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Smartphone-based symbol-digit modalities test reliably
captures brain damage in multiple sclerosis
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As the burden of neurodegenerative diseases increases, time-limited clinic encounters do not allow quantification of complex
neurological functions. Patient-collected digital biomarkers may remedy this, if they provide reliable information. However,
psychometric properties of digital tools remain largely un-assessed. We developed a smartphone adaptation of the cognitive test,
the Symbol-Digit Modalities Test (SDMT) by randomizing the test’s symbol-number codes and testing sequences. The smartphone
SDMT showed comparable psychometric properties in 154 multiple sclerosis (MS) patients and 39 healthy volunteers (HV). E.g.,
smartphone SDMT achieved slightly higher correlations with cognitive subscores of neurological examinations and with brain injury
measured by MRI (R*=0.75, Rho = 0.83, p < 0.0001) than traditional SDMT. Mathematical adjustment for motoric disability of the
dominant hand, measured by another smartphone test, compensates for the disadvantage of touch-based test. Averaging granular
home measurements of the digital biomarker also increases accuracy of identifying true neurological decline.
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INTRODUCTION

With an aging population, the prevalence of chronic neurological
diseases is projected to increase dramatically. Most countries
already experience a shortage of neurologists. By 2025 in the
United States, the average demand for neurologists is expected to
eclipse the supply by 20% or more’.

Current solutions of shifting care for neurological patients to
primary care providers, while simultaneously decreasing the
length of individual patient-encounters for neurologists, lead to
delays or mistakes in diagnoses and suboptimal patient
outcomes. Indeed, a comprehensive neurological examination
takes 40-60 min to perform and years to master. Consequently,
such a demanding exam is rarely performed in contemporary
clinical practice, depriving patients of reliable measurements of
their disease progression necessary for optimal therapeutic
decisions.

An alternative solution is to develop a surrogate of
neurological examination which is accessible, reliable, and
sensitive to changes in disease course. To meet this need, we
have created a collection of smartphone tests, the Neurological
Functional Test Suite (NeuFun), administered in a patient-
autonomous manner>®, NeuFun is designed to recreate the
essential domains of neurological examination, allow patients
to do testing from home, and have the results forwarded to
their clinicians—a capacity essential for telemedicine, e.g., in
the times of a global pandemic. Provided that each test in the
NeuFun validates its psychometric properties against the gold
standard, its use may speed up the identification and referrals
of neurological patients from primary care providers to
neurologists, help neurologists to focus their examination on
affected neurological domains, and reliably track neurological
disability during the disease course.

Previous studies have optimized and validated tests that
measured motoric and cerebellar functions*>. Here, we have
tested psychometric properties of the modified Symbol-Digit
Modalities Test (SDMT). The SDMT is a cognitive processing

speed test traditionally administered by neuropsychologists®.
Participants are given a key of nine symbol-digit pairs along
with a sequence of symbols. They are then asked to use the key
to match as many symbols in the sequence to their
corresponding numbers as possible within 90s. In the written
format, participants write the matching numbers on the paper.
In the verbal format, participants say the number and test
administrators write in participants’ responses. This operator-
dependency makes SDMT prohibitively expensive to administer
in routine neurology practice. Whereas neuropsychologists
administer written followed by oral versions, MS investigators
use predominantly oral SDMT to minimize influence of the hand
disability on test performance®. The common SDMT adminis-
tration uses a single form, copyrighted by Western Psycholo-
gical Services, raising a possibility of code memorization on
repeated testing, as demonstrated in the oral SDMT for both
healthy volunteers (HV) and MS patient56’7.

To prevent memorization, we introduce several adaptations of
the smartphone SDMT. For instance, the symbol-digit key pairing
changes randomly with each trial. While this key is displayed on
the top of the screen during test duration, participants are shown
each symbol (again, randomly generated) one at a time. This
prevents inputting the numbers out of sequence in unsupervised
testing. To input their responses, participants touch the corre-
sponding number on a virtual number keypad (numpad; Fig. 1).
An oral version of the smartphone SDMT uses voice recognition
technologies for patients whose motoric disability prevents them
from using the numpad.

We also compare the smartphone (and traditional) SDMT to
the Paced Auditory Serial Addition Test (PASAT-3), a gold
standard that is part of the MS functional composite (MSFC),
used in clinical trials. In the PASAT-3, participants are told a
sequence of numbers at intervals of 3s. Participants are asked
to add the most recently stated number in the sequence to the
prior number and state the result before the next number in the
sequence is announced.
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RESULTS

We developed both touch-based and oral versions of smartphone
SDMT, and each subject could choose which version they wanted
to use. Very few have chosen the oral version of the test, and
during the training phase, we noticed that the oral version
generated errors when the word-recognition technology failed to
correctly identify responses in patients with hypophonia or
dysarthria. None of the tested subjects were so disabled that
they could not use the touch-based smartphone SDMT. Therefore,
we focused on this version and developed mathematical
adjustment for motoric dysfunction to compensate for the
shortcoming of the touch-based test.

Smartphone SDMT differentiates HV from MS subjects

First, we compared the smartphone and traditional SDMT’s ability
to differentiate between HV and MS (Supplementary Fig. 1). While
there is an overlap in the smartphone SDMT results between HV
and MS (HV: 23.5-92.4; median 54 points; MS: 6.0-76.5; median
34.8), the Wilcoxon rank-sum test presents convincing evidence
that the performance of HV and MS cohorts differ (p <0.0001, CI:
[13-23 points difference], (Fig. 2a).

