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The COVID-19 pandemic overwhelms the medical resources in the stressed intensive care unit (ICU) capacity and the shortage of
mechanical ventilation (MV). We performed CT-based analysis combined with electronic health records and clinical laboratory
results on Cohort 1 (n = 1662 from 17 hospitals) with prognostic estimation for the rapid stratification of PCR confirmed COVID-19
patients. These models, validated on Cohort 2 (n = 700) and Cohort 3 (n = 662) constructed from nine external hospitals, achieved
satisfying performance for predicting ICU, MV, and death of COVID-19 patients (AUROC 0.916, 0.919, and 0.853), even on events
happened two days later after admission (AUROC 0.919, 0.943, and 0.856). Both clinical and image features showed complementary
roles in prediction and provided accurate estimates to the time of progression (p < 0.001). Our findings are valuable for optimizing
the use of medical resources in the COVID-19 pandemic. The models are available here: https://github.com/terryli710/

COVID_19_Rapid_Triage_Risk_Predictor.
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INTRODUCTION

From 30 December to 11 October, the ongoing severe acute
respiratory syndrome-coronavirus 2 (SARS-CoV-2) pandemic has
caused over 37 million coronavirus disease 2019 (COVID-19)
confirmed cases and 1 million deaths globally'. The spread of
COVID-19 continues to overwhelm medical resources without
effective therapeutics and vaccines. In particular, stressed
intensive care unit (ICU) capacity and the shortage of mechanical
ventilation (MV) are major factors that drive COVID-19 mortality
rates”™. To enable sufficient supply of medical resources, rapid
triage method for COVID-effected patients with potentially serious
outcomes has become an urgent priority for reallocating medical
resources as well as distributing patients to balance ICU loads
across affected regions so as to deliver timely treatment®®,

Evaluating the severity of patients with infectious pneumonia has
been applied in clinics such as measuring the acute physiology and
chronic health evaluation Il (APACHE-Il) score and laboratory
indicators including neutrophil-to-lymphocyte ratio (NLR)*™'2. How-
ever, the scoring systems of APACHE-II are highly subjective and
time-consuming while laboratory indicators are not comprehensive
enough to predict the adverse outcomes of the newly emerged
COVID-19. Although computed tomography (CT) assessment by
radiologists is now an important criterion for COVID-19 diagnosis
and severity evaluation of COVID-19'3, it is limited by manual
evaluation of radiologists with marked inter- and intra-observer
variability and unable to provide accurate prognosis prediction.
Better ways to utilize multi-modal data for grouping hospitalized
COVID-19 patients according to their potential clinical outcomes
remain to be developed to deliver specific treatment timely.

In this study, we provided risk stratification based on CT-based
radiomics features and clinical data for COVID-19 patients in terms
of stable or severe disease (requiring ICU) on admission. Then we
developed specific outcome prediction (MV/death) models for

critically ill patients. Finally, we provided insights into estimating
time to the progression (ICU/MV/death) for COVID-19 patients.

RESULTS
Patient cohort

We collected 3522 inpatients with laboratory-confirmed SARS-
CoV-2 infection from December 27, 2019 to March 31, 2020, from
39 hospitals in China. Data inclusion criteria were as follows:
patients received CT examination within 3 days after admission
and we had definitive medical records of short-term outcomes
such as intensive care unit (ICU), mechanical ventilation (MV)
therapy, death (defined as the three prediction tasks), or
discharge. Finally, 2362 patients were used in this study, including
a primary cohort (Cohort 1, n=1662) for model development,
which included patients from 17 hospitals, and a validation cohort
(Cohort 2, n =700) which consisted of patients from nine external
and independent medical centers (Fig. 1, Supplementary Table 1).
In addition, we built a specific subset of Cohort 2 (Cohort 3, n=
662) for patients from the nine medical centers whose time
intervals between admission and progression to critical outcomes
(ICU/MV/death) were more than two days, aiming to evaluate the
performance of our models on predicting events happening at
least two days after admission. Prediction models were built for
three prediction tasks, including ICU (adverse cases in Cohort 1/
Cohort 2/Cohort 3, n =96/59/21, respectively), MV (adverse cases
in Cohort 1/2/3, n =55/39/19), and death (adverse cases in Cohort
1/2/3, n =31/28/20). Note that most patients with death were also
in the MV group, while all patients with MV or death were in the
ICU group. In our study, 2207 patients (93.5%) were discharged
without any adverse outcome (stable group), 155 (6.5%) patients
developed adverse clinical outcomes and were admitted to the
ICU (adverse group), of whom 94 (60.6%) required MV, and 59
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(a)

