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Interpretable survival prediction for colorectal cancer using
deep learning
Ellery Wulczyn1, David F. Steiner1, Melissa Moran1, Markus Plass 2, Robert Reihs 2, Fraser Tan1, Isabelle Flament-Auvigne3,
Trissia Brown3, Peter Regitnig 2, Po-Hsuan Cameron Chen 1, Narayan Hegde1, Apaar Sadhwani1, Robert MacDonald1,
Benny Ayalew1, Greg S. Corrado1, Lily H. Peng1, Daniel Tse 1, Heimo Müller 2, Zhaoyang Xu1, Yun Liu 1✉, Martin C. Stumpe 3,4,
Kurt Zatloukal 2,5 and Craig H. Mermel 1,5✉

Deriving interpretable prognostic features from deep-learning-based prognostic histopathology models remains a challenge. In this
study, we developed a deep learning system (DLS) for predicting disease-specific survival for stage II and III colorectal cancer using
3652 cases (27,300 slides). When evaluated on two validation datasets containing 1239 cases (9340 slides) and 738 cases
(7140 slides), respectively, the DLS achieved a 5-year disease-specific survival AUC of 0.70 (95% CI: 0.66–0.73) and 0.69 (95% CI:
0.64–0.72), and added significant predictive value to a set of nine clinicopathologic features. To interpret the DLS, we explored the
ability of different human-interpretable features to explain the variance in DLS scores. We observed that clinicopathologic features
such as T-category, N-category, and grade explained a small fraction of the variance in DLS scores (R2= 18% in both validation sets).
Next, we generated human-interpretable histologic features by clustering embeddings from a deep-learning-based image-similarity
model and showed that they explained the majority of the variance (R2 of 73–80%). Furthermore, the clustering-derived feature
most strongly associated with high DLS scores was also highly prognostic in isolation. With a distinct visual appearance (poorly
differentiated tumor cell clusters adjacent to adipose tissue), this feature was identified by annotators with 87.0–95.5% accuracy.
Our approach can be used to explain predictions from a prognostic deep learning model and uncover potentially-novel prognostic
features that can be reliably identified by people for future validation studies.
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INTRODUCTION
Understanding and characterizing a patient’s cancer in order to
estimate prognosis is essential for treatment decisions. Cancer
staging systems, such as TNM classification, were created to
categorize patients into different groups with distinct outcomes1.
However, even within a specific TNM stage, there is often
substantial variability in patient outcomes. While additional data,
such as clinical variables, histopathologic parameters, and
molecular features can provide important information2,3, there
remains a need for more precise patient risk stratification to
improve patient management and disease outcomes. In recent
years, there has been a surge of interest in developing machine
learning methods to provide novel prognostic information that is
not captured in current staging guidelines4–8. However, despite
some existing efforts to understand machine-learned prognostic
features, strategies to gain insights into such features remain
limited. If the learned features can be reproducibly identified and
demonstrated to have independent prognostic value, this could
enable the discovery of potentially novel features as well as build
the necessary trust for AI-supported decision-making in medicine.
A specific use case of the role of prognostication in guiding

treatment decisions can be found with colorectal adenocarci-
noma, which is the third-most commonly diagnosed cancer and
second only to lung cancer in terms of cancer mortality9. For stage
II patients, adjuvant chemotherapy can be beneficial following
resection of the tumor for a small subset of patients, but
identifying the high-risk patients most likely to benefit represents
a clinical challenge as overtreatment can result in substantial

adverse effects10,11. For patients with stage III disease, although
adjuvant chemotherapy is generally the standard of care,
prognostic information has important implications for therapy
regimen and duration12. Known histoprognostic features such as
tumor budding and lymphovascular invasion among others can
provide useful information, but challenges in both sensitivity and
inter-pathologist variability limit their utility2,13–15. Better risk
stratification within stage II and stage III colorectal cancer,
therefore, offers opportunities to improve therapy decisions and
patient care.
Previous machine learning-based efforts to predict the clinical

outcomes using histopathology samples have used one of two
main approaches16. The first strategy focuses on the extraction of
pre-defined morphologic features using custom tools such as
CellProfiler17,18, followed by statistical or machine learning
techniques to understand which of the pre-defined features are
correlated with survival5,7,8,19,20. The second and more recent
strategy involves the use of weakly supervised deep learning
approaches to directly predict survival from WSIs4,6,21,22, thus
eliminating reliance on pre-defined features but introducing
additional challenges in regards to model explainability. While
some weakly supervised studies have tried to visualize the
morphological features learned by the models21,23,24, providing
reproducible descriptions of such features and evaluating the
extent to which they actually explain the model predictions
remain as challenges. In this study, we first present a weakly
supervised deep learning system (DLS) for predicting disease-
specific survival (DSS) in colorectal cancer patients and then
develop a method for generating human-interpretable histologic
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features that can both explain the DLS predictions and be used as
independent prognostic features.

RESULTS
Data cohorts
This study included two cohorts of colorectal cancer cases. The
first cohort spanned the years from 1984 to 2007. It was randomly
split into a development set of 3652 cases (which was further split
into training and tuning sets, see “Methods”) and a held-out
validation set of 1239 cases (validation set 1). The second cohort
of 738 colorectal cancer cases from 2008 to 2013 served as a
second held-out validation set (validation set 2) to evaluate
temporal generalization of the model to a more recent cohort
(Table 1, Supplementary Fig. 1). Patient characteristics of the two
validation sets are reported in Supplementary Table 1.

Tumor segmentation model
We first developed a tumor segmentation model for the purpose
of categorizing every region on a whole-slide image as tumor or
non-tumor. This model was developed using pixel-level annota-
tions provided for a subset of slides from the overall training split
(Supplementary Fig. 1) and was evaluated on a held-out set of
slides, also from the overall training split (44 slides, 6,866,573
patches, Supplementary Figs. 2–4). For classifying individual image
patches as tumor vs. non-tumor, this model achieved an area
under the receiver operating characteristic curve (AUC) of 0.985
(95% CI: 0.984–0.985). Using this model to identify regions of
interest for the prognostic model instead of a simple tissue
detector substantially improved the performance of the prog-
nostic model (Methods, Supplementary Fig. 5).