Next, we asked if the smartphone SDMT is directly compar-
able to investigator administered, written SDMT. While
both SDMTs show strong evidence of association (R*=0.71,
CCC=0.69, CI [0.62, 0.75], p<0.0001; Fig. 2b), Bland-Altman
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Fig. 1 SDMT formatting. The interface for the app based SDMT. The symbol-digit key changes with every trial. During the test, participants
only see one symbol at a time and use a virtual number keypad (orange buttons) to input the matching number to the symbol being shown.
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Fig. 2 Analysis of app based SDMT validity. a HV generally perform better than MS on the app SDMT (p < 0.0001). The number of
participants for each cohort are shown below the plot. b Assessment of agreement between the raw app-based score and the written score
(HV = 16; MS = 138). The black solid line is the 1:1 concordance line. The orange dashed line is the regression line. ¢ Bland-Altman plot for the
written and the app scores. The limits of agreement are —5.29 and 20.84. On average, individuals perform 7.8 points higher on the written
test. d The plot of concordance between the written and app scores, after adjusting for the 7.8 points difference.
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Fig. 3 Spearman correlation coefficients between cognitive tests and outcomes from brain MRI, NeurEx features, smartphone tapping
test, and age (HV = 12; MS = 112). p-values in the matrix are indicated as followed: *p < 0.01, **p < 0.001, ***p < 0.0001. Smartphone and
written SDMT show evidence of correlation to the same set of features. PASAT-3 correlates with NeurEx cognitive and brainstem functions but

does not correlate with volumetric MRI features.

plots identified systemic bias favoring written test by 7.8 points
(Fig. 2¢).

There are several possible sources of this bias, some deliberately
addressed in the smartphone SDMT design: (1) Memorization of
the symbol-digit code: Because most of our patients have
experienced traditional SDMT before, they may have memorized
the symbol-digit code. (2) The traditional SDMT copyrighted by
Western Psychological Services facilitates performance as the first
26 items on the scoring sheet originate only from the first
6 symbols (out of 9) in the symbol-digit key®. Consequently,
analogous bias was identified in previous SDMT comparisons®®.

Because the 7.8 points bias was identified across all SDMT
performance levels, adding 7.8 points to smartphone scores
compensated for design differences between two SDMT tests,
increasing the CCC to 0.84 (CI [0.79,0.88])'° (Fig. 2d).

In the MS Outcome Assessment Consortium (MS-OAC) analysis
of oral SDMT?, the test-retest reliability was assessed by correlation
coefficients, which ranged from 0.76 to 0.97. Therefore, we
assessed test-retest reliability of written and smartphone SDMT in
our MS#1 cohort when SDMT was measured six months apart. This
revealed Rho=0.95 (Cl: [0.92, 0.96]), R>=0.90, p<0.0001 for
written and Rho =0.87 (Cl: [0.79, 0.92]), R = 0.80, p < 0.0001 for
smartphone SDMT. We conclude, that despite randomization, test-
retest reliability of smartphone SDMT is comparable to the
published oral SDMT data and slightly lower than the non-
randomized written SDMT.

Smartphone SDMT highly correlates with cognitive abilities
The stronger test-retest reliability of the written SDMT may reflect
unwanted learning effect, effectively representing a “noise” in test
measurement. To formally test this hypothesis, we compared the
construct and predictive validity of smartphone and written SDMT.
We included an alternative cognitive test, PASAT-3, which is
included in MSFC as a gold-standard (Supplementary Figs. 2-4).
First, we tested correlations of all three tests with the cognitive
subdomain of neurological examination measured by NeurEx (Fig. 3).
NeurEx is a freely-available iPad app that digitalizes neurological
examination by allowing clinicians to conveniently document the
severity and spatial distribution of neurological deficits using an
intuitive touch interface’’. NeurEx automatically computes major
disability scales used in neuroimmunology, providing neurological
subsystems and limb-specific disability data for research applications.
While all three tests correlated with the NeurEx cognitive
subdomain, the smartphone SDMT achieved the highest correla-
tion coefficient (Rho = —0.38, Cl: [-0.52, —0.21], p < 0.0001; Fig. 3).
NeurEx also identified contributions of remaining neurological
functions to cognitive test performance. As expected for an oral
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test not dependent on eye or motoric functions, PASAT-3 did not
correlate with any other NeurEx subsystem, except with the
brainstem/lower cranial nerve subscore that includes hearing and
articulation functions (Rho = —0.26, Cl: [-0.42, —0.09], p < 0.01). In
contrast, both SDMTs exhibited significant correlations with
dominant hand (DH) cerebellar functions (written Rho = —0.51,
Cl: [-0.63, —0.37], p < 0.0001; smartphone Rho = —0.49, CI: [-0.61,
—0.34], p < 0.0001), vision (written Rho = —0.26, Cl: [-0.42, —0.09],
p <0.01; smartphone Rho = —0.35, CI: [-0.50, —0.19], p < 0.0001),
and eye movements (written Rho = —0.31, CI: [-0.46, —0.14], p <
0.001; smartphone Rho = —0.33, Cl: [-0.48, —0.16], p < 0.001). As
would be expected from the lesser motoric demand of touching a
screen versus writing numbers, the smartphone SDMT had slightly
weaker correlation with DH cerebellar functions than written
SDMT. On the other hand, smartphone SDMT correlated stronger
with vision and eye movements, indicating a more demanding
hand-eye coordination.

We conclude that NeurEx correlations reliably identified neurolo-
gical domains contributing to the performance of each test.

Smartphone SDMT correlates with brain atrophy and MS
lesions volume

Criterion validity of the traditional oral SDMT, preferred in MS
research, was assessed in the MS-OAC by correlation with MS-
related CNS tissue destruction®, specifically the lesion burden
(T2LL) and brain atrophy (BPFr)'%; therefore, we assessed
analogous correlations.

