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Characterization of activity behavior using a digital medicine
system and comparison to medication ingestion in patients
with serious mental illness
Jeffrey M. Cochran 1✉, Zahra Heidary1 and Jonathan Knights 1

Activity patterns can be important indicators in patients with serious mental illness. Here, we utilized an accelerometer and
electrocardiogram incorporated within a digital medicine system, which also provides objective medication ingestion records, to
explore markers of patient activity and investigate whether these markers of behavioral change are related to medication
adherence. We developed an activity rhythm score to measure the consistency of step count patterns across the treatment regimen
and explored the intensity of activity during active intervals. We then compared these activity features to ingestion behavior, both
on a daily basis, using daily features and single-day ingestion behavior, and at the patient-level, using aggregate features and
overall ingestion rates. Higher values of the single-day features for both the activity rhythm and activity intensity scores were
associated with higher rates of ingestion on the following day. Patients with a mean activity rhythm score greater than the patient-
level median were also shown to have higher overall ingestion rates than patients with lower activity rhythm scores (p= 0.004).
These initial insights demonstrate the ability of digital medicine to enable the development of digital behavioral markers that can
be compared to previously unavailable objective ingestion information to improve medication adherence.
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INTRODUCTION
Activity patterns and circadian rhythm are often disrupted in
patients with serious mental illness (SMI)1–5, and thus, characteriz-
ing related behaviors could provide useful behavioral markers that
enable better understanding and assessment of patients’ disease
state. Wearable sensor data, such as accelerometer-derived step
count and electrocardiogram- (ECG-) measured heart rate, have
been used to quantify this activity markers6–9.
Additionally, insufficient medication adherence is a significant

concern for patients with serious mental illness10,11 and can lead
to poor outcomes, such as the increased risk of relapse and
diminished quality of life12,13, as well as increased utilization of the
healthcare system10,14. Traditional methods of inferring medica-
tion adherence are typically subjective or only track proxy markers
of ingestion15,16. This limitation presents a clear opportunity for
digital medicine, which refers to the combination of an active
pharmaceutical with an ingestible sensor that enables the
objective recording of medication ingestion via a mobile
application17, providing more direct insight into patients’ medica-
tion ingestion patterns18,19 than other common proxy measures of
adherence.
The digital medicine system (DMS) utilized here17 also non-

invasively records complementary information, such as step count
and heart rate, that can provide further insight into patient
behavior (Fig. 1). The combination of this behavioral data with
objective ingestion data provides a unique opportunity to explore
relationships between patterns of patient activity and medication
ingestion behavior, which could both contextualize the behaviors
that are associated with good or poor adherence and lead to the
development of behavioral markers of adherence that could be
more broadly applied.
Here, we present a retrospective analysis of the activity cycles of

patients with serious mental illness using the DMS. First, we

analyzed the consistency of subjects’ step count patterns by
comparing the most prominent spectral feature in each subject’s
step count oscillations across their treatment regimens. We also
explored subjects’ heart rates during active intervals compared to
their mean daily heart rates as a potential marker of activity
intensity. In order to explore whether these behavioral markers
were related to differences in patient ingestion patterns, the
activity metrics were compared to medication ingestion at both a
patient-level and a daily level. Highly consistent activity patterns
were linked to higher rates of medication ingestion.

RESULTS
DMS data
In this analysis, accelerometer-based step counts, measured at 1-
min intervals, and ECG-derived mean heart rates, measured at 5-
min intervals, were used to characterize patient activity patterns.
These data were then partitioned into 15-min intervals, with the
total step count and mean heart rate calculated across each
interval. Additionally, time-stamped ingestion records were
recorded when a patient wearing the DMS patch ingested a pill.