Evaluating DLS performance
The regions identified by the tumor segmentation model were
used as the input for a second, prognostic model to produce case-
level risk scores. The tumor segmentation model and prognostic
model were applied sequentially to predict prognosis for each
case, and are collectively referred to as the DLS.
We evaluated the ability of the DLS to predict DSS in two

separate held-out validation sets (each comprising cases from
different time periods). Validation set 1 had 10–35 years of follow-
up, while the cases in the more recent validation set 2 had 5–9
years of follow-up. Thus, to allow direct comparisons across the
two validation sets, we used the AUC for 5-year DSS, which is not
affected by the differences in follow-up period available for the
two validation sets. For stage II cases, the DLS demonstrated a
5-year AUC of 0.680 in the validation set 1 and 0.663 in the
validation set 2 (Table 2). The 5-year AUC for stage III cases was
0.655 in both validation sets. In the combined cohorts of stage II
and stage III cases, the 5-year AUC was 0.698 and 0.686 for the two
validation sets, respectively. The 95% confidence intervals (CIs) are
provided in Table 2.
In Kaplan–Meier analysis, the DLS demonstrated significant risk

stratification in both validation sets (p < 0.001 for log-rank test
comparing the high and low-risk DLS prediction quartiles; Fig. 1).
The 5-year DSS rates of the high- and low-risk groups among
stage II cases were 73% and 89%, respectively in the validation set
1. In validation set 2, the difference in survival rates between risk
groups was similar with 5-year DSS of 57% (high risk) vs. 86% (low
risk). For stage III cases, the survival rates for the high and low-risk
groups were 41% versus 76% in the validation set 1 and 43% vs.
73% in the validation set 2. Similar results were observed for
analysis over the combined cohort of stage II/III cases (Supple-
mentary Table 2).
We further performed univariable and multivariable Cox

regressions for both the DLS and clinicopathologic features Ta
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(age, sex, tumor grade, and T, N, R, L, and V categories). The
univariable analysis showed that the DLS was significantly
associated with DSS for both stage II and stage III as well for the
combined stage II/III cohort in both validation sets (p < 0.001;
Supplementary Table 3). After adjusting for the clinicopathologic
features, the DLS remained a significant predictor of DSS (p <
0.001; Table 3). We also compared the 5-year AUC of the Cox
models containing the clinicopathologic features to those that
additionally incorporated the DLS-assigned risk score (Supplementary
Table 4A). For stage II, the addition of the DLS to the clinicopathologic
features increased 5-year AUC over the clinicopathologic features
alone by 0.120 and 0.085 for the two validation sets. For stage III, the
corresponding increase over the clinicopathologic features alone was
0.065 (validation set 1) and 0.022 (validation set 2). For the combined
stage II/III cases, the absolute increases were 0.055 and 0.038 with
final AUCs of 0.733 and 0.721, respectively. The increases in
prognostic value provided by the addition of the DLS were also
observed based on c-index analysis (Supplementary Table 5). Finally,

to more directly address the possibility of DLS correlation with depth
of tumor invasion, we performed subanalysis on the T3 cases only.
The performance of the DLS remained similar for this T3 subanalysis
(Supplementary Table 6A).

Understanding DLS predictions
Because the DLS was developed in a weakly supervised fashion
without specifically being trained to predict known clinicopatho-
logic features, we sought to understand what features were most
highly associated with the DLS predictions. Specifically, we fit
regression models to predict DLS scores using both the set of
clinicopathologic features described above and a set of clustering-
derived features (described below). Regression coefficients for
individual features were used to evaluate the association between
the DLS and individual features, while the adjusted coefficient of
determination (R2) was used to measure the fraction of variance in
DLS scores explained by each feature set.

Table 2. The 5-year AUC for disease-specific survival (DSS) prediction.

Cancer stage Dataset DLS Quantitation of tumor-adipose feature

Stage II Validation set 1 (n= 601 cases) 0.680 [0.631, 0.739] 0.645 [0.598, 0.700]

Validation set 2 (n= 328 cases) 0.663 [0.592, 0.730] 0.634 [0.570, 0.697]

Stage III Validation set 1 (n= 638 cases) 0.655 [0.617, 0.694] 0.629 [0.593, 0.680]

Validation set 2 (n= 410 cases) 0.655 [0.600, 0.707] 0.682 [0.638, 0.743]

Stage II/III Validation set 1 (n= 1239 cases) 0.698 [0.660, 0.729] 0.661 [0.629, 0.694]

Validation set 2 (n= 738 cases) 0.686 [0.638, 0.723] 0.682 [0.641, 0.734]
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Fig. 1 Kaplan–Meier curves on both validation sets for patients stratified by the prognostic deep learning system (DLS). Results are
presented for stage II and stage III patients separately, and as a combined cohort (Stage II/III). High- and low-risk groups represent the highest
and lowest risk quartiles from the tune set, respectively, based on the DLS prediction. Hazard ratios (HR) for the medium and high-risk groups
are provided with the low-risk group as the reference group. Shaded areas represent 95% confidence intervals. p Values were calculated using
the log-rank test comparing each high-risk group with the corresponding low-risk group.
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DLS association with clinicopathologic features
We first examined the association of the DLS with clinicopatho-
logic features (Table 4). The features most significantly associated
with the DLS risk score were the T and N categories. Specifically,
cases with higher T and N categories also had higher DLS risk
scores. Similar observations were made in a univariable correlation
analysis (Supplementary Table 7A). Overall, the clinicopathologic
features had an R2 of 0.18 (i.e., they explained only 18% of the
variance in the DLS scores) in both validation sets, indicating that
these clinicopathologic features leave a substantial proportion of
the variance in DLS scores unexplained.

