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Machine learning for patient risk stratification: standing
on, or looking over, the shoulders of clinicians?
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Machine learning can help clinicians to make individualized patient predictions only if researchers demonstrate models that
contribute novel insights, rather than learning the most likely next step in a set of actions a clinician will take. We trained deep
learning models using only clinician-initiated, administrative data for 42.9 million admissions using three subsets of data:
demographic data only, demographic data and information available at admission, and the previous data plus charges recorded
during the first day of admission. Models trained on charges during the first day of admission achieve performance close to
published full EMR-based benchmarks for inpatient outcomes: inhospital mortality (0.89 AUC), prolonged length of stay (0.82 AUC),
and 30-day readmission rate (0.71 AUC). Similar performance between models trained with only clinician-initiated data and those
trained with full EMR data purporting to include information about patient state and physiology should raise concern in the
deployment of these models. Furthermore, these models exhibited significant declines in performance when evaluated over only
myocardial infarction (MI) patients relative to models trained over MI patients alone, highlighting the importance of physician
diagnosis in the prognostic performance of these models. These results provide a benchmark for predictive accuracy trained only
on prior clinical actions and indicate that models with similar performance may derive their signal by looking over clinician’s
shoulders—using clinical behavior as the expression of preexisting intuition and suspicion to generate a prediction. For models to

guide clinicians in individual decisions, performance exceeding these benchmarks is necessary.
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INTRODUCTION

Machine learning for healthcare promises to have a major impact
on the delivery of data-driven personalized medicine'?. One of
the applications with the widest potential is patient risk
stratification (i.e, diagnosis, prognosis)®. Individualized patient
risk stratification requires machine learning models to predict the
future disease state of a patient based on his or her current clinical
state and available history?. However, understanding whether
predictions are based on physician behavior rather than faithful
representations of patient physiology is critical for identifying
which applications of these predictions will be sound.

When a patient’s physiology reaches a state requiring examina-
tion, the clinician’s beliefs regarding potential patient outcomes are
updated, which then inform which actions the clinician chooses to
make (or not make). These actions, in turn, influence the patient’s
resulting physiology, and the cycle repeats (Fig. 1a). Consequently,
we define data present in the EMR as one of two categories:
“clinician-initiated” data and “non-clinician-initiated data”. Clinician-
initiated data are data elements created through specific actions (or
inactions) or insights of the clinician. Clinician-initiated data include
expressions of physician decision making, including test orders,
prescriptions, diagnoses, referrals, consultations, or procedure
orders that are not routine for the patient population in question.
Non-clinician-initiated data include routine orders and direct
physiological measurements of the patient because insights from
the clinician are not involved in the creation of these data. This is a
nuanced distinction because the presence of a lab test can be but
is not always clinician-initiated, while the outputs of that lab test
are always non-clinician-initiated data. The conscious order of a

nonroutine lab test represents a clinical decision, while the result of
that test represents patient state or physiology. For models that
learn from clinician-initiated data and are expected to change
clinical behavior, there should be an onus to demonstrate that the
model is not merely looking over a clinician’s shoulder and
quantifying a risk the clinician may already suspect. The latter
operation is still valuable, as we elaborate below, but its
performance critically depends on the presence and actions of
clinicians up until the point that the machine learning model is
applied.

An example of this distinction between clinician and non-
clinician-initiated data can be seen in 3-year-survival differences
between routine white blood cell counts and white blood cell
counts taken during times unlikely to be routine. On average,
patients with abnormal white blood cell counts have higher 3-
year-survival rates than patients who have normal white blood cell
counts taken at abnormal or nonroutine times®. Clinicians order
specific panels of tests based on their clinical suspicion,
expectations, or concerns about a patient's state. If a test is
ordered at an abnormal time it is likely to be nonroutine and may
represent a concern on the part of the clinician. The primary
difference between a blood test manually ordered in the middle
of the night (clinician initiated) and a routine one (non-clinician
initiated) is the decision-making agency of the physician. In the
first case, a clinician chooses to order the test deliberately, based
on concern prompted by examination of patient physiology. In
contrast, when a test is part of a routine process, there is no
selection on patient physiology or clinician expertise.