Activity rhythm feature
In order to characterize the consistency of activity patterns, the
time-series of the 15-min resolution step count data for a given
day and the two preceding days was analyzed using the
Lomb–Scargle periodogram20–22, which produced a power spec-
tral density (P) and characteristic frequency (fc) for each day that
had a sufficient amount of data (see “Methods” section). Because
we were interested in the consistency of a patient’s step count
relative to previous days’ patterns, we then defined an activity
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rhythm score (AR), such that

ARm ¼ Pm fh ið Þ
Pm fmc

� � ; (1)

where ARm is the activity rhythm score on the mth day, fmc is the
characteristic frequency on the mth day, Pm is the Lomb–Scargle
periodogram amplitude calculated using the 3-day window of
step count data ending on the mth day, and 〈f〉 is the mean of
the characteristic frequencies of all previous days for that patient
(Fig. 2). By this definition, larger values of ARm indicate that the
mth day step count pattern is more consistent with previous
days’ activity rhythms.

Active heart-rate feature
In order to characterize the intensity of activity undertaken by
patients, we also identified active 15-min intervals for each
patient-day, by classifying as “active” any interval in which at least
one-third of the available accelerometer records within the 15-min
interval reported a vertical posture angle, i.e., an angle greater
than or equal to 30° above horizontal, and a step count greater
than 0 (Fig. 3a). We then calculated an active-interval relative heart

rate rHRA, such that

rHRm ¼ Active HRh im
HRh im

; (2)

where rHRm is the patient’s active-interval relative heart rate on
themth day, 〈Active HR〉m is the average heart rate within all active
intervals on the mth day, and 〈HR〉m is the patient’s average heart
rate across the entirety of the mth day (Fig. 3b).

Study population
The population analyzed here included 113 subjects with SMI
across two separately conducted clinical trials23,24. Table 1
contains a summary of the clinical and demographic features of
the subjects in these trials. Of the available population, 95 patients
had data that was analyzable per the criteria discussed in the
“Methods” section, resulting in a total of 2525 analyzable days, i.e.,
days on which the AR score could be calculated, of a possible
4231 days for which this metric could have been calculated across
the full 113-subject data set. The median number of days per
patient was 29 with an interquartile range (IQR) of 23.5.

Fig. 1 Schematic of the digital medicine system (DMS). The DMS consists of an ingestible sensor embedded within a tablet of aripiprazole.
The sensor logs an ingestion by communicating with a torso-worn patch. In addition to recording ingestion events, the patch also contains an
accelerometer and ECG. Data are sent from the patch to a smartphone app and stored on a cloud server where it can be accessed by patients
or designated caregivers.

Fig. 2 Activity rhythm (AR) score calculation example. In order to calculate AR for a given day, the Lomb–Scargle periodogram is applied to a
3-day of window of step-count data leading up to and including that day, and a characteristic frequency fc is calculated for the time-series. AR
is then defined as the amplitude of that Lomb–Scargle periodogram at the mean of all characteristic frequencies from earlier days divided by
the amplitude of the periodogram at fc. Thus, AR is a measure of how consistent the step count pattern is, relative to the pattern of
earlier days.
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Comparison of activity features and ingestion
We first explored the relationship between daily AR and rHR and
next-day ingestion by using all 2525 analyzable days, irrespective
of the patient. Of these days, 83% had recorded ingestions on the
following day. A summary of the daily activity features can be
found in Table 2. Figure 4a, b contains histograms of the activity
features, as well as the fraction of days within each histogram bin
that was followed by an ingestion on the next day. Higher daily AR
values are associated with an increased likelihood of an ingestion

on the following day. The same relationship seems to hold for
next-day ingestion and daily rHR. Figure 4c demonstrates this
finding across both dimensions with a heatmap for the next-day
ingestion as a function of both AR and rHR.
For the comparison of activity metrics to ingestion on a

treatment-regimen timescale, 46 subjects, with a median overall
ingestion rate of 0.88 (IQR = 0.16), had at least 5 weeks of
analyzable days, and thus met the previously described data
quality criteria. We calculated the mean and standard deviation of
both AR, i.e., 〈AR〉 and σ[AR], and rHR, i.e., 〈rHR〉 and σ[rHR], across
all daily values for each patient. Table 2 contains a summary of
these mean and standard deviation features. Of these four
patient-level features, a relationship to the overall ingestion rate
was only seen in 〈AR〉. Patients with high 〈AR〉 values tended to
have high overall ingestion rates; however, patients with lower
〈AR〉 values did not necessarily exhibit lower ingestion rates.
Figure 5 provides an example of this trend when the patient
sample was divided at the median value of 〈AR〉= 0.75. At this