Inpatients with laboratory-confirmed SARS-CoV-2 infection from 39 hospitals
December 27,2019 and March 31, 2020
N =3522

‘/Exclusion criteria due to one of the following:
a. Patients age < 18 years old (n = 12)
b. Patients transferred to other hospitals or remaining hospitalized without any adverse outcomes (n = 390)
c. Patients lack follow-up information (n = 428)
d. CT scans with slice thickness >2.5mm or convolutional kernel not related to lung (n =322)
‘\e. CT scans lack serial information or with motion artifacts or significant resolution reductions (n = 8)
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Fig. 1

lllustration of workflow in this study. a Our primary cohort (Cohort 1, n = 1662) for model development included patients from 17

hospitals, and our validation cohort (Cohort 2, n = 700) consisted of patients from 7 external and independent medical centers. In addition,
we built a specific cohort (Cohort 3, n = 662) for patients from the 7 medical centers whose interval between admission and progression to
critical outcomes (ICU/MV/death) were more than two days, aiming to evaluate the performance of our models on predicting events
happening at least two days after admission. b Explanation of our data split and the corresponding usages. (1) Step one: feature visualization
of Cohort 1 and Cohort 2 to get the preliminary intuitive sense; (2) Step two: 70% samples of Cohort 1 were picked as the training set using
stratified sampling based on death cases, where fivefold cross-validation was used to tune the hyperparameters of the models; (3) Step three:
model selection was performed on the remaining 30% samples of Cohort 1; (4) Step four: Cohort 2 and Cohort 3 were used to evaluate model

performance in different aspects.

(38.0%) died within 28 days after admission (Table 1, Supplemen-
tary Table 2). This cohort had 1229 men (52.0%) and 1133 women
(48.0%), with a median age of 51.5 years (IQR, 39-64 years). The
median age among men was 57 years (IQR, 45-68 years) and the
median age among women was 52 years (IQR, 39-64 years). No
statistical difference in age was found between men and women
in this cohort.
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Comparison of radiomics models with other modalities

We recognized the marked differences of CT-based radiomics
data (abbreviated as Radiom), Clinical records (abbreviated as
Clin), Laboratory results (abbreviated as Lab), and Radiologists’
semantic data (abbreviated as R-score) on Cohort 1 and Cohort 2
between negative outcome patients (referred to the stable group
where patients discharged without any adverse outcome) and
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Table 1. Clinical characteristics of COVID-19 patients in Cohort 1, Cohort 2, Cohort 3, and the whole cohort.