While PASAT-3 did not correlate significantly with these MRI
measures, smartphone SDMT had slightly stronger correlation
coefficients in comparison to traditional written SDMT: Rho 0.46
versus 0.43 for BPFr and Rho —0.45 versus —0.43 for T2LL (Fig. 3)

Because the criterion validity of oral SDMT against MRI
measures of MS-related brain tissue destruction was also assessed
by linear regression models against multiple MRI features, we
performed comparable analyses using elastic net (EN) regression.
In the EN models, the BPFr and T2LL were predictor variables,
while any NeurEx factor which showed strong evidence of
correlation with SDMT results (including age) were included as
covariates. Because complex models are susceptible to overfitting
(i.e, the algorithms can use measurement “noise” to achieve
better than biologically plausible results), their validity must be
tested in an independent cohort. Therefore, we randomly divided
our MS cohort to training (2/3) and validation (1/3) subcohorts
(Supplementary Fig. 5; elastic net diagnostic plots available in
Supplementary Fig. 6).

In the training cohort, the EN models showed that BPFr and T2LL
were highly associated with the smartphone and written SDMT

npj Digital Medicine (2021) 36
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Fig. 4 Clinical associations for traditional/written and app SDMT (HV = 12; MS = 112). a Elastic net regression shows that when controlling
for relevant motoric factors and age, brain parenchymal fraction and T2 lesions load are highly associated with the written results. These
factors predict a traditional SDMT score that agrees with the actual score at a CCC of 0.75. b For the app SDMT, vision and eye movement also
influenced the results. Controlling for these factors, brain parenchymal fraction and T2 lesions load are highly associated with the app results.
This model produces a predicted app SDMT value that agrees to the actual value at a CCC of 0.75.

results (Fig. 4a). While DH cerebellar function, motoric strength,
and age were important covariates for both tests, the EN deemed
vision and eye movement dysfunctions to be important only in
the smartphone SDMT results, consistent with stronger Spearman
correlations observed for app-SDMT (Supplementary Fig. 7).

When we applied resulting equations to the independent
validation cohort, they predicted the smartphone results slightly
more strongly (R?=0.75, Rho = 0.83, Cl: [0.69, 0.91], p <0.0001)
than the written SDMT (R*> = 0.62, Rho = 0.80, CI: [0.64, 0.89], p <
0.0001; Fig. 4).

Controlling effect of motor disability on SDMT using tapping
scores

The modeling introduced in the previous section relied on
clinician-derived disability measures which will not be available
when administering smartphone tests at home. Thus, we asked
whether we can use a surrogate to the relevant clinician-derived
measures from NeuFun. Although we currently do not have
enough data for app-based visual outcomes, we do have available
DH tapping results, previously validated against clinician-derived
cerebellar and motoric disability scores that underlie DH dexterity
(ref. 3 and Fig. 3).

Consequently, we asked whether this digital biomarker of DH
dexterity (i.e., DH taps) can replace the neurologists scores in EN
models. When we replaced the NeurEx scores of DH cerebellar and
upper motoric strength with tapping results in the smartphone
SDMT EN model, the model validated only slightly worse than the
model that included clinicians’ data (R*> = 0.66, p < 0.0001; Rho =
0.78, Cl: [0.60, 0.90], p < 0.0001; Fig. 5a).

To prove that this mathematical adjustment of measured DH
disability enhances criterion validity of smartphone SDMT, we

npj Digital Medicine (2021) 36

eliminated the tapping score from the model (Fig. 5b) and
observed decrease in model performance. We conclude that the
smartphone tapping score is a reasonable proxy for clinician-
derived disability scores to control for loss of DH dexterity.

Rewriting the validated EN linear model equation and adjusting
the app based SDMT result using the following formula will
produce a digital biomarker that explains 66% of the variance
associated with MS-related brain damage:

55.5x BPFr — 306.5x T2LL = App SDMT

1
—0.24x DHTaps 4+ 0.16 x Age + 5.9 M

Individual learning effect quantifiable with non-linear
regression

A subgroup of our MS patients uses the smartphone SDMT from
home on a weekly basis. This presents a unique opportunity to
investigate the prevalence of practice effect. Automated identifi-
cation of the time when the practice effect stops will generate a
strong “baseline” against which a true progression of cognitive
disability can be identified.

The individuals’ longitudinal data showed strong indication of a
practice effect; first increasing and then stabilizing SDMT answers
into a plateau that fluctuates around a mean score (Fig. 6). The
inflection point between the learning period and the post-learning
stable period was identified automatically, using non-linear
regression, in 14/16 (88%) individuals, at eight test sittings on
average (Fig. 6A-F, H-N, P). The remaining two individuals (Fig. 6G
and O) might be experiencing a learning effect beyond 20
repetitions due to a continuously positive slope (i.e., continuously
increasing SDMT results).

Published in partnership with Seoul National University Bundang Hospital
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Fig. 5 App tapping score serving as a covariate in the elastic net model (HV = 12; MS = 112). a Elastic net regression results with NeurEx
cerebellar functions and upper motor strength being replaced by the app tapping score as a covariate. This model produces scores that agree
with the actual scores at a CCC of 0.70. b Removing the tapping scores reduces the CCC to 0.57 and Rho to 0.74, showing that while tapping
scores, like cerebellar and upper motor functions, have small influences on the app SDMT comparing to the MRI variables, it is important to

include this covariate in the model.

Smartphone SDMT scores have strong intra-individual
reliability

Because traditional SDMT is not measured weekly, as performed in
our longitudinal cohort, we re-assessed test-retest reliability of
weekly longitudinal data.