DLS association with clustering-derived features
Next, given the limited ability to exist clinicopathologic features to
explain the variance in DLS scores, we generated a set of 200
human-interpretable histologic features by clustering embeddings
from a deep-learning-based image-similarity model25,26. We then
quantified the variance in DLS scores explained by the case-level
quantitation of these clustering-derived features (as done above
for clinicopathologic features). All 200 features combined demon-
strated an R2 of 0.73 for the validation set 1 and an R2 of 0.80 for
the validation set 2 (Table 5). A subset of ten of these features
selected via forward stepwise selection achieved an R2 of 0.57 for
the validation set 1 and an R2 of 0.61 for the validation set 2.
For each of these top ten features, sample image patches

exhibiting the feature (Fig. 2) were formally reviewed by three
pathologists (Table 5). The feature with the highest regression
coefficient was characterized by small, moderately-to-poorly
differentiated tumor cell clusters adjacent to a substantial
component of adipose tissue (cluster #72, Fig. 2, and Fig. 3a). In
the remainder of this paper, we will reference this particular
feature as the tumor-adipose feature (TAF). Another cluster with a
high coefficient (cluster 139) was notable for predominant stroma
consisting of intermediate and a mature desmoplastic reaction
with a relatively small amount of low-to-intermediate grade
tumor. In general, the features associated with higher risk DLS
predictions involved intermediate to the high-grade tumor in
small or solid clusters while the lower risk feature clusters typically
contained lower grade tumor-forming glands and tubules and
with high tumor to stroma ratio (Table 5, Figs. 2 and 3a). No
remarkable findings were observed in regards to desmoplasia or
tumor-infiltrating lymphocytes (TILs) across these ten feature
clusters.

DLS association with patch-level histoprognostic features
The analyses above were performed for case-level DLS scores and
case-level quantitation of the clustering-derived features. To gain
further insight into the DLS, we compared the average patch-level
DLS score for a set of known histoprognostic features as well as
the top ten clustering-derived features (Table 6 and Supplemen-
tary Fig. 6A). Known histoprognostic features were annotated by
pathologists on a subset of validation set slides in order to provide
patches for analysis (“Methods”). Among the known features,
patches with lymphovascular invasion and perineural invasion had
the highest average DLS scores (1.03 and 0.75, respectively), while
patches from polyps had the lowest average score (−0.86). The
TAF patches had the highest average score (2.76) both in the top
10 clusters and amongst all 200 clusters. This was also
substantially higher than the other three high-risk features
identified (#139, #96, and #23). The six features with negative
average scores (relatively low risk), had scores ranging from −0.87
to −0.56. The relationship between the DLS score of each feature
with the 5-year AUC for the quantitation of each feature is
presented in Supplementary Fig. 6B.

Tumor-adipose feature
The TAF finding was notable in several respects. First, across all
clustering-derived features, TAF had the strongest association (R2)
with the DLS scores and the highest patch-level DLS scores (2.76
vs. the next-highest at 0.97). Second, case-level TAF quantitation
(Supplementary Fig. 7) was independently highly prognostic
(Table 2, Fig. 3b, Supplementary Table 4B, Supplementary Table
6B, Supplementary Table 7B). Given these results, we evaluated
whether it was possible for researchers and pathologists to
accurately identify TAF, thus enabling future work to better
understand its biological and prognostic significance. Briefly, three
non-anatomic-pathologists and two anatomic pathologists were
presented with a total of 200 image patches from tumor-
containing regions. For each patch, participants were instructed
to indicate if that patch contained TAF or not. Accuracies for the
non-pathologists were 90.0%, 93.0%, and 95.5%, and accuracies
for the pathologists were 87.0% and 90.5%. The interpathologist
concordance was 93.5%.

DISCUSSION
In this study, we demonstrated the ability of a weakly supervised
DLS to predict DSS in intermediate-stage colorectal cancer directly
from unannotated, routine histopathology slides. We then
developed a method for generating human-interpretable histolo-
gic features by clustering embeddings from a deep-learning-
based image-similarity model. We used these clustering-derived
features, which explained a large fraction of the variance in DLS
predictions, to gain an understanding of the histologic features
the DLS scored as high and low risk. We found that one particular
clustering-derived feature, characterized by poorly differentiated
tumor cell clusters adjacent to adipose tissue, was strongly
associated with high DLS risk scores, independently associated
with poor prognosis, and able to be reproducibly identified by
pathologists.
We conducted a variety of statistical analyses that demon-

strated the high prognostic performance of the DLS. First, the DLS
provided significant risk stratification even within stage II and
stage III cases. Furthermore, the difference in 5-year survival rates
between high- and low-risk groups defined by the DLS was
comparable to or greater than currently used prognostic factors
such as obstruction, T-category, TIL, desmoplasia, lymphovascular
invasion, and perineural invasion11,27–31. In multivariable analysis,
the DLS added significant prognostic value to a set of nine
clinicopathologic baseline features. These results held across two
validation datasets, including a temporal validation set from a
later time period. These findings represent a generalization of DLS
performance, even to a cohort of cases with significant
differences in baseline characteristics (Supplementary Table 1)
as well as potential differences in treatment and technical aspects
of tissue and slide preparation. Finally, the DLS performance was
similar to that recently reported by Skrede et al.4 using a
comparable weakly supervised approach, further validating that
substantial risk stratification is achievable with this type of deep
learning approach.
Given the demonstrated ability of the DLS to risk-stratify

patients, there is a potential for the DLS to inform clinical
decisions involving the use of adjuvant chemotherapy. Specifi-
cally, the DLS could help identify high-risk stage II patients most
likely to benefit from therapy or inform decisions about therapy
regimens for low-risk stage III patients in order to minimize
overtreatment. Prospective studies to evaluate the impact of DLS-
informed treatment decisions on patient outcomes are war-
ranted, especially when combined with existing biomarkers that
may provide complementary prognostic value.
Explainability is an important aspect of building the trust and

