding an AUC, averaged across all test
cases, of 0.989 +0.029 and 0.989 + 0.029 (NS, p = 0.620), respec-
tively (Fig. 2).

Based on the ROC analysis on the validation set, an optimal
probability threshold for including a voxel as a metastasis was set
to 0.76 for the ILD-model, and 0.87 for the DeeplLab V3 network.
Using these thresholds, the ILD-model demonstrated a signifi-
cantly higher Dice-score (0.795+0.104 vs. 0.774+0.104, p=
0.017), and loU-score (0.561 +0.225 vs. 0.492 +0.186, p < 0.001),
compared to the DeepLab V3 network (Fig. 3). The average recall
and precision values were also higher for the ILD-model, but this
difference was not statistically significant (Table 1).

On a per-lesion basis, and without any lesion-size limit, the ILD-
model showed an average FP of 12.3/patient, which was
significantly lower that the Deeplab V3 network (26.3/patient, p
<0.001). By applying a lesion-size limit of 10 mm?, the ILD-model
demonstrated an average FP of 3.6/patient, also significantly lower
that the Deeplab V3 (7.0/patient, p < 0.001) (Fig. 3).

DISCUSSION

Detection and segmentation of brain metastases on radiographic
images sets the basis for clinical decision making and patient
management. Precise segmentation is crucial for several steps in
the clinical workflow such as treatment decision, radiation
planning, and assessing treatment response, and must be
performed with the utmost accuracy. Considering that the value
of volumetric measurements of enhancing brain lesions are
increasingly discussed'’, future manual detection and segmenta-
tion pose a tedious and time-consuming challenge, particularly
with the growing use of multisequence 3D imaging.

In this study, we demonstrated the clinical value of the ILD-
model for automatic detection and segmentation of brain
metastases. This neural network has a unique advantage over
other segmentation networks because it uses an input dropout
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layer; trained on a full set of four MRI input sequences, as well as
every possible reduced subset of the input channels, thus
simulating the scenario of missing MRI sequence data. Conse-
quently, the resulting ILD-model can return a model output
(probability map) regardless of missing input MRI sequences. The
accuracy of the ILD-model in detecting metastatic voxels in the
brain, as measured by the AUC, is equivalent to that of the state-
of-the-art DeeplLab V3 neural network trained on the specific
subset of sequences in our test set. However, our results indicate
that the proposed model is superior to the DeeplLab V3 in terms of
segmentation performance, as measured by the Dice score and
loU, while at the same time returning significantly fewer FP.
Nevertheless, the number of FP reported by the ILD-model
remains a challenge that needs to be addressed'®. These errors
were typically seen in and near vascular structures. It is
hypothesized that adding other MRI sequences in the training
and test data, e.g., diffusion weighted MRI, may reduce the
number of FP. Further, note that the improved generalization was
achieved despite differences in the patient demographics
between the training and test sets, with more frequent
representation of lung and melanoma metastases in the test set.
Finally, we would like to emphasize that the ILD-model does not
require retraining for another subset of imaging sequences that
might be acquired in another institution.

The neural networks used in this study were based on the
Deeplab V3 architecture, which is considered as one of the most
robust neural networks for image-based semantic segmentation.
The key difference of the DeeplLab V3 compared with other
relevant networks is its reliance on atrous (or dilated) convolu-
tions. By using atrous convolutional layers, our network has a large
receptive field, thereby incorporating greater spatial context. This
approach may be key to enabling the network to identify local
features as well as global contexts, i.e., identifying brain regions,
which could enhance the network’s decision-making process on
similar local features.

In our study, the networks’ performance was tested on
multicenter data, representing an essential step towards under-
standing the generalizability and clinical value of the proposed
neural network. In this sense, it represents a logical extension of
our prior single-center study on this topic'®. No previous studies
have evaluated the deep learning for brain metastasis detection
using multicenter data. Other single-center studies, such as Liu
et al."” and Charron et al.’®, have recently shown that deep neural
networks can detect and segment brain metastases with high
performance, reporting results comparable to that of the current
study. The latter study also demonstrated that a deep neural
network trained on multisequence MRI data outperformed single
contrast networks.