All patients (n = 2362) Cohort 1 (n=1662) Cohort 2 (n=700) Cohort 3 (n=662) p-value
Demographics
Age (years) 51.720 £ 15.646 52.465 + 15.863 49.953 + 14.984 48.985 + 14.545 <0.001
Gender (male) 1229 (52.0%) 881 (53.0%) 348 (49.7%) 338 (51.0%) 0.143
Comorbidity
Coronary heart disease 172 (7.2%) 123 (7.4%) 49 (7.0%) 36 (5.4%) 0.732
Chronic liver disease 82 (3.4%) 58 (3.4%) 24 (3.4%) 24 (3.6%) 0.941
Chronic kidney disease 29 (1.2%) 18 (1.0%) 11 (1.5%) 8 (1.2%) 0.325
COPD 51 (2.1%) 33 (1.9%) 18 (2.5%) 12 (1.8%) 0.371
Diabetes 261 (11.0%) 191 (11.4%) 70 (10.0%) 59 (8.9%) 0.291
Hypertension 500 (21.1%) 370 (22.2%) 130 (18.5%) 110 (16.6%) 0.045
Carcinoma 61 (2.5%) 44 (2.6%) 17 (2.4%) 15 (2.2%) 0.759
Clinical symptom
Fever 1950 (82.5%) 1340 (80.6%) 610 (87.1%) 580 (87.6%) <0.001
Cough 1651 (69.8%) 1170 (70.3%) 481 (68.7%) 455 (68.7%) 0416
Myalgia 553 (23.4%) 467 (28.0%) 86 (12.2%) 78 (11.7%) <0.001
Fatigue 952 (40.3%) 719 (43.2%) 233 (33.2%) 224 (33.8%) <0.001
Headache 191 (8.0%) 138 (8.3%) 53 (7.5%) 50 (7.5%) 0.551
Nausea or vomiting 116 (4.9%) 84 (5.0%) 32 (4.5%) 30 (4.5%) 0.620
Diarrhea 167 (7.0%) 115 (6.9%) 52 (7.4%) 48 (7.2%) 0.659
Abdominal pain 28 (1.1%) 21 (1.2%) 7 (1.0%) 6 (0.9%) 0.589
Dyspnea 403 (17.0%) 312 (18.7%) 91 (13.0%) 70 (10.5%) 0.001
Outcome
ICU 155 (6.5%) 96 (5.7%) 59 (8.4%) 21 (3.1%) 0.017
MV 96 (3.9%) 55 (3.3%) 39 (5.5%) 19 (2.8%) 0.010
Death 59 (2.4%) 31 (1.8%) 28 (4.0%) 20 (3.0%) 0.002
The mean interval (d) (IQR)*
Admission—ICU 4.4 (1-6) 4.6 (1-6) 4.2 (1-6.5) 8.4 (5-10.5) 0.207
Admission—MV 6.1 (2-9) 6.1 (1-10) 6.1 (2-8.25) 9.6 (5-13.5) 0.758
Admission—death 16.1 (9.5-21.5) 16.5 (9.5-24) 15.6 (10-18) 15.9 (11.8-18.3) 0.386
Admission—discharge 15.7 (7-22) 13.3 (5-9) 19.3 (13-25) 19.3 (13-25) <0.001
P-values show statistically significant differences in features between Cohort 1 and Cohort 2. There were statistically significant differences in prognostic
features (e.g., age, dyspnea) in Cohort 1 and Cohort 2, but there was no significant difference in these features of positive cases (refers to the adverse group
where patients required ICU admission) in the two cohorts (Table S3). Thus, this difference may be due to the discrepancy in the proportion of Hubei cases
(Cohort 1, 69.8%; Cohort 2, 80.1%), which have a higher proportion of severe outcomes (6.9%, 8.6%, respectively).
*Data in parentheses show percentage except for the mean interval where we show interquartile range (IQR). COPD chronic obstructive lung disease, ICU
intensive care unit, MV mechanical ventilation.

positive outcome patients (referred to the adverse group where
patients required ICU admission) (Fig. 2, Supplementary Fig. 1,
Supplementary Table 2). The optimal models for each data type
(i.e., Radiom, RadioClin, RadioClinLab, ClinLab, and R-score) were
chosen on Cohort 1 and validated on Cohort 2 and Cohort 3
(Table 2, Supplementary Tables 4 and 5, Fig. 3). On Cohort 2,
radiomics features alone (Radiom) showed good performance to
predict ICU (AUROC 0.869, AUPRC 0.441), MV (AUROC 0.805,
AUPRC 0.245), and death (AUROC 0.667, AUPRC 0.136). When
combined with clinical features (RadioClin), the performance of
models improved significantly (all three events p-value < 0.001)
(Supplementary Tables 4 and 5). Notably, as we continued to add
the lab results (RadioClinLab), models achieved optimal perfor-
mance on all three events (AUROC ICU: 0.916, MV: 0.919, death:
0.853; AUPRC ICU: 0.563, MV: 0.476, death: 0.248). RadioClinLab
models also outperformed clinical data alone models (ClinLab)
(all three events p-value < 0.001) (Supplementary Tables 4 and 5,
Supplementary Figure 5), suggesting the importance of radio-
mics features in predicting severe outcomes. Similarly, Radio-
ClinLab models also had good performance on Cohort 3 for ICU
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(AUROC 0.919, AUPRC 0.348), MV (AUROC 0.943, AUPRC 0.388),
and death (AUROC 0.856, AUPRC 0.218). These results demon-
strated the models’ ability to predict severe events that occur at
least two days after admission (Table 2, Supplementary Table 5).

Comparison of radiomics with radiologists’ scoring

The performance of Radiom models was overall superior to that of
radiologist score (R-score) models on two validation cohorts on
the three tasks (ICU/MV/death: Cohort 2 AUROC 0.776/0.804/0.678,
AUPRC 0.332/0.222/0.120; Cohort 3 AUROC 0.772/0.736/0.653,
AUPRC 0.137/0.115/0.092) (Table 2). Specifically, Radiom models
had significantly improved predictive value in predicting ICU (p <
0.001) and were comparable to R-score models with a higher
AUPRC for MV (p = 0.003) and death (p =0.021) on Cohort 2. The
predictive value of Radiom for ICU and MV happening 2 days later
was higher than R-score, while there was no significant difference
between these two models on prediction of death on Cohort 3
(Supplementary Tables 5 and 6, Supplementary Fig. 5).
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Key imaging features and clinical prognostic indicators