Finally, this feedback cycle between patient physiology and
physician belief/action highlights the distinction between diagnostic
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Fig. 1 Clinician-initiated data alone is a filtered representation of

patient physiology. a Clinician-initiated and non-clinician-initiated
data are distinguished by their proximity as readouts of patient
physiology, as well as the presence of the expertise of the clinician.
b Physician actions are a reflection of their beliefs regarding a patient,
which are formed through examination of patient physiology.

and prognostic tasks, and the differing burdens of evidence and
assumptions required for each. The underlying nature of a patient’s
illness or condition is generally not dependent on the actions or
beliefs of a physician. Consequently, the diagnostic process requires
making a direct assessment of the patient’s physiology and
condition. In contrast, prognosis involves making a prediction
regarding the outcomes of a patient, and crucially assumes that the
patient will receive a particular standard of care. Thus, a patient’s
prognosis is tied to the specific actions undertaken by clinicians and
is often dependent on the clinician-initiated act of diagnosis.

Predictions made from clinician-initiated actions may not
accurately predict beyond what the average clinician would decide
for the average similar patient. As an illustrative example, we can
deconstruct the timing and frequency of actions and orders by a
clinician for patient presenting to the emergency department with
chest pain (Fig. 1b)°. In this example, a model utilizing this data may
learn a test order for troponin means a patient is more likely to have
a myocardial infarction (MI). Knowing that a patient has MI in
combination with demographic risk factors and comorbidities may
lead to impressive predictive performance for inhospital mortality
but is unlikely to aid clinical decision making. This idea, that models
are merely interpreting the existing thoughts of clinicians based on
their actions rather than identifying true signal, may help explain
why increased model performance has not translated to significant
clinical impact in most applications of risk stratification’”.

To evaluate the hypothesis that machine learning models may
be modeling the existing reasoning of clinicians we quantified the
ability of a deep neural network to predict patient outcomes using
different subsets of data. We trained three models using: (1)
patient demographic data only, (2) patient demographic data and
data available at the time of presentation to the hospital, and (3)
patient demographic data, data available at the time of
presentation, and actions taken during the first day of admission.
The performance of these models was compared to published
state-of-the-art methods using complete EMR details.
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Table 1. Example first day charge details for a patient with MI.
Description Department Quantity
EKG Routine tracing only EKG 1
ECHO 2D W/OR W/O M-Mode Cardiology 1
complete W/color flow

ER Level V Emergency room 1
XR Chest 2 views Diagnostic imaging 1
Culture blood Laboratory 2
Partial thromboplastin time (PTT) Laboratory 1
Prothrombin time (PT) Laboratory 1
Complete CBC AUTO W/O DIFF Laboratory 1
TROPONIN QN Laboratory 2
B-Type natriuretic peptide Laboratory 1
Lactate/lactic acid Laboratory 1
Creatine kinase (CPK) MB only Laboratory 1
Creatine kinase (CPK) Laboratory 2
Comprehensive metabolic panel Laboratory 1
Therapeutic/DIAG INJ IV push single IV Therapy 1
INITI SUB/drug

DOCUSATE NA, COLACE CAP 100mg  Pharmacy 1
Aspirin Tab 325 mg (EA) Pharmacy 1
Moxifloxacin, Avelox IVPB 400 mg Pharmacy 1
Moxifloxacin, Avelox tab 400 mg Pharmacy 1
Metoprolol, lopressor tab 25 mg Pharmacy 1
Ipratropium, atrovent INH SOL 0.02%  Pharmacy 1
2.5ml

Heparin NA VL 5000 U/ml 1 ml Pharmacy 1
Furosemide, Lasix tab 20 mg Pharmacy 2
Albuterol, proventil INH SOL 0.083% Pharmacy 3
3ml (2.5 mg)

R&B Telemetry private Room and board 1

RESULTS

Description of data used and data generating processes

We compared prediction results using charge details to state-of-
the-art benchmarks® that utilize EMR-based clinical data, including
notes, diagnoses, vital signs, histories, and laboratory orders/
results. By evaluating the information content of a data source
that contained exclusively clinician-initiated data elements, we
could evaluate whether it was sufficient to achieve strong
predictive performance on its own.

To do this, we utilized charge details, a data modality that
represents a record of the specific tasks undertaken by a hospital
for a specific patient and are used to help generate patient bills.
These details represent the actions taken by clinicians (clinician-
initiated data) and the resources used in order to provide care to a
patient during a given encounter (Table 1, Supplementary Tables 1, 2).
However, because they are primarily an administrative product
and not used for clinical decision making, they contain only the
events that occurred, and resources used rather than physiological
measurements of the patient. While it cannot be determined
which individual actions or charges result from physician
expertise, routine practice can be inferred by the frequency of
charge patterns across the population (Table 1, Supplementary
Tables 1, 2). The performance of the models provides evidence
that it is able to differentiate between routine orders and orders
based on clinical expertise.