In general, the two most used MRI sequences for assessing brain
metastases are post-Gd T1-weighted and T2-weighted FLAIR. The
post-Gd 3D T1-weighted, high-resolution isotropic sequence is
most crucial?® and can be acquired by fast spin-echo or gradient-
echo techniques. The 3D T1-weighted gradient-echo sequences
(e.g., IR-FSPGR, BRAVO, and MPRAGE) are broadly used because
they create isotropic T1-weighted images with excellent gray-
white matter differentiation, but are limited by lower contrast
conspicuity and a lack of blood vessel suppression. The 3D fast
spin-echo techniques (e.g., CUBE, SPACE, and VISTA) are relatively
newer techniques optimized for isotropic high-resolution 3D
imaging of T1-weighted, T2-weighted, or FLAIR images, and have
the advantage of blood vessel suppression. For this study, post-Gd
T1-weighted 3D fast spin-echo, pre-Gd and post-Gd T1-weighted
3D axial IR-FSPGR, and 3D FLAIR sequences were used as input to
train the neural network. While these sequences are widely used
for imaging brain metastases, they are not compulsory. Variations
in sequences and acquisition parameters among different
institutions frequently are present. For instance, 2D FLAIR (with
thicker slice and non-isotropic voxels) may be acquired instead of
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Fig. 1 Example cases—Examples in representative test set cases showing the segmentation predictions from the DeepLab V3 network
and the ILD-method. The image mosaic shows the post-Gd 3D T1-weighted image-series (a), and the predictions as probability maps (voxel-
wise ranging from 0.5 to 1 as indicated by the color bar) and performance maps (classified as true negative, false positive, and false negative
as specified by the color code) from the DeepLab V3 network (b) and the ILD-method (c). All maps are shown as overlays on a post-Gd 3D T1-
weighted image-series. The cases shown here are [first row] a 65-year-old female with malignant melanoma, [second row], 73-year-old male
with non-small cell lung cancer (NSCLC), [third row] 66-year-old male with NSCLC, [fourth row] 44-year-old female with NSCLC, [fifth row] 64-
year-old female with NSCLC, and [sixth row] 73-year-old male with NSCLC. The blue arrows indicate true positive lesions, while yellow arrows

indicate false positive lesions. Note that in the bottom three cases, the DeeplLab V3 returns several false positive lesions which are not
reported by the ILD-method, thus reflecting the results indicating a superior performance on false positive rate by the ILD-method.
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Table 1. Detection accuracy and segmentation performance.

Voxel-based statistics

Lesion-based statistics

Network AUC ROC DICE loU Recall Precision FPR FP (no size limit) FP (10 mm? size limit)
DeeplLab V3 0.989+0.023 0.774+0.104 0.492+0.186 0.631+0.208 0.722+0.206 0.001+0.001 26.3+17.2 7.0+£53

ILD-model 0.989+0.029 0.795%0.105 0.561+0.225 0.671+0.262 0.790+0.158 0.001£0.001 12.3+10.2 3.6x4.1

p-value 0.620 0.017 <0.001 0.167 0.095 0.065 <0.001 <0.001

All metrics except AUC ROC were estimated using a probability threshold of 0.87 for the DeepLab V3 model, and 0.76 for the DropOut model.
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Fig. 2 Voxel-wise detection accuracy. ROC curves with 95%
confidence interval (shaded area) averaged across all 55 test cases
for the (a) DeepLab V3 model and the (b) ILD-method. The area
under the ROC curve was 0.989 (ranging from 0.896 to 1.000) for the
DeeplLab V3 model, and 0.989 (ranging from 0.845 to 1.000) for the
ILD-model.
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3D FLAIR. In clinical practice, it is also not unusual to omit
sequences owing to patients’ safety or comfort. Therefore, it is
imperative to design a robust and versatile neural network that
can accommodate missing sequences while maintaining good
performance. To this end, the goal of this study was to develop a
deep learning model that is able to detect and segment brain
metastasis with high accuracy, equivalent to that of the state-of-
the-art DeeplLab V3 model, even when the clinical end-user does
not have access to all MRI data on which the model was trained.
This is a major improvement for the generalizability of deep
learning segmentation tools since many clinical sites do not the
time or hardware to perform all four MRI scans.