transparency necessary for the adoption of such model-informed
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clinical decision-making. This is especially true for weakly
supervised prognostic models which learn to associate histologic
features in unannotated whole-slide histopathology images with-
out any human supervision. Although some insights have been
derived from characterizing saliency heatmaps or example
patches with extreme risk scores21, researchers’ ability to system-
atically characterize the histologic features learned by their model
and evaluate the extent to which these features actually explain
the model predictions remains limited.
While prior work has described weakly-supervised prognostic

models for colorectal cancer with comparable performance to our
DLS4, an important advance offered by our study is the
development of a computational method for generating human-
interpretable “clustering-derived” features that can explain the
DLS risk scores. We showed that while a set of nine clinicopatho-
logic features explained only a small fraction of variance in DLS
scores (less than 20%, Table 4), a set of 10 clustering-derived
features, which could be understood, described, and reproducibly
identified by pathologists, explained the majority of variance in
DLS scores (about 60%, Table 5). Finally, the complete set of 200
features explained another 15–20% of the variance in the DLS.
This means approximately 20% of the variance remained
unexplained, suggesting some features remained unappreciated
by our method and avenues for future work.
Although some of the features learned by weakly supervised

prognostic models may be well-known, there is also the possibility
of learning previously unappreciated prognostic features. The
clustering-derived feature most strongly associated with high DLS
risk scores and poor prognosis was notable for its distinctive
histomorphological appearance, including moderately to poorly
differentiated tumor cells in close proximity to adipocytes, thus
termed “Tumor Adipose Feature” (TAF). One initial interpretation
might be that this feature represents invasion into the subserosa
(T3 of TNM staging) or beyond (T4), and thus that the model may
have learned a representation of the T-category, which has known
prognostic significance1. However, both the DLS prediction and
TAF quantitation remain significantly associated with survival even
within T3 cases (Supplementary Table 6), suggesting prognostic
value independent of T-category.
A hypothesis that could explain the independent prognostic

value of TAF is submucosal adipose tissue as a prognostic factor

itself, potentially associated with inflammatory bowel disease or
obesity32,33. In regards to obesity, there is some evidence to
suggest that body-mass index, visceral fat, and subcutaneous fat
may be associated with adverse outcomes in metastatic colorectal
cancer34. More speculatively, this finding may be consistent with
an adverse role for cancer-associated adipocytes in colorectal
cancer, as has been described in other cancer types35,36. Finally,
there are notable morphologic similarities between TAF and
irregular tumor growth at the invasive edge, potentially represent-
ing an association with “infiltrative” vs. “pushing” configurations of
the tumor border37,38. Finally, although the TAF is visually distinct,
is highly associated with case-level DLS risk predictions, and
represents the feature with the highest risk score, other clusters
also appear independently prognostic. Further work is warranted
to better understand the biological significance of TAF and other
clustering-derived features.
Our study has some limitations. First, as a retrospective study,

treatment pathways present an important confounding factor that
is difficult to control for, including potential differences in
neoadjuvant and adjuvant therapy. Though treatment guidelines
within stage II and within stage III colorectal cancer cohorts are
fairly uniform, at least some variability in treatment likely exists.
Progression-free survival may be an endpoint that is less
susceptible to treatment confounding but was unfortunately not
available at the scale required for this study. Second, while the
non-random temporal validation set demonstrates generalization
in the face of significant changes in case characteristics over time
(Supplementary Table 1), validation in geographically diverse
cohorts would be needed to further support the generalization of
the DLS to other cohorts containing complete, routine clinical
cases. Unfortunately, such geographically diverse data with the
necessary imaging and clinical data were not available for this
study. A further limitation is that we were not able to evaluate the
association between the DLS and several known prognosis factors
such as tumor budding, the number of lymph nodes examined,
tumor location, obstruction, microsatellite instability, TIL, mole-
cular profile (e.g., BRAF and KRAS), desmoplasia, or histologic
subtypes11,30,31,39,40. While obvious associations with TILs, desmo-
plasia, or subtype were not observed in our analysis of clustering-
derived features, the association of the DLS scores with these
factors will need to be examined in future work. Though used in

Table 4. Multivariable regression of case-level DLS score using clinicopathologic features as input.

Clinicopathologic feature Validation Set 1 Validation Set 2

Coefficient p R2 Coefficient p R2

T3 0.5454 <0.001 0.18 0.1184 0.276 0.18

T4 0.7775 <0.001 0.4032 <0.001

N1 0.5496 <0.001 0.2912 <0.001

N2 0.5942 <0.001 0.4752 <0.001

N3 1.0311 <0.001 0.3477 0.163

R1 0.1108 0.427 0.3365 0.011

L1 −0.1569 0.032 0.1063 0.074

V1 0.2376 0.033 0.1332 0.054

Grade 2 0.1032 0.467 0.0557 0.605

Grade 3 0.4342 0.004 0.1800 0.112

Grade X 0.5504 0.049 0.1968 0.287

Sex (female) −0.0091 0.862 0.0179 0.713

Age at diagnosis −0.0670 0.002 −0.0043 0.833

Intercept −1.0471 <0.001 −1.4258 <0.001

For the overall model, p < 0.001 (t test). Each coefficient represents the relative increase of the DLS score associated with that variable. Bold indicates
statistically significant input variables (p < 0.05).
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our analysis, the lymphovascular invasion was not formally re-
evaluated for the purposes of this study and thus may not be
exhaustively recorded. While we were able to show that individual
patches containing TAF can be reproducibly identified, suggesting
that the feature is readily learnable, further work is required to
validate the prognostic value of pathologists’ case-level quantita-
tion of TAF. Doing so will require the development of guidelines to
ensure consistent scoring across pathologists. While the use of a
clustering algorithm facilitated the identification of TAF, the
clusters themselves are based on image similarity rather than
specific histopathological concepts. Thus, in building on the
methods and findings here, pathologist-guided refinement of
algorithm-derived feature clusters may lead to even more
prognostic and well-defined features. Finally, the cluster analysis
provided valuable insights into the features that could explain the
variance in DLS scores, but there may be additional important
features that were not identified by these specific clusters. For
example, generating clusters using embeddings from different
machine learning models25 could potentially help identify
additional features that further explain DLS predictions.
To conclude, the present work demonstrates the application of