Additionally, due to the de-identified nature of the data, timing
and order of events within a day cannot be expected to be
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Table 2. Population information for data included for risk stratification using machine learning.
2013 2014 2015 2016 2017 2018 Total
Hospitals included 778 783 797 786 770 755 973
Total encounters 79,209,178 82,145,811 85,037,615 85,391,057 84,448,480 84,641,611 500,873,752
Inpatient admissions 8,556,411 8,682,382 8,812,595 8,683,133 8,288,089 8,052,278 51,074,888
Multiday inpatient admissions 7,175,154 7,338,193 7,425,860 7,296,849 6,939,021 6,720,949 42,896,026
Total population: mortality 120,583 123,764 129,640 126,844 124,310 121,549 746,690 (1.74%)
(1.68%) (1.69%) (1.75%) (1.74%) (1.79%) (1.81%)
Total population: extended 1,466,580 1,492,958 1,518,803 1,506,125 1,449,174 1,437,552 8,871,192
length of stay (20.44%) (20.35%) (20.45%) (20.64%) (20.88%) (21.39%) (20.68%)
Total population: 30-day 941,911 937,562 950,561 887,418 925,833 901,290 5,544,575
readmission (13.13%) (12.78%) (12.80%) (12.16%) (13.34%) (13.41%) (12.93%)
All MI admissions (% of all 69,448 71,609 78,975 82,952 84,407 84,551 471,942
admissions) (0.81%) (0.82%) (0.90%) (0.96%) (1.02%) (1.05%) (0.92%)
Multiday MI admissions (% of 56,594 (0.79%) 57,665 63,026 65,925 66,859 67,135 319,539
total multiday admissions) (0.79%) (0.85%) (0.90%) (0.96%) (1.00%) (0.88%).
MI Cohort: mortality 3497 3393 3625 3569 3583 3337 21,004
(6.18%) (5.88%) (5.75%) (5.41%) (5.36%) (4.97%) (5.57%)
MI Cohort: extended length 9172 8941 9463 10,024 10,036 10,174 57,810
of stay (16.21%) (15.51%) (15.01%) (15.21%) (15.01%) (15.15%) (15.33%)

consistent or reliable. Importantly, because the 24 h period after
admission cannot be identified, all predictions using charge data
are done at the end of the first day of admissions and may include
significantly <24 h of data.

Our analysis included 42,896,026 inpatient hospitalizations
between 2013 and 2018 from 973 hospitals nationwide (Table 2,
Supplementary Fig. 1). These hospitalizations included over 4.4
billion events occurring prior to and during the first day of
admission as well as 21 static features available at the time of
admission (demographic and provider details). In contrast, the EHR
baseline of only 216,221 patients included more than 46.8 billion
data points®. We constructed three sets of classifiers, based on (1)
demographics only, (2) demographic and provider details only,
and (3) demographic, provider, and charge details.

Due to the lack of event timing data, models trained with charge
details were only given data up to the end of the first day of
admission. In contrast, published benchmarks® include full clinical
details (including clinical notes) for the first 24 h after admission.
Given that patients are admitted throughout the course of the day,
many of the patients used to train our models had significantly
<24 h of data which might handicap their performance.

To evaluate our hypothesis that clinical machine learning
models based on a record of clinician-initiated actions are
sufficient to predict inpatient outcomes, we constructed classifiers
for three popular endpoints: mortality, readmission within 30 days,
and extended length of stay (admissions of 7 days or more). We
deployed these classifiers over all admissions lasting more than
one day and included only the first day of a given stay in the
classifier. Individual patients with more than one stay were
classified separately, and no linkage between a given patient’s
stays was created. Finally, the published EMR baselines performed
resource intensive neural network architecture and hyperpara-
meter searches for over 200,000 GPU h. The models trained on
charges data were trained using basic architectures on two GPUs
for all outcomes in <24 h.