While this study shows a high accuracy using the ILD-model for
detecting and segmenting brain metastases, the results should be
interpreted in light of the limited sample size and the
homogeneity of the test cohort. Patients included in the test set
were all scheduled for SRS, which generally presents with fewer
and larger metastases, which in turn may be easier for the network
to predict. This hypothesis is supported by observations made in
our previous study, in which the tested neural network showed
higher accuracy in patients with three or less metastases
compared to patients with >3 metastases'®. However, a total of
nine patients in the current test set presented with >3 small
metastases, for which the ILD-model still demonstrated a high
accuracy and performance, equivalent to the average metrics for
all lesions.

In conclusion, this study demonstrates that the ILD-model,
utilizing a pulse sequence level dropout layer, thus being trained
on all possible combinations of multiple MRI sequences, can
detect and segment brain metastases with high accuracy, even
when the test cohort is missing MRI data. This is likely of value for
generalizing deep learning models for use in multiple different
imaging sites.

METHODS

Patient population

This retrospective, multicenter study was approved by the Oslo University
Hospital and Stanford Review Board. The patient cohort consisted of a total
of 165 patients with brain metastases, enrolled from two different
hospitals, hereinafter referred to as “Hospital A” and “Hospital B". From
Hospital A, MRI data from a total of 100 patients were acquired and used
for neural network training. These patients received their scans for clinical
purposes, and our Review Board waived the requirement for informed
consent. Further, a total of 65 patients from Hospital B were used for
validation and testing, and written informed consent was obtained from all
the patients.

Inclusion criteria for the training data included the presence of known or
possible metastatic disease (i.e., presence of a primary tumor), no prior
surgical or radiation therapy, and the availability of all required MR
imaging sequences (see below). Only patients with >1 metastatic lesion
were included. Mild patient motion was not an exclusion criterion. For the
validation and test data, we used MRI data from an ongoing clinical study
(NCT03458455) conducted at Hospital B. To be eligible for inclusion,
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Fig.3 Segmentation performance. Segmentation performance Boxplot showing the resulting (a) Dice-score and (b) loU-score, as well as the
number of false positive (c) without and (d) with a lesion-size limit of 10 mm?>, as determined from the segmentation probability maps
produced by the DeeplLab V3 model (blue) and the in-house ILD-method (green). Boxplots illustrate median (center line) and mean (X inside
box) values, interquartile range (bounds of box), minimum and maximum values (whiskers), and outliers (circles outside whiskers).

Table 2. Patient demographics.

Hospital A Hospital B
# of patients 100 65
Gender 71 F/29 M 35F/30 M
Mean age (range) 64 (32-92) 65 (32-86)
Primary cancer:
Lung 66 45
Skin/melanoma 4 20
Breast 26 -
Genitourinary 2 -
Gastrointestinal 2 -

patients had to receive stereotactic radiosurgery (SRS) for at least one brain
metastasis measured at a minimum of 5 mm in one direction, be untreated
or progressive after systemic or local therapy, have confirmed non-small-
cell lung cancer (NSCLC) or malignant melanoma, be =18 years of age;
have an Eastern Cooperative Oncology Group performance status score
<1, and have a life expectancy >6 weeks. Details on the patient cohorts are
shown in Table 2.

Imaging protocol

MRI training data was acquired on both 1.5T (n = 7; TwinSpeed and SIGNA
Explorer, GE Healthcare, Chicago, USA) and 3T (n=93; SIGNA Architect,
and Discovery 750 and 750w, GE Healthcare, Chicago, USA; Skyra, Siemens
Healthineers, Erlangen, Germany) scanners. The training set included four
MRI sequences; post-Gd T1-weighted 3D axial inversion recovery prepped
fast spoiled gradient-echo (IR-FSPGR) (BRAVO/MPRAGE), pre- and post-Gd
T1-weighted 3D fast spin echo (CUBE/SPACE), and 3D CUBE/SPACE fluid-
attenuated inversion recovery (FLAIR). A dose of 0.1 mmol/kg body weight
of gadobenate dimeglumine (MultiHance, Bracco Diagnostics, Princeton,
USA) was intravenously injected for Gd-enhancement. For the test set (n =
65), imaging was performed on a 3 T Skyra scanner (Siemens Healthineers,
Erlangen, Germany), and included three MRI sequences; pre-Gd and post-
Gd T1-weighted 3D fast spin echo (SPACE) and 3D T2-weighted FLAIR.
Note that the 3D T1 BRAVO sequence is missing from the test set. All
sequences with key imaging parameters are summarized in Table 3.