A mixed model intraclass correlation coefficient (ICC) analysis
showed that in all the longitudinal data, including the “learning”
period, between-patient data clustering accounted for 87% of the
total variance in the smartphone SDMT score (ICC = 0.87, Fig. 7a).
Post-learning, the ICC value increased to 0.90 (Fig. 7b), indicating
excellent reproducibility of within-subject results.

We conclude that test-retest variability of the randomized SDMT
is comparable to the test-retest reliability of episodic oral SDMT,
based on published data.

Defining decline in cognitive processing speed on a patient
level

Digitalization of the SDMT will make this test broadly available in
clinical practice. To allow correct interpretation of the observed
changes in SDMT scores, it is imperative to determine the
threshold of intra-individual decline in the test performance that
exceeds natural variation. Such decline may signify MS attack or a
progression of cognitive deficit.

Currently, a four-point decline in SDMT is considered “clinically
meaningful”'*~'>. Because this cut-off was derived from group
comparisons, it is unclear whether it applies to individual subjects.

We already demonstrated that the test-retest reliability of either
SDMT vyielded comparably strong correlation coefficients to
published data for oral SDMT. However, this excellent test-retest
reproducibility on a group level translated to intra-individual
variance much greater than four points (Fig. 8a). Likewise, in MS
subjects who perform SDMT weekly at home, we observed intra-
individual variability greatly exceeding four SDMT points (Fig. 7),
even when measured in the post-learning period. None of these

Published in partnership with Seoul National University Bundang Hospital

longitudinal testers reported MS relapse or significant deteriora-
tion of their neurological functions.

Next, we plotted the intra-individual differences between two
traditional written SDMT tests collected six months apart (Fig. 9a,
Table 2); we observed Gaussian distribution with mean difference
of —0.7 and two standard deviations of 10.3, analogous variance
measured in the test-retest Bland—Altman plots (Fig. 8a). We then
formally tested if the four-point written SDMT decline identified
change in any other clinically meaningful outcome. The publica-
tion that proposed a four-point decline in SDMT as clinically
meaningful (on a group level) used decline in employment status
as the outcome'®. Because none of our MS patients experienced
decline in employment status between SDMT tests measured six
months apart, we asked whether the patients who declined in
SDMT performance by at least four points differed in any other
objective measure of disability. Since the mean/median EDSS
change over six months was zero (Fig. 9b), we used disability
scales with greater sensitivity, the Combinatorial Weight-Adjusted
Disability Scale (CombiWISE; continuous scale ranging from 0 to
100)'® and the NeurEx (Continuous scale ranging from 0 to
theoretical maximum of 1349)"".

Thirty MS patients (26.8%) fulfilled four-point SDMT decline
criterion, but we observed no statistically significant differences in
either CombiWISE or NeurEx disability progression between MS
patients who fell below and above this threshold (Fig. 9b; A
CombiWISE comparison +0.9 versus +0.8: p=1.0; A NeurEx
comparison + 5.2 versus +7.5: p =0.4). As evidenced by positive
numbers, in contrast to EDSS, both CombiWISE and NeurEx
measured progression of clinical disability, which was equal in
patients whose SDMT scores declined by at least four points and
patients whose scores did not.

Next, we used a statistical definition of change that exceeds
test-retest variance based on the distribution of differences in six
months SDMT values: Average - 1.5 X Interquartile Range (IQR)

npj Digital Medicine (2021) 36
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Quantifying Learning Period in Longitudinal Data

60 : ; M
40—,/2“47{” E_D,N
201 36 A3 B c|| 10 D

g
]
A H
[
=
[=]
a
o
o
2 )
L
M o P

1 1 1 1 1 1 - 1 1 1
60 0
Test Sitting Number

Fig. 6 Nonlinear regression can be used to identify the inflection point in longitudinal data where learning stops occurring. Out of 16
participants (denoted by A-P; 1 HV; 15 MS) with longitudinal data (=20 test sittings), nonlinear regression was able to identify the inflection
point in 14 individuals. The solid orange line indicates the period where the individual is still learning. The dotted black line signifies the point
learning inflection point that the algorithm identified. The dashed orange line denotes the algorithm’s assumption of the data’s regression line
after the learning period. The solid blue line represents the actual regression line of the data after the learning period. On average, learning
stops occurring after eight sittings.
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Fig. 7 Longitudinal data exhibits good reliability. a With the learning period included, all longitudinal data has an intraclass correlation
coefficient (ICC) of 0.87, which means that data for the same individual tend to cluster highly with each other; therefore, the data has good
intra-individual reliability. b Without the learning period included, the ICC value increases to 0.90. In both panel a and b, the written SDMT
scores (converted by adding 7.8 points to all app SDMT scores) have differences that span much larger than the current clinically significant
change threshold of 4 points.
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shown on a mixed-effects Bland-Altman plot (HV = 33; MS = 119). The limits of agreement are —11.24 and 10.85, and the mean difference is
—0.19. Sittings with differences that fall outside of the limits of agreement, indicated by blue and orange points, are considered to have one
trial that is an outlier. b In the sittings with outlier trials, the lower performing trial’s score is increased to reach the limits of agreement
thresholds. ¢ The original mixed-effects Bland-Altman plot, now shown with the outlying differences after score adjustment.

change = 13-point decline. Only three MS subjects (2.7%) declined
in SDMT performance beyond this threshold during six months
follow-up. This cohort is too small to obtain reliable statistics, but
the median CombiWISE and NeurEx changes were higher in this
small group in comparison to the remaining 109 subjects with MS
(A CombiWISE +1.3 versus +0.9; A NeurEx + 25.3 versus +7.5).

We conclude that both written and smartphone SDMT have
similar variance, requiring a difference of 13 to 14 SDMT points to
identify decline that exceeds test-retest fluctuation in SDMT
performance when comparing only two SDMT tests within the
same subject.