Fig. 3 Active-interval relative heart rate calculation example. a For each patient-day, active intervals are defined as those 15-min intervals in
which at least one-third of the interval’s accelerometer records contained a posture angle greater than or equal to 30° and a step count
greater than 0. b The mean heart rate was then calculated within the active intervals and normalized to the overall mean heart rate for that
day to calculate the active-interval relative heart rate rHRm.

Table 1. Demographic and clinical characteristics of sample.

Sample size, n 113

Females: males (% female) 47:66 (42%)

Age, years (mean ± st. dev.) 46.5 ± 11.1

Race (%)

Black or African-American 67 (59%)

White 39 (35%)

Asian 5 (4%)

Other 2 (2%)

Ethnicity

Hispanic or Latino 5 (4%)

Not Hispanic or Latino 108 (96%)

Diagnosis

Schizophrenia 79 (70%)

Bipolar 1 disorder 22 (19%)

Major depressive disorder 12 (11%)

Aripiprazole dose

2mg 7 (6%)

5mg 8 (7%)

10mg 30 (27%)

15mg 26 (23%)

20mg 18 (16%)

30mg 24 (21%)

Number of days on DMS (mean ± st. dev.) 49.9 ± 10.8

Mean daily step count (mean ± st. dev.) 7480 ± 4258

Mean heart rate (mean ± st. dev.) 85 ± 10

Table 2. Feature summary.

Feature Median (interquartile range)

Daily features

Next-day ingestion rate—all days 0.83

AR 0.81 (0.68)

rHR 1.12 (0.19)

Patient-level features

Overall ingestion rate 0.88 (0.16)

Number of analyzable days 29.0 (23.5)

Fraction of DMS days that are
analyzable

0.53 (0.50)

〈AR〉 0.75 (0.60)

σ[AR] 0.20 (0.16)

〈rHR〉 1.14 (0.08)

σ[rHR] 0.09 (0.06)

Daily features across all patients are presented. Patient-level mean and
standard deviation values are calculated across all analyzable days for each
patient. The medians and interquartile ranges for these features are
presented here.
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cutoff, the subjects with higher 〈AR〉 scores had a median
ingestion rate of 0.91 (IQR = 0.09) while the subjects with lower
〈AR〉 scores had a median ingestion rate of 0.78 (IQR = 0.13), and
the Mann–Whitney U test indicated that the groups were
significantly different (p = 0.004). Note that this trend holds and
is significant, as determined by the p-value of the Mann–Whitney

U test, for all 〈AR〉 cutoff values between 0.58 and 0.86 (see
“Discussion” section).
No calculated features other than AR and rHR (see “Methods”

section) were significantly correlated with ingestion on either a
regimen-level or daily level.

DISCUSSION
The DMS utilized in this work provides both objective ingestion
records and markers of activity, such as step count and heart rate,
in patients with SMI, enabling unique exploration of the relation-
ship between patient behavior and adherence to a treatment
regimen. Here, two specific features were developed to character-
ize patient activity: an activity rhythm score AR, which is a measure
of the degree to which daily step count patterns are consistent
with past behavior, and the relative active-interval heart rate rHR,
which could be related to the intensity of activity.
At the daily level, we see a direct relationship between daily AR