Image pre-processing and segmentation

For the training data, ground truth segmentations for every enhancing
metastatic lesion were determined by two neuroradiologists. Specifically, a
neuroradiologist with 3 years of experience manually delineated each
enhancing brain lesion by placing a region of interest (ROI) over each image
slice where a lesion was visible on the Gd-enhanced IR-FSPGR sequence.

Published in partnership with Seoul National University Bundang Hospital

Table 3. Overview of MRI pulse sequences and key imaging

parameters.

Technique 3D T1 BRAVO Pre/Post 3D T1 3D FLAIR
CUBE/SPACE

Hospital A data

TR (ms)? 12.02/8.24 550/602 6000

TE (ms)® 5.05/3.24 9.54/12.72 119/136

Flip angle® 20/13 90 90

FOV (mm2) 240 x 240 250 x 250 240 x 240

Inversion time (ms)? 300/400 - 1880/1700

Acquisition matrix 256 x 256 256 x 256 256 x 256

Slice thickness (mm) 1 1 1-1.6

# of slices 160 270-320 270-320

Slice acquisition plane Axial Sagittal Sagittal

Hospital B data®

TR (ms) - 700 5000

TE (ms) - 12 387

Flip angle - 120 120

FOV (mm?) - 230 x 230 230 x 230

Inversion time (ms) - - 1800

Acquisition matrix - 256 x 256 256 x 256

Slice thickness (mm) - 0.9 0.9

# of slices - 192 208

Slice acquisition plane - Sagittal Sagittal

TR repetition time, TE echo time, FOV field-of-view, BRAVO-T1-weighted

inversion recovery prepped fast spoiled gradient-echo, CUBE/SPACE-T1-

weighted fast spin-echo, FLAIR fluid attenuated inversion recovery.

“In case of varying parametric values between field strength,”/" notation is

given (1.5T/3T).

PNote that the Hospital B data is missing 3D T1 BRAVO images.

The combined ROIs for a specific lesion comprised the volume of interest
(VOI). In a separate session one week later, the second neuroradiologist
with 9 years of experience confirmed (and modified as appropriate) final
VOI placement for each lesion. All lesions were outlined using the OsiriX MD
software package (Version 8.0, Geneva, Switzerland).

For the test data, ground truth segmentations of Gd-enhancing
metastatic lesions were manually drawn on post-Gd 3D T1-weighted spin
echo data by two radiologists with 14 and 5 years of relevant experience.

npj Digital Medicine (2021) 33
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Fig. 4 Neural network architecture—Diagram showing the ILD-model architecture used in this study. Five contiguous axial slices of each
of the four pulse sequences (BRAVO, pre-Gd and post-Gd CUBE, and T2-weighted FLAIR) are concatenated in the color-channel dimension to
create an input tensor with channel dimension 20. This is fed into the neural network to predict the segmentation on the center slice.

The pipeline is built largely on the Deeplab V3 architecture?’.

Delineations were performed using the nordicICE software package
(NordicNeuroLab, Bergen, Norway).

All image-series were co-registered to a common anatomical space. For
the training data, pre-Gd and post-Gd 3D T1-weighted spin echo data and
FLAIR were co-registered to the post-Gd 3D T1-weighted IR-FSPGR,
whereas for the test data, the post-Gd 3D T1-weighted spin echo images
was used as reference for the pre-Gd 3D T1-weighted spin echo data and
FLAIR. Prior to network training, a defacing procedure was applied to
anonymize all imaging data using an in-house algorithm (MATLAB R2017a
version 9.2.0, MathWorks Inc. Natick, MA).