deep learning methods to learn and describe histomorphologic
features with prognostic value for colorectal cancer, without pre-
specification of features. The prognostic predictions of the DLS
provided significant risk stratification in both stage II and stage III
cases, even after adjusting for a number of clinicopathologic
features including T category, N category, and tumor grade.
Individual histologic features associated with risk predictions by
the DLS were also characterized, providing a framework for future
efforts in explaining weakly supervised models in histopathology.
Finally, this analysis enabled the description and reproducible
identification of a visually distinctive machine-learned feature with
independent prognostic significance. This ability to learn from
machine learning represents an important first step in allowing
experts to further study new concepts discovered using weakly
supervised deep learning models.

METHODS
Data cohorts
This study utilized archived formalin-fixed paraffin-embedded, hematoxylin
and eosin-stained pathology slides from the Institute of Pathology and the
BioBank at the Medical University of Graz41. Institutional Review Board
approval for this retrospective study using de-identified slides was obtained
from the Medical University of Graz42,43 (Protocol nos. 30–184 ex 17/18). All
available slides in archived stage II and stage III colorectal cancer resection
cases between 1984 and 2013 were retrieved, de-identified, and scanned
using a Leica Aperio AT2 scanner at 20X magnification (0.5 μm/pixel). The
complete set of digitized whole slide images (WSIs) consisted of 6,437 cases
and 114,561 slides. Additional de-identified clinical and pathological
information corresponding to each case was extracted from pathology
reports44,45 along with data from Statistik Austria. This information included
pathologic TNM staging, tumor grade (G), resection margin status (R), sex,
and age at diagnosis. When indicated in the report, the presence of
lymphatic invasion (L) and venous invasion (V) were also extracted. DSS was
inferred from the International Classification of Diseases (ICD) code available
for the cause of death and only colorectal cancer-associated ICD codes were
considered disease-specific (C18, C19, C20, C21, C26, and C97), with other
types of cancer excluded.
All 114,561 slides underwent manual review by pathologists to identify

the stain and tissue type. Immunohistochemistry-stained slides and non-
colorectal specimens such as lymph node, small intestine, and other tissue
types, were excluded. In addition, cases with low tumor content, death
within 30 days of surgical resection, and secondary tumor resections were
also excluded, leaving 43,780 slides from 5629 cases (Supplementary Fig. 1).
These slides were partitioned into two cohorts. All cases from 1984 to 2007
were assigned to the first cohort, which was randomly subdivided into a
training set, a tuning set, and the first validation set in a 2:1:1 ratio. To
further evaluate the performance of the model and assess temporal
generalizability, all cases from 2008 to 2013 were assigned to the second
validation set. This division of years was used to ensure 5 years of follow-up
were available for all cases, and that validation set 2 contained an
arbitrarily determined 5 years' worth of cases. The validation set 1 contains
1239 cases with 9340 slides while validation set 2 contains 738 cases with
7140 slides (Table 1). The distributions of clinical metadata in the validation
sets are described in Supplementary Table 1, and the Kaplan–Meier curves
for all splits are shown in Supplementary Fig. 8.

Table 5. Multivariable regression of case-level DLS score using clustering-derived features as input.

Feature # Description Validation Set 1 Validation Set 2

Coefficient p R2 Coefficient p R2

72 Small clusters of moderate to high-grade tumor cells intermixed with substantial
adipose and a minor component of desmoplastic stroma

0.2269 <0.001 0.57 0.2913 <0.001 0.61

139 Low-intermediate grade tumor with predominant stroma of mature and intermediate
desmoplasia

0.1977 <0.001 0.1650 <0.001

23 Small clusters of high-grade tumor cells with predominant, mature desmoplasia and
moderate TILs

0.1096 <0.001 0.1931 <0.001

96 Small clusters of high-grade tumor cells, including single tumor cells, and a moderate
amount of mature and intermediate desmoplasia

0.1031 <0.001 0.1996 <0.001

146 Low-grade tumor with moderate differentiation and desmoplastic stroma with
mature desmoplasia and occasional TILs

−0.1248 <0.001 −0.2133 <0.001

122 Out of focus regions; predominantly low-grade tumor with tubule formation. −0.1323 <0.001 −0.2867 0.187

104 Low and Intermediate grade tumor with tubule formation and small, solid regions;
Stroma with mature desmoplasia

−0.1461 <0.001 −0.0505 <0.001

44 Intermediate grade tumor with irregular tubule formation; mature desmoplasia and
focal areas of TILs

−0.1510 <0.001 −0.1081 <0.001

101 Predominantly intermediate grade tumor with irregular tubule formation; minor
component of mature, desmoplasia

−0.2312 <0.001 −0.0420 0.313

144 Low-grade tumor with tubule formation and minor component of mixed stroma
containing mature and intermediate desmoplasia with occasional, moderate TILs

−0.3476 <0.001 −0.3794 <0.001

Intercept N/A 0.1256 0.002 0.1996 <0.001

Adding remaining 190 features N/A N/A 0.73 N/A N/A 0.80

For the overall model, p < 0.001 (t test). Each coefficient represents the relative increase of the DLS score associated with that variable. Bold indicates
statistically significant input variables (p < 0.05).
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DLS overview
The DLS consisted of two separate models applied sequentially. First, a
tumor segmentation model was applied on each whole-slide image (WSI)
to generate a region of interest (ROI) mask. A prognostic model was then
trained and evaluated to predict case-level DSS using image patches
sampled from these ROI masks (Supplementary Fig. 2).