and rHR and the likelihood of an ingestion on the next day. If
these relationships are able to be validated in the future, they
would serve as valuable behavioral markers that help to predict
and improve ingestion behavior in SMI patients that exhibit poor
medication adherence. This improved understanding of a patient’s
behavioral state and its link to medication ingestion could provide
valuable information to inform clinical decision-making regarding
therapy. For example, a disruption in a patient’s activity pattern,
particularly when coupled with poor medication adherence,
maybe a leading indicator of a worsening clinical state; thus,
these metrics could provide early warnings to clinicians prior to
more serious outcomes, such as relapse or hospitalization.
Although the validated interpretation of the causality of these
relationships is beyond the scope of this work, the link between
higher daily AR and next-day ingestion may suggest that patients

Fig. 4 Daily AR and rHR Features vs next-day ingestion. a Histogram of AR values for all analyzable days. The red dots represent the fraction
of days within each bin that are followed by successful ingestion on the next day. Note that the next-day ingestion rate seems to be higher for
days with higher AR values. b Histogram of rHR values for all analyzable days. The red dots represent the fraction of days within each bin that
are followed by successful ingestion on the next day. Note that the next-day ingestion rate seems to be higher for days with higher rHR values.
c Heatmap of next-day ingestion rates as a function of both AR and rHR. The analyzable days are sorted into bins based on their AR quintile
(x axis) and rHR quintile (y axis), and the color of the heatmap represents the fraction of days in each bin that are followed by successful
ingestions on the next day. Note that the values on the x and y axes represent the limits of each quintile for the features. Higher values of both
AR and rHR seem to be associated with higher next-day ingestion rates.

Fig. 5 Patient-level AR versus overall ingestion rate. Boxplot of the
overall ingestion rate for these patients divided at the median 〈AR〉
value of 0.75 into high- and low-〈AR〉 groups. Here, the center lines
of the boxplots represent the median value, the box limits represent
the upper and lower quartiles, the whiskers extend to 1.5 times the
interquartile range, and outliers are represented by open circles.
Note that only patients with at least 5 weeks of analyzable data were
included in this sample. The high-〈AR〉 group has high overall
ingestion rates while the low-〈AR〉 group has a much wider
distribution of ingestion rates. The Mann–Whitney U test p-value
between these groups is 0.004. Note that there is significant
differentiation between the groups for a range of 〈AR〉 threshold
values (see “Discussion” section).
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with consistent behavioral patterns are more likely to also
successfully adhere to a medication regimen. We note that the
interpretation of the link between rHR and ingestion is somewhat
difficult because rHR is not a direct measure of activity intensity; it
is also dependent on the mean heart rate across the entire day.
Thus, a high rHR value could be indicative of either a relatively
intense active-interval or a day where the patient had a low
baseline heart rate. Conversely, a low rHR value may not only
indicate low-intensity activity but could also be representative of a
day in which a patient has an elevated heart rate during inactive
periods. Thus, interpreting a causal link would require a more
controlled study.
On a patient-regimen level, we found that patients with

relatively high mean AR values (〈AR〉), indicating very consistent
activity patterns, were likely to have high overall ingestion rates.
The logical inverse, however, was not necessarily true. Patients
with lower 〈AR〉 had a wide range of overall ingestion rates. We
found that 〈AR〉 thresholds from 0.58 to 0.86 produced significant
differences in the ingestion rate distributions between the
relatively high- and low-〈AR〉 groups, as measured by the
Mann–Whitney U test. Cutoff values of 〈AR〉 greater than 0.86
did not uniformly produce a significant contrast in ingestion rate
because the limited sample size (N= 46) led to a small group of
relatively high-〈AR〉 patients at these cutoffs. The inability of
threshold values in 〈AR〉 below 0.58 to produce significant contrast
is likely due to a lack of correlation between low 〈AR〉 values and
ingestion rate. While patients with higher 〈AR〉 scores all exhibit
consistent activity patterns across most of their regimens, patients
with low 〈AR〉 scores seem to be more behaviorally hetero-
geneous, which could explain the less robust relationship between
low 〈AR〉 and ingestion rate.
The uniqueness of the objective ingestion data from this DMS