Among the top-ranking prognostic indicators, clinical data and
radiomics features showed a complementary role with no
significant correlations (Fig. 3, Supplementary Figs. 6 and 7). In
clinical data, mean age >65, dyspnea, higher lactate dehydrogenase
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(LDH) and inflammatory factors (white blood cell (WBC), neutrophil)
are more associated with severe outcomes. Particularly, hyperten-
sion and some inflammatory factors (lower lymphocyte, higher C-
reactive protein (CRP), and neutrophil)) were valuable for predicting
ICU admission, also higher potassium and a-Hydroxybutyrate
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Fig. 2 Radiomics and clinical data heatmap. Heatmap showing the prognostic performance of a radiomics data and b clinical data and R-
score data on Cohort 2 with clustering of features. Hundred and fifty negative patients were randomly selected as well as all patients having
outcomes of ICU admission, Mechanical Ventilation or Death to draw the heatmap. For patients with more than one adverse outcome, they
will appear as samples in each corresponding category. The patients were grouped based on adverse outcomes (i.e., ICU admission, MV, and
death) and whether the event occurred within 48 h after admission. The features were clustered within their categories to better visualize the
data. The differences between negative outcome patients (yellow) and positive outcome patients can be seen from both (a) and (b), with
some features showing different patterns for negative (patients discharged without any adverse outcomes) or positive patients (patients who
required ICU, MV, or death while hospitalized). Almost all CT image features showed good discrimination between negative and severe
outcome patients and had more obvious distinctions compared to clinical data. Among clinical data, lab results and demographics had good
discriminating power. Part of radiologists’ score features had good discriminating power while clinical features have comparatively weak
discriminating power. Regarding the distinctions between ICU admission, mechanical ventilation, and death, CT image features showed better
discriminating power than clinical data. In CT image features, from ICU to MV to death, trends of value increasing or decreasing can be

observed while in clinical data, this kind of trend is not visible.

Cohort 3 (n=662)

AUROC (95% CI) ACC (95% ClI) AUPRC (95% Cl)

0.830 (0.809-0.851)
0.863 (0.825-0.913)
0.919 (0.884-0.962)
0.906 (0.813-0.971)
0.772 (0.722-0.831)

0.760 (0.717-0.831)
0.867 (0.823-0.917)

0.768 (0.704-0.867)

(
(
0.943 (0.918-0.968)
(
0.736 (0.661-0.841)

0.655 (0.589-0.762)
0.790 (0.774 0.808)

0.809 (0.761-0.856)

0.876 (0.843-0.907)
0.954 (0.923-0.971)
0.957 (0.940-0.971)
0.818 (0.757-0.876)
0.968 (0.967-0.968)

0.968 (0.962-0.973
0.969 (0.965-0.971

)
)
0.972 (0.967-0.976)
0.960 (0.949-0.971)
0.971 (0.971-0.971)
0.968 (0.964-0.971)
0.963 (0.957 0.969)
0.969 (0.965-0.973)
0.956 (0.948-0.963)

0.139 (0.109-0.173)
0.226 (0.126-0.401)
0.348 (0.192-0.505)
0.446 (0.294-0.608)
0.137 (0.077-0.257)

0.122 (0.089-0.200
0.209 (0.161-0.297

0.303 (0.166-0.477

)
)
0.388 (0.260-0.533)
)
0.115 (0.074-0.178)

0.104 (0.052-0.178
0.286 (0.236-0.345

0.228 (0.180-0.307.

( )
( )
0.856 (0.804-0.911) 0.218 (0.123-0.361)
( )
( )