Neural network details

The neural networks used in this study were based on the Deeplab V3
architecture?’, and the modifications and training strategies are detailed in
a recent work?%. This study utilized and trained a “input-level integration
dropout” network, referred to as the ILD-model (Fig. 4). This model was
trained on patients from Hospital A, using five slices from the four
aforementioned pulse sequences as input. These were all stacked together
in the color channel, resulting in an image tensor of shape 256 x 256 x 20
as the model input. The network was trained by utilizing a pulse-sequence
level dropout®2*, replacing the full five slices of any given pulse sequence
with an empty tensor of 0's during training; thus enabling the network to
handle missing MRI pulse sequence input during inference. This yields a
network trained on a single data center with a superset of pulse sequences
to what may be used in practice. The network was trained using PyTorch,
and the resulting output was a probability map of whether the voxel
represents a metastasis, ranging from 0 to 1.

With the ILD-model, we propose stochastically zeroing out random MRI
sequences during training. By training on inputs with missing MRI
sequences, this model should be robust to similar scenarios during
inference. With this setup, it is important to consider the weighting
function. Dropping out neurons with a probability, p, during training, but
having them active during inference creates a difference in the sum of
neuron activations. This can be solved by eighter upweighting the
dropout-layer neurons by a factor of 1/1 —p during training or down-
weighting the same neurons by a factor of 1 — p during inference. In this
work, the input dropout layer was upweighted by a factor of 1/1 —p,
where p is the proportion of dropped out MRI sequences, in both training
and inference. It is important to note that dropout cannot solely be done
on a statistical basis. Normally, each channel has a certain probability of
being dropped. However, given our 2.5D network structure, eighter all or
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none of the zslices of a certain MRI sequence must be dropped out. In
addition, all four MRI sequences must never drop out during training. This
will result in a model receiving an input tensor of all 0's, which would be
intractable and lead to unstable training. Figure 4 show the standard input-
level integration architecture and the four potential “dropped out”
versions. From our four input-concatenated pulse sequences, we randomly
drop out 0-3 input channels (shown in black).

To evaluate the segmentation performance of the ILD-model, a second
neural network was trained and tested using the state-of-the-art Deeplab
V3 architecture without applying the input-level dropout strategy, and only
trained on the complete set of sequences matching that of the test set from
Hospital B (i.e., excluding the post-Gd 3D T1-weighted IR-FSPGR sequence).

All patients from Hospital A were used for training, while the patients
from Hospital B were divided into validation-sets and test-sets, giving a final
breakdown of 100 training cases, 10 validation cases, and 55 test cases. All
training was done on a system with two NVIDIA GTX 1080Ti GPUs.

Statistical analysis
In this study, we perform statistical analysis on a voxel-by-voxel and lesion-
by-lesion basis. The voxel-based approach allows investigation of
differences in the probability maps at the smallest volume-level of the
MR image-series. ROC curve statistics was used to evaluate the networks’
ability to differentiate between healthy and metastatic tissue on a voxel-
by-voxel basis. For each patient in the test set, the area under the ROC
curve (AUC) was measured. Further, the optimal probability threshold for
including a voxel within the metastatic lesion was determined using the
Youden index from the ROC statistics on the validation set. Using this
threshold, the networks segmentation performance was further evaluated
by estimating the precision-values and recall-values, false positive rate
(FPR), as well as the loU and Dice similarity score. The networks’
performance was also evaluated on a per-lesion basis by calculating the
number of false positive (FP) per case. This metric was determined by
multiplying the ground truth maps and the thresholded probability maps
and counting the number of overlapping objects in the resulting binary
image. By using a connecting component approach, voxels were
considered connected if their edges or corner touch. The number of FP
was determined both without any size criterion, as well as only considering
objects =10 mm? (roughly 2 mm in linear dimension) as a detected lesion.
Finally, the performance of the ILD-model and the DeeplLab V3
network was compared using the Wilcoxon rank sum test. A p-value of
5% or lower was considered to be statistically significant. All Statistical
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analyses were performed using MATLAB R2017a version 9.2.0 (Math-
Works Inc. Natick, MA).

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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