and the activity features developed here represent important
evidence of the potential link between patient activity behavior
and medication ingestion. However, this work does have several
limitations which could be ameliorated by further exploration.
First, the ingestion behavior in this data set is skewed towards
high ingestion rates, potentially due to a more well-controlled
clinical trial setting. Thus, it is difficult to truly determine whether
there is a link between any of the activity features and very poor
adherence. Future work is needed to apply these algorithms to a
larger patient population in a more natural care setting. Some of
the data quality requirements for calculating the AR feature also
further exacerbate the bias of the ingestion data by limiting the
data set to patients that had more robust patchwear and thus
were inherently more likely to have successfully recorded
ingestion events. The utilized criteria for data quality seem to be
reasonable, based on our previous work; however, in future work,
it would be important to explore the tradeoffs between feature
quality and data set bias by tuning the various quality criteria.
Additionally, the current activity rhythm methodology is essen-
tially quantifying the similarity of a daily activity pattern to a
historical mean pattern that is assumed to be unimodal. The SMI
patient population could be prone to a more bimodal distribution
of step count patterns; thus, with larger data sets, it could be
interesting to characterize the similarity of daily activity to
multiple representative patterns. From a data quality standpoint,
the use of a 14-s sample of accelerometer data every minute could
lead to underestimated step counts if subjects engage in very
short bursts of activity. Because this limitation is consistent across
all measurements in the data set, and because the algorithm
utilizes a temporal resolution of 15min, it is likely that missed
short-duration activity will not significantly affect the 15-min step
count values nor the relative patterns of step counts; however,
validation with continuous accelerometer data could provide
more robust evidence. Finally, this was a retrospective analysis of
an available data set, and the study was designed to engineer
activity features from the available DMS data. Thus, it will be vital

to validate both the observed relationship between these activity
metrics and ingestion and the activity rhythm methodology itself
using independent data sets. For example, the AR score could be
compared to markers of circadian rhythm or other techniques for
characterizing activity patterns that use different methods for
calculating the frequency power spectrum. However, to the best
of our knowledge, the publicly available data sets did not have
sufficient longitudinal data, i.e., more than 7 days, to validate our
methodology. This validation will be a focus of future work.
However, with this data set, we were able to calculate other

commonly used non-parametric metrics of rest-activity patterns
including interdaily stability (IS), intradaily variability (IV), and
relative activity (RA) amplitude calculated using the ten most
active daily hours (M10) and five least active daily hours (L5)25–27.
The IV and RA metrics showed modest correlation with the
subject-level 〈AR〉 metric, with Spearman correlation coefficients
of 0.30 and 0.32, respectively; however, none of these rest-activity
markers, i.e., IS, IV, RA, M10, or L5, demonstrated any significant
correlation with overall ingestion rates. Thus, the AR metric, which
is dependent only on relative periodicities of the step count
pattern and does capture the relationship between activity
patterns and medication ingestion, could serve as a valuable
new tool to assess the activity behavior of SMI patients. This work
represents an important step in leveraging sensor data and the
objective ingestion information provided by digital medicine to
better characterize patient activity patterns and to explore the
behavioral context surrounding medication ingestion.

METHODS
Digital medicine system (DMS)
The DMS employed here has been fully described in a previous
publication18. Briefly, the DMS consists of an ingestible sensor embedded
in an active pharmaceutical, in this case, the atypical antipsychotic
aripiprazole, and a patch attached to the torso that both records ingestion
events and contains a three-axis accelerometer and single-lead electro-
cardiogram (ECG). All collected data is uploaded and placed in cloud
storage via a mobile phone application (Fig. 1).
Each measured ingestion is recorded with a timestamp. A recorded

ingestion is a robust indicator that an ingestion occurred; however, the
lack of an ingestion record could result either from the patient truly not
ingesting the medication or from a connectivity issue, e.g., the patient not
wearing the patch.
A 14-s sample of the accelerometer data is measured every minute, and

an on-board algorithm converts this raw data to a step count, mean
acceleration along all three axes, and a mean body orientation angle. The
ECG data is collected over a 14-s sample every 5 min, which is concurrent
with one of the 14-s accelerometer samples in that period. A mean heart
rate is then calculated using the mean of the R-R peak intervals within the
14-s sample.