Next, we hypothesized that granular collection of data may
lower this threshold of true deterioration when comparing period
averages. The Gaussian distributions of test-retest data suggests
random distribution of noise, that could be limited by averaging
multiple weekly tests within individual patients, akin to “repeated
measures”. Thus, within the granular testing cohort, we compared
the variance of single adjacent tests, with an average of two, three,
or four adjacent tests (Fig. 10). We observed an expected decline
in variance; from 14.4 SDMT points for single test comparisons; to
9.5 points for average of two adjacent tests; 7.7 points for average
of three adjacent tests; finally, 6.2 points for average of four
adjacent tests.

We conclude that when a subject performs SDMT only twice,
the decline of more than 14 points reliably exceeds natural
variability in the test performance and should trigger a search for
structural cause, such as MS exacerbation of progression of
cognitive deficit. Lower level of SDMT performance decline should
trigger repeated testing. In this regard, granular collection offers
advantage over episodic collection of SDMT data, as averaging
multiple test repetitions lowers the threshold for identifying true
decline in test performance in individual subjects.

DISCUSSION

Neurological examination is a powerful tool to identify, localize,
and grade neurological deficits. However, economic pressures
limit access to this essential tool worldwide'. Because this
situation is unlikely to improve, it is imperative to find alternative
reliable measurements of neurological disability. The digital health
revolution spurred development of “medical” apps. However, a
recent conference on digital health, Digital Health: From Science to
Application (Perakslis, E.D., Coravos, A., MacRae, C.A. & Godfrey, A.)
concluded that technical development of these apps is easy in
comparison to validating their value for intended use, in
accordance with FDA guidance'’. Consequently, most medical
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apps are released without assessment of their psychometric
properties'®.

To assure broad use of NeuFun, we focused our developmental
efforts on tests that can be self-administered on smartphones
instead of tablets due to the broad availability of the former,
including in developing countries. This would keep the cost of the
test low and allow telemedicine with home administration of the
test. However, the adaptation of paper-based tests to much
smaller smartphone screens requires greater involvement of visual
system/hand-eye coordination (Figs. 3, 4). This shortcoming likely
underlies the slightly lower agreement with traditional SDMT
observed in our study, as compared to the digitalized oral SDMT in
the Cognitive Assessment for Multiple Sclerosis (iCAMS), which is
tablet-based and uses a trained administrator'®.

As the published MS-OAC developed an excellent framework
for validating the oral SDMT>, we followed this framework to
validate smartphone SDMT. Despite randomization, smartphone
SDMT has comparable discriminative, psychometric, construct,
predictive, and criterion validity to published parameters of oral
SDMT. In addition, previous publications on oral SDMT often
excluded subjects with hearing/speaking disabilities and with
comorbidities such as alcoholism and depression to limit noise in
SDMT performance'®. This over-estimates the psychometric
validity of oral SDMT compared to routine practice. We did not
exclude any MS patients based on disability or comorbidities. We
also blinded divergent assessments (i.e., clinicians scores, SDMT,
and MRI measures), limiting bias in assessing psychometric
characteristics of both SDMT tests.

The touch-based smartphone SDMT adaptation has predicted
limitations in that motoric disability of the performing hand
affected SDMT performance. However, as illustrated, careful
mapping of contributing neurological functions permits mathe-
matical adjustment for measured disabilities as covariates to
isolate the tested neurological domain. Using this methodology,
the smartphone SDMT results, when adjusted for visual disability
and DH dexterity, explained a stunning 75% of the variance in the
EN linear regression model against a composite of brain atrophy
and T2LL in the independent validation cohort. This remarkable
criterion validity compares favorably to oral SDMT in MS (i.e.,
Rho = 0.83 in this study versus Rho=0.71 in published study’)
and validates the ability of smartphone SDMT to reliably measure
MS-related brain injury.

Additional advances of the test digitalization are algorithmic
identification of the learning and granular longitudinal sampling
permissive to averaging temporally adjacent results; this provides
an accurate “baseline” and lowers threshold for identifying true
(i.e., disease-related) decline in test performance. Indeed, our use
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Fig. 9 Proposing a new change threshold for the written SDMT. a Distribution of written score differences for participants who completed
the written SDMT in the course of six months. Using the current score decrease of four points, approximately 24% of participants would have
been falsely classified as having meaningful decline in their cognitive processing speed. We propose that this threshold should be increased
to 13 points, or (average difference) — (1.5 x IQR of the differences). b Comparison of changes in disability scores for individuals who are above
or below the defined threshold. At the four-points threshold, there is no significant difference in disability score changes between individuals
who are below and above the threshold. At the 13-points threshold, while there is also no significant difference in disability changes between
individuals who fall above or below the threshold, the disability changes are much larger in CombiWISE and NeurEx. The lack of statistical
significance may be due to the low number of individuals who fall below the 13-points threshold.

of non-linear regressions yielded an identical result (i.e., stabiliza-
tion of the learning effect after 8 trials) previously reported in
natalizumab-treated MS patients=°.

Thus, our paper demonstrates that, in principle, SDMT is
adaptable to self-administered digital tests that may be broadly
utilized in neurology practices and guide therapeutic decisions.
This brings an associated challenge to correctly interpret the test
results. In this regard we acknowledge that our HV data are still
limited and need to be expanded to provide reliable normative
data across all age-groups. The other problem we addressed is the
threshold of decline in SDMT performance that exceeds natural
variation and therefore may represent actionable change due to
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e.g., MS relapse or disease progression. We demonstrated that this
threshold is quite large, representing over 14-point decline when
the subject performs the test only twice, which can be lowered to
7-point decline if the person performs the test four times and
averages the test performance. Because these data-driven, intra-
individual thresholds exceed currently accepted four-point decline
in SDMT performance identified on a group level as clinically
meaningful, we want to clarify the reasons for this apparent
discrepancy.