Comparison of model trained on clinician-initiated data only
to published benchmarks

We found that relative to the published EMR baseline, abbreviated
patient representations were able to capture significant amounts
of signal for all three tasks (Fig. 2a). Charges data only modestly
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underperformed the baseline (AUCs of 0.89, 0.71, and 0.82
compared to 0.95, 0.77, and 0.86 for mortality, readmissions, and
LOS respectively). Performance of the charges model was
handicapped by the significant limitations intrinsic to fully de-
identified charges data, including missing data modalities (e.g.,
laboratory values), significantly fewer total and per-patient data
elements (Fig. 2b), lack of reliable event ordering (events were not
necessarily in order through the day for de-identification), and the
presence of data from only the day of admission (e.g., if a patient
showed at 11:30 p.m. the model received only 30 min of data
compared to a full 24h in the benchmark). Direct comparison
could not be made as exact times of service were limited to the
day level. Additionally, the charges model was trained over a
heterogeneous set of providers (N=973) while the benchmark
was fine tuned to two specific hospitals (we reported the highest
results for the benchmark). Classifiers that utilized crude metrics of
patient demographics and provider information captured the
majority of signal relative to published EMR baselines over all three
tasks. These results suggest that critical elements in EMR-based
models are reflections and readouts of a clinician’s expertise.
However, clinical practice is highly sensitive to context, and the
act of prognosis frequently involves implicit diagnostic prerequi-
sites. Consequently, we hypothesized that models trained on
clinician-initiated data would be better able to predict cohort-
specific outcomes when patients outside the cohort (representing
irrelevant patient presentations) were excluded. We trained a
model specifically on patients who arrived at the emergency
department suffering from MI. The MI cohort included MI patients
hospitalized at hospitals with at least 100 such instances between
2013 and 2017. Models trained over this restricted subset
demonstrated better performance predicting outcomes from Ml
hospitalizations in 2018 than the general model which was trained
over all hospitalizations (Fig. 2c). The model trained with the more
expansive training set underperformed relative to one trained on
a targeted subset, thus emphasizing that the prognostic
performance of these models is improved if clinicians identify a
diagnosis with established standards of care. Divergence from this
standard of care can then provide information to the model.
Because these models derive signal primarily from patient
interactions with healthcare providers, the observed effect may
be caused by the potential for clinical actions to take on divergent
interpretations when present in different contexts. The ability for a
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Fig. 2 Performance comparison between charge and EMR data
across cohorts and outcomes. a Comparison of mortality, readmission
and length of stay performance (area under receiver-operating curve,
AUROC) on randomly selected validation data. b Average relative
features per patient for each model version. ¢ Outcome comparison
on a myocardial infarction (MI) patient cohort between models trained
on Ml patients exclusively and all available patients.

model trained generally to “guess” at a clinician’s thinking may be
less effective when required to work across contexts, as the range
of mechanisms that must be inferred is much wider.
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DISCUSSION

The results of our experiments indicate machine learning models
trained only on clinician-initiated administrative data can currently
achieve performance close to models trained on more detailed,
complete, EMR data. This is an important result because it provides
insight into the current utility of machine learning models for patient
risk stratification from clinical data and the primary source of signal
that these models utilize. This indicates that current models
extrapolate from the thinking of the clinician manifested through
their clinical actions, and that strong prognostic performance may
only represent the diagnostic value of the clinician-initiated data
points they rely on. The results of our experiments also indicate the
value of easier to access, lower resolution datasets (e.g., adminis-
trative vs. EMR). Finally, the results provide baseline performance
levels that should be exceeded prior to claims that machine learning
models can provide tangible guidance to clinicians, rather than
simply looking over their shoulders.

Given the relative performance between current models with
clinician-initiated and non-clinician-initiated data, it will be
important to show that performance improvements are the result
of non-clinician-initiated data (e.g., raw imaging results) or data
that are difficult or expensive to interpret (e.g., constant real time
streaming data). Without this demonstration we should be
cautious about assuming predictive models can improve
individual-level decisions. In fact, if model performance is driven
by the actions of the clinician (e.g., a test order) and not the
underlying physiology (e.g., a test result) the model has the
potential to confuse a clinician. For example, if a clinician orders a
test because they suspect a condition with poor prognosis, but
that test comes back normal, the clinician may rule out the
condition, but the model may state the patient is at high risk
based on the clinician’s original test order. The model is unlikely to
be accurate until it observes the next steps taken by the clinician.
However, if a clinician sees the patient is still at high risk, they may
take actions that differ from their normal standard of care to try to
determine why the model is stating the patient is at high risk. This
change in behavior may induce dataset shift, by causing a
difference between the retrospective data the model was trained
on and the prospective data it is applied to.