Study population
The population analyzed here included 113 subjects across two separately
conducted clinical trials23,24. All subjects had been diagnosed with
schizophrenia, bipolar disorder, or major depressive disorder and were
receiving a stable daily dose of aripiprazole prior to the studies. During the
trials, patients received the digital version of their aripiprazole regimen for
an 8-week period. The studies were reviewed and approved by an
appropriate institutional review board (Copernicus Group IRB, Research
Triangle Park, NC) and patients were all deemed capable of using the DMS
and provided written informed consent. Table 1 contains a demographic
and clinical summary of these patients.

Activity rhythm feature
Our primary aim in this analysis was to probe changes in patient activity
patterns across treatment regimens. We chose to use step count as the
input data for this analysis, as it should be expected to oscillate
approximately daily, with few recorded steps during sleep and a higher
step count during waking hours.
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To perform this analysis, we first partitioned all patient data into non-
overlapping, 15-min intervals and calculated the mean step count within
each interval. These 15-min intervals reduced the number of zero-step data
points and enabled the use of data quality criteria (see below) based on
the availability of both the accelerometer data and the relatively sparse
ECG data. For each day, time-series data with a 15-min temporal resolution
for that day and the two preceding days were analyzed using a
Lomb–Scargle periodogram to determine the characteristic frequency.
This three-day window was the shortest timeframe that enabled the robust
fitting of the approximately one-day periodicity of the time-series data. The
Lomb–Scargle periodogram is an algorithm for performing power
spectrum analysis for unevenly sampled time-series data20–22. It is thus
ideally suited to the current application, in which missing accelerometer
data is common due to imperfect patchwear28. Indeed, the Lomb–Scargle
periodogram has been previously applied for identifying frequencies in
other biological time-series29–31. The equation for the Lomb–Scargle
periodogram, which was implemented in Python via the scipy package32,
can be written as follows:

P fð Þ ¼ 1
2

P
n sncos 2πf tn � τ½ �ð Þ� �2P
n cos

2 2πf tn � τ½ �ð Þ þ
P

n snsin 2πf tn � τ½ �ð Þ� �2P
n sin

2 2πf tn � τ½ �ð Þ

" #
; (3)

where

τ ¼ 1
4πf

tan�1

P
n sin 4πftnð ÞP
n cos 4πftnð Þ

� �
: (4)

Here, tn is the nth measurement time-point, sn is the step count at the
nth time-point, and f is the frequency for which the periodogram
amplitude P is being calculated. The characteristic frequency fc for a given
day is then defined as the frequency which maximizes the Lomb–Scargle
periodogram for the three-day window leading up to and including that
day. For instance, if the step-count pattern repeated in a perfect daily
rhythm, fc would be equal to 1⁄(1 day). Here, we are interested in
determining if a patient’s step count pattern on a given day is consistent
with that patient’s previous activity rhythm. As such, we compare each
day’s fc to the mean frequency across all previous days for that patient in
order to define the activity rhythm score AR, such that

ARm ¼ Pm fh ið Þ
Pm fmc

� � ; (5)

where ARm is the activity rhythm score on the mth day, fmc is the
characteristic frequency on the mth day, Pm is the Lomb–Scargle
periodogram amplitude calculated using the 3-day window of step count
data ending on the mth day, and 〈f〉 is the mean of the characteristic
frequencies of all previous days for that patient (Fig. 2). Since Pm fmc