The paper that suggested four-point decline in SDMT as
“clinically meaningful” studied retrospectively two groups of MS
patients: those who experienced decrease in employment status,
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Fig. 10 Determining the change threshold for the app based
SDMT. a A demonstration of how the thresholds are calculated in
the app SDMT. For each individual, the score differences between
one sitting, two sittings averaged, three sittings averaged, and four
sittings averaged were calculated. b Plotting these differences
allows for identification of the change thresholds that should be
used when the participant’s score changes are based on single test
sittings or multiple sittings averaged together.

and those who did not'®. These MS patients had a battery of
neurocognitive tests twice, on average 2-4 years apart. From ten
cognitive tests administered, only the change in SDMT differ-
entiated the two MS groups with statistical significance: the
subjects whose vocational status declined showed decline on
SDMT by 3.04+/—8.0 points, while patients with a stable
vocational status showed SDMT improvement of 1.3+/—6.6
points. We note that SD of intra-individual SDMT changes
measured in this highly pre-selected MS cohort still greatly
exceeds four-point threshold. Considering the accepted cut-off of
2SD to differentiate true biomarker change from random test
variation, even this cohort generates a threshold of 13-16 SDMT
points decline on the individual level. The papers that corroborate
the four-points SDMT decline threshold on a group level did not
measure test-retest variance on an individual level'*> and did
not measure the predictive power of four-point SDMT decline on
vocational status of MS patients in an independent, prospective
MS cohort.

Thus, the apparent discrepancy of the conclusions between this
and previously published papers resides in the way this “clinically-
meaningful” threshold was applied; the previous studies applied
this threshold on a group level, whereas we sought to determine
the threshold that can alert the subjects and their clinician to the
actionable intra-individual decline in test performance. Indeed,
four-point SDMT decline on a group level should be deemed
clinically-meaningful, as longitudinal MS studies lasting less than
three years did not measure any decline in SDMT performance
(summarized in ref. ). Finally, we determined only the threshold of
decline in the intra-individual performance that exceeds natural
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variation; we had too few MS patients who exceeded this
threshold during the follow-up period to determine the “clinical
significance” of such decline.

Unfortunately, interpreting the results correctly is not the only
challenge in translating a smartphone-based test to clinical
practice. These tests represent medical devices, subjected to
regulation by regulatory agencies. The psychometric properties of
the smartphone medical device are linked to a specific hardware/
software combination. Being mindful that different smartphone
sensors can influence NeuFun results, we used only two
comparable devices and avoided vector-based rescaling of
graphics to different screens. However, test commercialization
requires continuous assessment and validation that no future
software or hardware changes alter psychometric properties of
the test or the established protocols that assure automated,
reliable, and private communication between patient/device and
the clinician’s office.

In conclusion, smartphone adaptation of the SDMT accurately
measures reaction time in a patient-autonomous manner and
provides several advantages against investigator-administered,
not digitalized, SDMT. Rapid development and validation of the
entire NeuFun suite will facilitate tele-neurology, making neuro-
logical care more accurate and less expensive.

METHODS

App development

The smartphone SDMT was written in Kotlin and Java using the latest
Android Studio integrated development environment. The test is delivered
as an Android package (APK), and the results are stored in a secured online
database under alphanumeric code that lacks personal identifiable
information (PIl). The smartphone SDMT uses the Android operating
system (Android 9 and up), with graphics optimized for only two types of
smartphones used for all subjects (Google Pixel XL/2XL) in colorblind-
friendly visualizations. To assure equivalence of the test between the
smartphones, no vector-based rescaling was used. Instead, the size and
location of the graphics is predefined and displaced equivalently on
different phones. The SDMT symbols are Unicode characters.

Participants

This study was approved by and carried out in accordance with the
recommendations of the Central Institutional Review Board of the National
Institutes of Health (NIH). All subjects gave a written or digital informed
consent in accordance with the Declaration of Helsinki.

Healthy volunteers (HV) and MS participants enrolled in the protocol:
Comprehensive Multimodal Analysis of Neuroimmunological Diseases in
the Central Nervous System (Clinicaltrials.gov identifier NCT00794352).

Two HV cohorts were recruited: #1. HV who underwent all study
procedures (including neurological examination, PASAT-3, traditional SDMT,
MRI of the brain, lumbar puncture [LP]; 16 HV total). The HV inclusion
criteria are: (1) At least 18 years old; (2) Normal vital signs; (3) Able to give
informed consent; (4) Able to undergo all research procedures. HV
exclusion criteria were: (1) Systemic inflammatory disorder, or inflamma-
tory or non-inflammatory neurological diseases; (2) Previous or current
history of alcohol and substance abuse; (3) Contraindications to associated
procedures.

Because this number of HV is understandably limited, we recruited a
second HV cohort solely to obtain normative NeuFun data: Smartphone
app HV group (#2) uses the NeuFun remotely to mimic a real-world situation
(n=27). To mimic the population that would provide normative data via
the App marketplace, this sub-study collects no personally identifiable
information (Pll) and poses no inclusion/exclusion criteria. Subjects are self-
declared to be healthy and sign digital informed consent that tested their
comprehension of the testing instructions and associated risks/benefits
directly via smartphone. They then input their age (in years), gender, and
take the test under assigned alphanumeric code. Because no systemic
differences were identified between HV cohorts #1 and #2 (not shown), the
two HV cohorts were merged for the analyses.