The idealized use case of machine learning models for patient
risk stratification is to have generalizable models that provide
specific and personalized projections for individual patients.
However, models that derive their predictions from clinician-
initiated data may produce predictions based on what a physician
would do for an average, similarly presenting patient, rather than
the individual patient in question. Acknowledging the selective
role that clinicians play in terms of what decisions and actions
they choose to make on what data is available for models is critical
for developing models that can truly assist clinician decision
making. Acknowledging this role also points to a potentially
important application of models trained on clinician-initiated data:
recognizing where clinical decision making diverges from
machine learning models trained directly on patient state or
physiological data. For example, if the clinician-initiated model
predicts a patient is low risk based on the actions a physician takes
after a CT pulmonary angiography, but a model trained specifically
to read CT pulmonary angiograms predicts the patient that is at
high risk, it can be said that the physician’s decisions and the CT
image model have diverged. This is an indication that either the
model is misreading the CT image, or the physician has not
recognized something of danger. Divergence might occur if a
hyperdense lesion exists within the pulmonary arterioles, but the
physician can't tell from the imaging and believes it exists within
the bronchial tree. This would lead the physician’s diagnosis away
from pulmonary embolism. Regardless of whether the physician or
the CT model had been right, the divergence would warrant
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further investigation to either prevent the misdiagnosis of a
patient or to update and correct the CT model.

While models may superficially display strong prognostic perfor-
mance, if this performance is derived from the diagnostic efforts of
physicians, the model cannot truly be relied upon as if it were acting
independently. The true physiological state of a patient is often
incompletely characterized and obfuscated through various sources
of bias in the electronic medical record (EMR)*™'>. Despite this, most
current machine learning investigations utilizing these data rely on a
major simplifying assumption: that the state of a patient can be
inferred through the use of routinely collected data in the EMR™.
These data encode information about how clinicians and the
healthcare system as a whole reacted react to the patient, potentially
confounding prediction models built to use it. Machine learning
models trained using EMR-derived features are consequently linked
to the individual decisions and assessments made by clinicians. This
observation can also explain the necessity for models to be retrained
across institutions. The physiological phenomena underpinning
disease are largely static, but physicians have diverse behavior
profiles corresponding to different disease trajectories that might not
be captured in a single training set.

Freed from the expense of collecting clinical details and the
epistemological burden of predicting individual patient outcomes
in an unbiased manner, current risk stratification models could
have tremendous utility in allowing patients to view quantified
prognoses, as well as guiding value-based care decisions, hospital
logistics and staffing management. This is especially true using
administrative byproducts such as charges details. Acknowledging
these models are effective at learning clinician’s prognoses
through their actions, rather than attempting to assist with
individual decisions, these models could be used to quantify
cohort or population level prognoses. An example would be a tool
providing administrators with a more holistic view for the current
inpatient load and acuity levels of their patients. Such a tool could
enable better planning, staffing and resource allocation. The
ability to train cohort-specific models also suggest values in lower
resolution administrative datasets which may have larger patient
counts that allow for the training specialized models. A key
challenge in this endeavor will be to identify cohorts prospectively
to choose which model should be used.

The promise of machine learning in healthcare necessitates an
understanding of where the dominant sources of predictive signal
are located, as well as what information is truly useful in shifting
marginal decisions. Through an understanding of the unique
conditions in which healthcare data are created and utilized,
researchers can better identify the cases where machine predic-
tions are likely to be beneficial.

METHODS
Data

The Premier Healthcare Database (PHD)'® is a large-scale, provider-based,
all-payer database containing data on more than 215 million total patients
and 115 million inpatient admissions. It includes more than six million
inpatient admissions each year between 2013 and 2018 and a total of over
35 million admissions more than one day between 2013 and 2017
(training) and 6.7 million admissions lasting longer than one day in 2018
(test) (Table 2). The PHD has been certified as de-identified via expert
determination in compliance with HIPAA. The research was deemed to be
“nonhuman” in consultation with the Harvard Medical School IRB.