Tumor segmentation model
In order to identify tumor-containing regions at scale, we first developed a
model for colorectal adenocarcinoma detection using an approach similar
to that previously described46. Briefly, a convolutional neural network
(CNN) was developed in a patch-based supervised learning approach using

WSIs from pathologist-annotated colorectal slides. These annotations
involved pixel-level outlines of colorectal adenocarcinoma, normal color-
ectal epithelium, atypical epithelium, necrosis, and an “other” category
comprised of entities within tumor-containing regions such as fibrosis,
ulceration, large areas of stroma within the tumor, and areas with evidence
of treatment effect. Regions such as normal non-epithelial tissue (e.g.,
muscle and submucosa) were not annotated. A sample annotated slide is
provided in Supplementary Fig. 3.
The 265 annotated slides were split into the train, tune, and test split in a

ratio of 3:1:1. After reviewing notes provided by the annotator, 21 slides
were dropped either due to slide quality issues or incomplete annotations.
This resulted in 149 slides for training, 51 slides for tuning, and 44 slides for
testing (all within the training split). A CNN based on the Inception-v347

Fig. 2 Representative patches for clustering-derived features associated with predictions of the deep learning system (DLS). Sample
patches for a set of 10 clustering-derived features are shown. For each feature, the ten patches closest to the centroid were selected, after
filtering to ensure they were from distinct cases (“Methods”). The case-level quantitation of these 4 high-risk and 6 low-risk features explains
the majority of the variance in case-level DLS scores. Features are ranked according to the average DLS score, which is provided in
parentheses. Scale bar indicates 0.1 mm.
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Fig. 3 Visualizations and survival analysis of the clustering-derived feature with the highest DLS-predicted risk score (tumor-adipose
feature, TAF). a Additional sample patches of the TAF cluster, each from a unique case. Scale bar indicates 0.1 mm. b Kaplan Meier curves on
both validation sets for patients stratified by quantitation of TAF. These curves were generated following the same procedure as in Fig. 1. In
stage II cases, the deviation in at-risk counts from the quartile marks for the low-risk and medium-risk groups are because many stage II cases
did not contain any TAF.
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architecture with reduced parameters (depth_multipler=0.1) was trained
to distinguish between adenocarcinoma and all other classes on a per
patch basis. Details on model architecture and hyper-parameter tuning are
in Supplementary Table 8. The model achieved an AUC of 98.50. This
colorectal adenocarcinoma detection model was used to generate ROI
masks. Only patches from within the ROI masks were used to train and
evaluate the prognostic model.

Region of the interest mask generation
The tumor model was used to generate binary ROI masks for all slides.
Running the tumor model with a stride of 64 (at magnification 20×, 0.5 μm
per pixel) resulted in tumor probability heatmaps of resolution 32 μm per
“superpixel”. To generate binary ROI masks from the continuous tumor
probability output of the tumor model, a threshold t was selected to
binarize the tumor model output for each patch. Next, denoising was
performed by computing the connected components of positive regions
and removing components with fewer than eight superpixels. Finally, to
include tumor-proximal regions in addition to tumor when training the
survival model, the tumor-positive regions from the tumor model were
dilated with a circular filter of radius r. For optimizing the selection of t and
r, ROI masks were generated for three different values of the probability
threshold t and the dilation radius r when tuning the prognostic model.
The thresholds evaluated during tuning corresponded to recall of 95%,
90%, and 75% on the tune split (Supplementary Table 9). The values used
for the dilation radius r were 0, 4, and 16 superpixels. The threshold t and
dilation radius r were selected to optimize DLS performance on the tune
split of the entire development set. During inference, we aligned the ROI
masks to the output resolution of the prognostic model (patch size of 256
pixels across at 5× magnification, or 512 μm). Only image patches where at
least half of the patch was contained in the ROI mask were used for
prognostication.

Prognostic model neural network architecture and survival
loss
The neural network architecture for the prognostic model was designed to
predict a case-level risk score given a set of image patches sampled from
the tumor containing regions in a case and was previously described48. The
architecture consisted of several CNN modules with shared weights for
extracting dense feature vectors from each input patch, an average
pooling layer for merging the set of patch-level feature vectors into a
single case-level feature vector, and a final Cox regression layer for
computing a scalar case-level risk score (see Supplementary Fig. 2C).

The CNNs consisted of depth-wise separable convolution layers, similar to
the design of MobileNet48,49. This type of convolution layer has fewer
parameters than standard convolution layers, which reduces computation
and helps avoid overfitting. The filter size in each layer and the number of
layers were tuned via a random grid-search50 (Supplementary Table 10).
For the weakly supervised survival prediction tasks, the location of

informative patches in each WSI is not known. Our approach of randomly
sampling n patches within each slide helped ensure informative patches
were selected during training. If each patch has a certain probability of
being informative, the probability of not sampling any informative patches
decreases exponentially with the increase of n. This approach also
generalizes to different numbers of slides per case, enabling use in real-
world datasets that may contain many slides per case (average of 18 slides/
case in our study).
The loss function during training was the Cox partial likelihood51, which

was selected based on a preliminary experiment on the tune set where it
performed the best (by a small margin) amongst the three survival loss
functions (Supplementary Fig. 9). By contrast, in our prior work with
different cohorts, different inclusion criteria, and only one slide per case48,
the censored cross-entropy loss function performed better, indicating
value in further work to better understand the optimal loss function. The
Cox partial likelihood is formulated as follows:

max
Y

i:Oi¼1

ef ðXiÞP
j:Tj�Ti

ef ðXjÞ
(1)

where for the ith case, Ti is the event time or time of last follow-up, Oi is an
indicator variable for whether the event is observed, Xi is the set of WSIs.
The function f represents the prognostic model, and f(Xi) is the scalar case-
level risk score. In our implementation, we used Breslow’s approximation52

for handling tied event times due to its simplicity of implementation.
During training, we approximated the full loss at each training step by
evaluating it over the examples in the training batch.