� �
is, by

definition, the maximum value of Pm, ARm exists on the range (0,1]. A value
of ARm= 1 indicates that fmc ¼ fh i while a value of ARm approaching 0
indicates that oscillation at the historic mean frequency 〈f〉 is not present
in the 3-day window ending on the mth day. Thus, larger values of ARm
indicate that the mth day step count pattern is more consistent with
previous days’ activity rhythms.
To ensure data quality, 15-min intervals with fewer than 10 accel-

erometer records or fewer than 2 ECG records were excluded, and
periodogram spectra were not calculated for 3-day windows with fewer
than two-thirds of the expected 15-min-interval time-points, i.e., 192 time-
points (96 windows/day). Other data quality criteria, e.g., requiring one-half
or three-fourths of the expected time-points, were explored and did not
significantly alter any findings. Additionally, we required that there be at
least 5 baseline power spectra in order to calculate 〈f〉 to ensure a
reasonably stable baseline value for 〈f〉; thus, the eighth day of a treatment
regimen is the first day for which a patient could receive an AR score.

Active heart-rate feature
In order to glean insight into the intensity of activity undertaken by
patients, we first identified active intervals for each patient-day. This active-
interval designation was again performed with a minimum temporal
resolution of 15-min. Here, a 15-min interval was identified as “active” if at
least one-third of the available accelerometer records within the 15-min
interval reported a vertical posture angle, i.e., an angle greater than or
equal to 30° above horizontal, and a step count greater than 0 (Fig. 3a). We

then calculated an active-interval relative heart rate rHRA, such that

rHRm ¼ Active HRh im
HRh im

; (6)

where rHRm is the patient’s active-interval relative heart rate on the mth
day, Active HRh im is the average heart rate within all active intervals on the
mth day, and 〈HR〉m is the patient’s average heart rate across the entirety
of the mth day (Fig. 3b). Thus, if the patient has a higher than average
heart rate during his or her active intervals, rHRm would be >1 for that day.
We also calculated daily mean step count, daily mean heart rate, daily

heart rate standard deviation, daily number of active intervals, and a heart
rate analog of the activity rhythm score.

Comparison of activity features and ingestion
We then compared these activity features to medication ingestion on both
a daily basis and on a treatment-regimen timescale. To explore the
relationship between daily activity and ingestion and investigate the
feasibility of predicting ingestions based on behavioral patterns, we
compared a patient’s mth-day activity, i.e., ARm and rHRm, to that patient’s
medication ingestion on day m+ 1. For this daily ingestion, the presence
of recorded ingestion on day m+ 1 was considered a dosing success, and
the lack of ingestion on day m+ 1 was considered a dosing failure,
provided that day m+ 1 contained at least two-thirds of the expected
accelerometer records for that day. Days that contained fewer than this
number of accelerometer records were excluded from the daily analysis.
This was done to increase our confidence that a lack of a recorded
ingestion was actually indicative of a missed ingestion and not just a result
of a lack of patchwear or other connectivity issues. We chose two-thirds as
the threshold for required accelerometer records as a compromise
between maximizing the number of analyzable days and maximizing our
confidence in the day representing a truly missed ingestion. Other
threshold values were explored and did not significantly alter our results.
For the regimen-level analysis, we compared the mean and standard

deviation of each patient’s AR and rHR values across all days to that
patient’s overall ingestion rate, defined as the number of days during
which an ingested dose was recorded divided by the expected number of
ingested doses across the entire regimen, which is defined as the time
period between the first and last recorded patch records. Only subjects
that had at least five weeks of analyzable data, including the baseline
period, were included in this analysis. This cutoff was chosen to ensure that
patient-level ingestion rates were not overly sensitive to single data points.
This comparison provides insight into whether patients’ overall ingestion
patterns are associated with the consistency of their activity patterns over
the full treatment regimen. The significance of the difference in the
ingestion rates between patients with high and low 〈AR〉 was determined
using the Mann–Whitney U test.
All analysis was performed in Python 3.7.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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