Inclusion criteria for patients in the NCT00794352 protocol are: (1)
Clinical syndrome consistent with immune-mediated CNS disorder; and/or
(2) Neuroimaging evidence of inflammatory and/or demyelinating CNS
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disease; (3) Age =12 years; (4) Adults that are able to give informed
consent, or minors with a parent or legal guardian able to consent, with
child willing to assent; (5) Able to undergo all research procedures. The
exclusion criteria included: (1) Medical condition that would make
participation impossible or risky; (2) Medical contraindications for MRI;
(3) Unwilling to consent for collection of biological samples. The diagnosis
of MS was based on 2010 and (after 2017) 2017 McDonald’s MS diagnostic
criteria®??,

Paralleling the two HV cohorts, we also have two cohorts of MS patients:
#1. MS patients tested only in the NIH clinic, on average every 6-12 months (n
= 154). These patients had neurological examinations and a brain MRI
within 1-48h of the NeuFun. Clinician documented neurological
examinations in NeurEx, an iPad-based app that allows fast and intuitive
documentation of neurological examination, including its spatial informa-
tion, by touching human body diagrams. NeurEx then automatically
calculates traditional disability scales, including Expanded Disability Status
Scale (EDSS)"'. #2. MS sub-cohort with granular NeuFun collection at home
(n=15). These MS patients expressed interest, were given a smartphone
pre-loaded with NeuFun, and were asked to test at least once per week
around the same time of day. Subjects who completed at least 20 sittings
from MS#2 and HV#2 cohorts comprise the longitudinal/granular data. The
first test sitting from subjects in all cohorts comprised the cross-
sectional data.

Participant demographics are summarized in Tables 1-2 and the
contribution of different cohorts to presented data is summarized in the
Supplementary Figs. 8 and 9.

Volumetric brain MRI analyses

The details of the MRI sequences were previously published'®?. Locally
anonymized and encrypted T1 magnetization-prepared rapid gradient-
echo (MPRAGE), or fast spoiled gradient-echo (FSPGR) images and T2
weighted three-dimensional fluid attenuation inversion recovery (3D
FLAIR) DICOM files were analyzed by an automated segmentation
algorithm LesionTOADS?, implemented into a cloud service for medical
image processing by QMENTA (www.qmenta.com). The sequences are
anterior commissure-posterior commissure aligned, co-registered and skull

stripped. The T1 image is additionally bias-field corrected. The segmenta-
tion is performed by combining a topological and statistical atlas resulting
in computed volumes for each segmented tissue in mm?>. The segmenta-
tion maps were quality checked (M.V.) with errors corrected by re-running
the algorithm, or uncorrectable scans were excluded.

Implemented measures to prevent bias

All subjects received a sequential alphanumeric identification code.
NeuFun, written SDMT, and PASAT-3 were collected by investigators
blinded to neurological examination and MRI results. Clinicians performing
neurological examinations were blinded to MRI and NeuFun results. MRI
analyses were performed by investigators blinded to clinical examination
and NeuFun outcomes. All MS patients and HVs with available data in the
research database were included, irrespective of level of disability or
comorbidities.

Data-driven identification of minimum test time for
smartphone SDMT

Time is an essential determinant in the utility of a digital test: because
NeuFun is designed to recreate the neurological examination, it consists of
many tests. If their administration takes too long, subjects will not
complete the suite. Because we could not find published rationale for the
selection of 90 s for the standard SDMT, we determined the shortest SDMT
duration necessary to provide reliable information using test-retest
reliability data from individuals who completed two 90-s trials in the
same sitting. Spearman correlation coefficients of the number of correct
answers were generated for every 5 s of the duration of the two trials (i.e.,
5,10, 15 till 90s). Expectedly, these correlations increased with the
duration of the test, but eventually plateaued around Rho = 0.9 (Fig. 11).
Using non-linear regression, a method which fits the data with several
contiguous lines that minimize the squared distance between measured
data and the regression model, we identified 2 inflection points in these
time-lapse data: first at 41s in HV and 46s in MS, after which the
correlations still improved at slower pace (Fig. 11b, c). To maximize test

Table 1. Demographics table with baseline information for cross-sectional data.
a. Demographics All cross-sectional smartphone participants (N = 193)
PPMS (n = 54) SPMS (n=42) RRMS (n =58) HV (n=39)

Age (year)

Mean + SD 587+ 11.1 58.3+10.3 473+9.6 41.1+14.0

Range 18.5-72.8 33.0-75.5 30.2-77.2 21.5-67.9
Gender (% of cohort)

Female 56 57 60 59

Male 44 43 40 41
b. Demographics Cross-sectional smartphone participants with clinical data (N=112)

PPMS (n = 46) SPMS (n = 26) RRMS (n = 40) HV (n=12)

Age (year)

Mean + SD 58.5+10.8 56.7 +10.8 456+83 48.9+6.8

Range 18.5-72.8 33.0-75.5 30.2-66.4 40.1-60.8
Gender (% of cohort)

Female 61 58 62 75

Male 39 42 38 25
NeurEx

Mean + SD 162.0+61.0 164.0 +60.1 68.5 +48.3 184+15.1

Range 34.2-312.0 67.1-334.0 0.0-216.0 0-54.2
EDSS

Mean +SD 56+1.0 57+1.0 36+1.5 1.9+£0.8

Range 3.0-7.0 4.0-6.5 0.0-6.5 0.0-3.0

npj Digital Medicine (2021) 36

Published in partnership with Seoul National University Bundang Hospital


http://www.qmenta.com

L. Pham et al.

npj

Table 2. Demographic table with information for individuals used in written SDMT change threshold determination and app SDMT longitudinal
analyses.
a. Demographics Participants included in written threshold analysis (N =112)
PPMS (n=47) SPMS (n=33) RRMS (n = 32)