The prognostic model training procedure
The prognostic model was trained on both stage II and stage III cases.
Training examples consisted of sets of 16 image patches per case sampled
randomly across regions of interest produced by the ROI model. Images
were first normalized to a standard color distribution based on the color
statistics in the training set46 and then augmented by color and orientation
perturbations described previously46. Numerical optimization of network
parameters was done using the Adam optimizer53. Hyperparameters
governing ROI mask generation, patch extraction, model architecture and

Table 6. Average and interquartile range of DLS scores across patches for clustering-derived features and known histologic features.

Source of feature Feature name DLS score mean
(95% CI)

DLS score interquartile range

Known features (manually annotated by pathologists; 87,325
patches across 161 slides)

Lymphovascular invasion 1.03 [0.33, 1.95] [0.09, 1.82]

Perineural invasion 0.75 [0.14, 1.28] [−0.18, 1.68]

Intratumoral budding 0.33 [0.00, 0.59] [−0.63, 1.15]

Peritumoral fibrosis 0.26 [0.02, 0.42] [−0.73, 1.18]

Peritumoral budding 0.10 [−0.10, 0.30] [−0.96, 0.94]

Other adenocarcinoma −0.46 [−0.57, −0.36] [−1.36, 0.25]

Polyp −0.86 [−1.26, −0.59] [−1.57, -0.24]

Clustering-derived (from clusters identified by a deep learning-
based visual similarity model; 2,568,691 patches across
9340 slides)

72 2.76 [2.59, 2.93] [1.66, 3.74]

139 0.97 [0.91, 1.02] [0.40, 1.61]

96 0.74 [0.69, 0.80] [0.13, 1.42]

23 0.74 [0.68, 0.78] [0.08, 1.38]

44 −0.56 [−0.61, −0.50] [−1.14, −0.02]

146 −0.57 [−0.62, −0.52] [−1.19, 0.03]

101 −0.58 [−0.62, −0.54] [−1.13, −0.04]

104 −0.59 [−0.64, −0.53] [−1.18, −0.02]

122 −0.86 [−1.04, −0.71] [−1.34, −0.35]

144 −0.87 [−0.91, −0.83] [−1.38, −0.35]

Confidence intervals were computed via block bootstrapping.
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optimizer were tuned by selecting the best performing configuration
across 100 random configurations from the full hyperparameter search
space (Supplementary Table 10). Models were trained for 2 million steps in
a distributed fashion, using 50 workers with 16 CPU processors each.

Prognostic model evaluation procedure
Each model was evaluated every 10,000 steps on the tuning set using a
sample of 1024 patches per case. The best checkpoint for each model was
selected by taking the maximum after applying a rolling average with a
window size of 10. The best checkpoints for five models that achieved the
highest c-index on the tuning set were ensembled to form the final
prognostic model. To generate a case-level prognostic risk score, the
ensembled prognostic model was run exhaustively over all non-
overlapping patches within the ROI mask.

Evaluating DLS performance
We used three evaluation metrics to assess the prognostic ability of the
DLS for DSS: 5-year survival AUC, hazard ratio, and c-index. All analyses
were done for stage II and stage III independently, and for the two stages
combined. The 5-year AUC was used because every case in both
validation sets had at least 5 years of follow-up. The 5-year AUC was used
because every case in both validation sets had at least 5 years of follow-
up. These analyses (as well as the data splits and inclusion/exclusion
criteria) were pre-specified and documented prior to running the model
on the validation sets. Multivariable hazard-ratio analyses for Stage II and
Stage III were pre-specified as the primary analyses. In the two validation
sets, 10% of examples were censored prior to 5 years due to non-disease-
specific death; these examples were excluded for the purposes of 5-year
DSS AUC computation, but incorporated as right-censored for hazards
ratio and c-index computation. The 5-year AUC for the clinicopathological
variables and the combination of these clinicopathological variables with
the DLS was computed using the sklearn.metrics.roc_auc_score function
in the Python sklearn package (v0.23.2).
To compute the hazard ratio for the DLS as well as the clinicopatho-

logical variables, Cox proportional hazards regression models54 were used.
The case-level DLS scores and age were treated as numeric variables. DLS
predictions were rescaled to have zero mean and unit variance. Age was
centered at the mean age scaled down by a factor of 10, such that the
hazard ratio for age corresponds to the risk increase per decade of age. All
other variables were coded as categorical (dummy/indicator) variables.
Survival times were discretized into months for all analyses.
Cox regression models were also used to calculate c-indices55 for the

DLS, the clinicopathologic features alone (baseline model), and for the DLS
combined with these variables (combined model). These Cox models were
fit on the tune set and applied to both validation sets. C-indices were
computed using the lifelines.utils.concordance_index() function in the
Python Lifelines package (v0.24.6). Confidence intervals for the c-index
were generated via paired bootstrap resampling with 9999 samples.
For Kaplan–Meier analysis, cases were stratified into low- and high-risk

groups using thresholds determined using cases from 2002 to 2007 on the
tune set, to account for the temporal shift in case characteristics shown in
Supplementary Table 1. The low-risk threshold is the 25th percentile of the
tune set risk scores, while the high-risk threshold is the 75th percentile of
the tune set risk scores. Different thresholds were selected for stage II
cases, stage III cases, and the combination of stage II and stage III cases.
The Python Lifelines package (version 0.24.6)56 was used for Kaplan–Meier
analysis and Cox regression analyses, using the lifelines. KaplanMeierFitter
and lifelines.CoxPHFitter classes. The REMARK checklist for reporting is
provided as Supplementary Table 11.