The PHD contains information on providers (hospital, organizational and
clinician) and visit characteristics. It includes patient demographics,
disposition and discharge information as well as diagnoses for admission
and discharge, and billed services such as procedure orders, medication
and device orders, laboratory test orders, as well as diagnostic and
therapeutic services. The PHD is an administrative database for quality
improvement and does not include laboratory test results, vital signs,
patient notes or other data modalities that are commonly available
in EMRs.
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Subsets of data.

(1) Demographic data only:
Age, gender, race, marital status, and type of insurance (e.g.,
private, public, government etc.).
(2) Demographic data and information available at time of admission:
All from #1 and admission month, source of admission (e.g.,
another healthcare provider, home etc.), type of admission (e.g.,
emergency, urgent, elective), admitting physician specialty, point of
origin (e.g., emergency department, obstetrics and gynecology etc.).
(3) Demographic data, information at admission and all charges during
the first calendar day of admission:
All from #1 and #2 as well as charge codes for all actions taken
from presentation at the hospital until the end of the first calendar
day of admission.

Cohort selection

Both cohorts and the timing of the prediction were selected to match the
structure of those of the baseline'®. We include predictions of inpatient
mortality, 30-day readmission, prolonged length of stay (>7 days). All available
hospitalizations with length of stay greater than 1 day were included, and
separate hospitalizations of the same patient were treated separately.
Hospitalizations that ended in mortality were excluded from cohorts
predicting readmission, and hospitalizations that ended in mortality after
<7 days were excluded from cohorts predicting prolonged length of stay. For
the general classifiers, all hospitalizations were used, while for the MI
classifiers, those with an MS-DRG corresponding to “acute myocardial
infarction” (AMI) were selected (280-285). AMI was selected for its higher-
than-average mortality rate and low presentation to diagnosis time in general.

Model architecture and training

To make these predictions we first learn 8-dimensional clinical concept
embeddings as in Beaulieu-Jones et al.'® for 36,089 distinct charges using
94,708,714 co-occurrence pairs and 146,531,783,286 total relationships.
Charges over the first day are converted into a sequence 100 events long
and pre-padding with 0's and pre-clipping where necessary.

Two separate model architectures were utilized depending on the type
of data utilized: models based on demographics and provider details
utilized logistic regression due to the small number of features, while those
based on charge data utilized a stacked recurrent neural network (gated
recurrent unit (GRU)). Models were trained using the Adam optimizer'”
until convergence based on validation accuracy-informed early stopping.
Dropout regularization was applied to each model. A table of model
hyperparameters is provided in Supplementary Table 7. Data preproces-
sing was done using Spark'®'® via Pyspark to query a high performance
Hadoop cluster. Preprocessed data was saved in parquet format and fed to
models in the TensorFlow framework®® using Petastorm?’. All models were
run on edge nodes with 72 CPU cores and four Nvidia V100 GPUs. Source
code to preprocess the data and train example models with random
validation cohorts is available on GitHub (https://github.com/brettbj/
inpatient-stratification-charges) and archived on Figshare®>. Parameter
selection, training and evaluation were all designed to prevent any chance
of overfitting or any claim of architectural superiority as the cause of
relative performance. Because of this, we minimized the parameter sweep
(as demonstrated by round, commonly chosen numbers) and used orders
of magnitude less compute to train our models. All of our models train on
four GPUs in <24 h, in comparison to >201,000 total GPU hours for the
benchmark (compute statistics available in preprint only)23. Additionally, to
avoid any impression about overfitting, our example trains one model for
each outcome across all 973 health systems and does not perform fine-
tuning, where the benchmark tunes for each health system.

Evaluation

Models were randomly partitioned into training, validation, and test sets in
an 80:10:10 ratio respectively. Area under the receiver-operating curve was
the primary metric for evaluating and comparing model performance.
Models were selected by comparing performance on the validation set and
then evaluated on the test set.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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DATA AVAILABILITY

All data used in this study are from the PHD'". These data may be purchased from
Premier Inc., https://www.premierinc.com/solutions/applied-sciences. Code for deriv-
ing training, validation, and test datasets is available on GitHub and authors can
provide confirmatory de-identified record IDs for each set upon reasonable request.

CODE AVAILABILITY

All source code used in this study are available on GitHub (https://github.com/
brettbj/inpatient-stratification-charges) and in archival form on Figshare?. Analyses
were preformed using Python (3.6.8), Scikit-Learn (0.22), Apache Spark (2.4.0), and
Tensorflow (1.13.1).
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