Age (year)

Mean + SD 573115 57.0+8.2 47.2+10.8

Range 19.0-70.8 38.1-71.2 29.8-77.7
Gender (% of cohort)

Female 60 67 62

Male 40 33 38
NeurEx

Mean + SD 159.0 +69.9 178.0+48.2 64.8 +44.5

Range 54.3-328.0 74.4-288.0 4.2-165.0
EDSS

Mean = SD 5711 6.1+0.8 35+15

Range 25-75 4.0-7.5 1.0-6.5
b. Demographics Longitudinal smartphone participants (N = 16)

PPMS (n=8) SPMS (n=5) RRMS (n = 2) HV (n=1)

Age (year)

Mean + SD 59.0+12.9 59.5+49 54113 63.1

Range 28.2-69.3 54.2-64.9 53.2-55.0 Na
Gender (% of cohort)

Female 38 40 0 100

Male 62 60 100 0
NeurEx

Mean + SD 197.0+112.0 164.0 £ 103.0 46.1+18.2 Na

Range 88.9-436.0 67.1-334.0 33.2-59.0 Na
EDSS

Mean + SD 6.1+1.2 54+1.0 3.0+0.7 Na

Range 4.5-8.0 4.0-6.5 2.5-35 Na
Demographics in Table a comes from the second visit of the 6-months span. Demographics in Table b comes from the first visit (baseline) values.

reliability, we selected 75 s of test duration, for at this duration the test-
retest correlation has maximized.

The within-subject test performance (correct answers/sec) between 75 s
and 90 s tests identified miniscule difference of 0.003 points/s (p < 0.001).
This is clinically irrelevant compared to between participant’s variance that
ranges from 0.2 to 0.9 correct answers per second (Fig. 11d).

To keep the smartphone SDMT results comparable to standard SDMT,
smartphone SDMT scores were re-calculated using the formula:

Total correct

Smartphone SDMT score = ———————
Total testing time

)

Data pre-processing: identifying and adjusting outlier values
For subjects who took the test twice in the same setting (day) a
Bland-Altman plot assessed test-retest bias (Fig. 8a%%; the equations are in
Supplementary Fig. 10). We observed slightly improved performance in the
repeated test (i.e, learning effect, with trial 2 on average 0.19 correct
answers better than trial 1 (Fig. 8a)). Surprisingly, within-subject test-retest
variance greatly exceeded the 4-point difference that is currently accepted
as clinically meaningful decline in SDMT performance'>™">.
Intra-individual outliers in test-retest scores were identified as paired
sittings where the difference fell outside of the Bland-Altman limits of
agreement. Because the participants demonstrated ability to perform the
test at the higher level, we assigned an outlier status to the lower
performing score. Rather than excluding the lower-performing outlier
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(which would introduce bias) we increased the outlier score to the closest
limit of agreement on the Bland-Altman plot (Fig. 8b, c).

Statistics

All analyses were done in R*® (Supplementary Fig. 9), with packages found
in the refs. 27~%, The comparison is based on non-parametric Wilcoxon
signed-rank test (paired data) and Wilcoxon rank-sum test (unpaired data).
Correlation are assessed using Spearman correlation coefficients, and
associations that control for confounding variables are conducted using
elastic net (EN) regression (Supplementary Fig. 5). A conservative
significance threshold of 0.01 is used for all analyses.

Lin’s coefficient of concordance (CCC; 0 to 1*7); captures the degree in
which the regression line follows a 1:1 trajectory, with CCC=1
representing 100% agreement. An intraclass correlation coefficient
(ICC; 0 to 1; Supplementary Fig. 7) compares the proportion of variance
between individuals to within individuals (between/ [between +
within]). ICC=1 means there is virtually no variance in scores that
come from the same individual (no within-individual variance), and
therefore, an individual's test scores are consistently identical. The
sitting number (test #1, 2, 3 etc.) was used as the fixed effect, as the ICC
using number of days from the first trial showed analogous results
(Supplementary Figs. 11-13).

Confidence intervals (Cl) for all analyses are reported as 95%.
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Fig. 11

Minimum time needed for reliable app based SDMT performance. a Demonstration of how the non-linear regression model works

to find the inflection/change points. b, ¢ Plots of correlation in the scores between two trials (in the same test sitting) as the testing time
progresses for HV (n =22) and MS (n = 119). Orange lines represent the underlying non-linear regression models fitted to the data. Dotted
lines indicate the minimum time needed for reliable performance based on the non-linear regression algorithm. Dashed lines point to the
correlation coefficients at 75, or the time constraint that was eventually implemented. Blue lines indicate that after 75, the correlation
continues to slightly improve. d Comparison of testing speed, in points per seconds, within the same trial at 75 and 90 s. Individuals show
strong evidence of increasing their speed towards the end of the test (p < 0.001) but the change of 0.003 points/s is clinically insignificant.

Training and validation cohorts for elastic net (EN) modeling
In the EN regression (gimnet R package), the cross-sectional data was
randomly divided into training (2/3) and validation (1/3) cohorts stratified
for age and SDMT scores (Supplementary Fig. 14).

There is a preprint version of this paper’.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

Data used for all analyses can be found in the Supplementary Files. Raw data can be
found at: https://github.com/bielekovalLab/Bielekova-Lab-Code/tree/master/Former
LabMembers/Linh/sdmt_analyses.

CODE AVAILABILITY

The Android app used in this study is available to all interested research collaborators
under NIAID non-commercial limited use agreement. The app was developed for
Android 6 and later. The code used for data analysis is available at: https:/github.
com/bielekovalab/Bielekova-Lab-Code/tree/master/FormerLabMembers/Linh/
sdmt_analyses. All data analysis was done using R.
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