Understanding DLS predictions
The following analyses were conducted in an exploratory manner after the
DLS was applied to the validation sets. All annotations and histologic
reviews were performed with the raters blinded to both the DLS’s
predictions and the outcomes of the relevant case.

DLS association with clinicopathologic features
The association of the DLS with case-level clinicopathologic features was
evaluated via multivariable linear regression (Table 4). The case-level DLS
scores were standardized to have zero mean and unit variance. All
clinicopathologic features except age (at the time of diagnosis) were
coded as indicator variables. Age was centered at the mean age and scaled

down by a factor of 10, such that the coefficient for age corresponds to the
risk increase per decade of age. The proportion of variance in DLS scores
explained by these features was evaluated using the adjusted coefficient of
determination (R2).

DLS association with clustering-derived features
We next studied the association of the DLS with histologic features derived
from clustering (Table 5). To obtain these histologic features, we leveraged
a previously-described image-similarity deep learning model25,26 that was
trained to distinguish between similar and non-similar natural (non-
histopathology) images. This model was used to generate patch-level
embeddings that captured visual similarity. Embeddings for a sample of
100,000 tumor-containing training set image patches were clustered using
the k-means algorithm as implemented in the Python sklearn package
(v0.21.3). The total number of clusters (k) was chosen based on the fit on
the tune set (described next) when using the best subset of ten features
(described next). Values of k explored were: 10, 25, 50, 100, 200, 300, 400,
and 500. K= 200 clusters were found to be optimal. The centroids of these
200 clusters, which were fit on the sample of patches from the training set,
were used to assign each tumor-containing patch in both validation sets to
a cluster. For each case, the percentage of patches belonging to each
cluster was computed.
Next, the association of the DLS with these features was also evaluated

via multivariable linear regression in a similar manner to the procedure for
clinicopathologic features above. The clustering-derived features were
scaled to range from 0 to 100, indicating the percentage of tumors in the
case belonging to each feature. A subset of 10 features was selected for
more in-depth characterization from the full set of 200 features using
forward stepwise selection with the objective of maximizing the R2.
To provide morphological descriptions for the subset of 10 features, 15

patches per feature were presented independently to two pathologists for
review (a subset of 10 per feature is shown in Fig. 2). The selected patches
were those that were closest to each feature’s centroid (and filtered to
ensure that for each feature, each patch was sampled from a different
case). The pathologists were blinded to any additional information about
the feature and provided histopathological review via a structured form.
The presence of a tumor, stroma, adipose, and TILs was scored semi-
quantitatively as absent, low, medium, or high. The tumor was graded as
low, intermediate, or high grade, and fibrosis (if present) was graded as
mature, intermediate, or immature57. Additional free-text descriptions of
tumor and stroma for each cluster were also provided by each pathologist.

DLS association with patch-level histoprognostic features
To evaluate the association of DLS predictions with known histoprognostic
features, we annotated 161 slides for several known features previously
reported to be associated with adverse prognosis in colorectal cancer. The
slides used for this purpose were randomly selected from 161 cases in the
validation set 2. Annotated features included lymphovascular invasion,
perineural invasion, intratumoral budding, peritumoral budding, and
peritumoral fibrosis. When present, polyps were also annotated to provide
another histologic class for comparison. Board-certified pathologists
(without gastrointestinal subspecialty training, median pathologist experi-
ence: 6.5 years post-training, range 3–17 years) were asked to exhaustively
annotate the tumor-containing regions of each slide for these features.
For each histoprognostic feature, the average patch-level DLS score

among all patches annotated for that feature was computed. For
comparison, we also computed the average patch-level DLS score among
all patches for each clustering-derived feature. For both analyses, 95%
confidence intervals for the average DLS score were computed via blocked
bootstrapping at the slide-level.

Tumor-adipose feature
To understand if people could accurately identify TAF, we extracted both
TAF-containing and non-TAF-containing image patches from tumor-
containing regions (based on the tumor segmentation model). Each patch
was 256 × 256 pixels at 5× magnification (0.5 mm2). Participants have first
presented 50 TAF patches (as determined by the clustering algorithm) as
learning material (see Supplementary Data 1). Of these, 25 (Fig. 3a) were
closest to the centroid and thus the most representative of the cluster-
derived feature. Another 25 patches were randomly sampled from the
cluster. These randomly sampled patches potentially included examples
without the pathologist-identified tumor adipose feature and were
included to provide examples of the diversity of patches assigned to the
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cluster. Within each set of 25, each patch came from a distinct case. The
participants (two anatomic pathologists: I.F-A. and T.B. and three non-
anatomic-pathologists: E.W., D.F.S., and Y.L.) reviewed the above material
and then completed a separate practice round of indicating whether they
perceived each of 50 additional patches to be TAF or not (see
Supplementary Data 2). Clustering algorithm labels were subsequently
provided as feedback. Finally, we prepared an independent set of 200
patches, of which 100 were randomly sampled from all patches classified
by the clustering algorithm as TAF, while the remaining 100 were
randomly sampled from all patches not classified as TAF (see Supplemen-
tary Data 3). The participants again indicated whether each patch was TAF
or not. To avoid biasing this study of the cluster-derived feature, these
patches were not otherwise filtered or reviewed by a pathologist to fit any
annotator’s mental concept of TAF. As an additional exploratory analysis,
we also generated TAF patches by finding cluster centroids using the
validation set 2 instead of the validation set 1, with similar results
(Supplementary Fig. 10).

Model inference speed
The inference timings per case are 11 ± 7min (±standard deviation) for a
single machine with 16 cores; 13 ± 8 s for 50 such machines in a cloud
environment; and 8 ± 5 s for a commercially-available accelerator, Google
Cloud Tensor Processing Unit (v2). These timings range from being
comparable to significantly faster than slide preparation and digitization,
which can take a few minutes per slide (multiplied by about ten slides per
case on average; See Table 1).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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