0.653 (0.551-0.746)  0.970 (0.968-0.970)  0.092 (0.051-0.249

Table 2. Bootstrapping results of the optimal models in Cohort 2 and Cohort 3.
Cohort 2 (n=700)
Data AUROC (95% Cl) ACC (95% Cl) AUPRC (95% Cl)
ICU
Radiom 0.869 (0.857-0.879) 0.864 (0.836-0.889)  0.441 (0.413-0.480)
RadioClin 0.886 (0.854-0.920) 0.917 (0.876-0.936)  0.480 (0.345-0.590)
RadioClinLab  0.916 (0.892-0.945) 0.928 (0.901-0.944)  0.563 (0.397-0.677)
ClinLab 0.860 (0.735-0.924)  0.803 (0.749-0.860)  0.548 (0.348-0.684)
R-score 0.776 (0.725-0.822)  0.916 (0.916-0.917)  0.332 (0.233-0.422)
mv
Radiom 0.805 (0.759-0.844)  0.944 (0.940-0.947)  0.245 (0.178-0.399)
RadioClin 0.869 (0.836-0.912)  0.944 (0.940-0.950)  0.348 (0.282-0.431)
RadioClinLab  0.919 (0.885-0.944)  0.950 (0.944-0.957) 0.476 (0.400-0.616)
ClinLab 0.722 (0.594-0.838)  0.936 (0.927-0.947) 0.312 (0.192-0.450)
R-score 0.804 (0.738-0.854)  0.944 (0.943-0.944) 0.222 (0.171-0.288)
Death
Radiom 0.667 (0.597-0.746)  0.959 (0.954-0.963) 0.136 (0.093-0.194)
RadioClin 0.802 (0.790 0.819)  0.945 (0.937-0.950)  0.281 (0.251-0.315)
RadioClinLab  0.853 (0.799-0.900) 0.960 (0.957-0.963)  0.248 (0.170-0.401)
ClinLab 0.799 (0.758-0.829)  0.938 (0.932-0.945) 0.222 (0.172-0.271)
R-score 0.678 (0.566-0.760)  0.960 (0.960-0.960)  0.120 (0.071-0.206)
Cl confidence interval, AUROC area under the receiver operating characteristics, AUPRC area under the precision-recall curve, ACC accuracy.

dehydrogenase (HBDH) and several inflammatory factors (lower
lymphocyte, higher CRP) were predictive for MV, while higher D-
dimer provided great diagnostic value for death. Most clinical
variables were independently correlated with disease progression
(Supplementary Note 1). Furthermore, GLSZM-based, GLCM-based,
and first-order radiomics features were important features for the
prediction of outcomes. In addition, our R-score model suggested
that diffuse pulmonary parenchymal ground-glass and consolida-
tive pulmonary opacities in the left upper lobe and pleural effusion
increased the adverse outcomes (ICU, MV, death) in COVID-19
patients. Notably, crazy-paving on the initial CT chest was a risk
factor of death (Supplementary Table 6, Supplementary Fig. 8).

Individual severe-event-free survival analysis and
performance of time-to-event models

Next, we used time-to-event modeling to stratify survival out-
comes of patients. We first separated the patients into high-risk
and low-risk groups and evaluated the survival curves of the two
groups. Kaplan-Meier curves using the predicted score with the
optimal RadioClinLab were generated (Fig. 4). The high-risk group
(ICU: 40 observations with 18 events, MV: 23 observations with 8
events, death: 13 observations with 3 events) had a much lower

Published in partnership with Seoul National University Bundang Hospital

survival probability compared to the low-risk group (ICU: 642
observations with 32 events, MV: 659 observations with 28 events,
death: 669 observations with 19 events) in all 3 tasks with a
significant statistical difference (p < 0.001, log-rank test).
According to the results of time-to-event prediction (Supple-
mentary Table 10) on Cohort 2, the RadioClinLab showed the
highest concordance index values on three prediction tasks (0.917,
0.888, and 0.906). In addition, the RadioClinLab outperformed
other models on ICU and MV prediction (Brier score 0.061 and
0.053) while the ClinLab model performed best on death
prediction (Brier score 0.028). On Cohort 3, RadioClinLab showed
the highest concordance index values on three tasks: 0.921, 0.884,
and 0.911 and the lowest integrated Brier score on ICU and MV
prediction: 0.039 and 0.036 while the ClinLab model showed the
lowest integrated Brier score of 0.027. The bootstrapping
resampling (Supplementary Table 11) showed that on Cohort 2,
RadioClinLab showed the highest concordance index on three
tasks (p < 0.001, paired one-sided t-test) and the lowest integrated
Brier score on ICU and MV prediction (p < 0.03) while there was no
statistically significant difference in the integrated Brier score
values between RadioClinLab and ClinLab on death prediction.
Generally, these results showed that Radiom, RadioClinLab, and
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Fig.3 The model performances in the prediction of three outcomes (Cohort 2) and the ten most important features in the three outcome
prediction tasks. The first and second row presented ROC curves and PR curves for predicting three events of models based on different data
types. a and d, b and e, c and f indicated that RadioClinLab based models for predicting ICU/MV/death achieved the highest AUROC (0.944/
0.942/0.860) and AUPRC (0.665/0.551/0.346), respectively. g—i The ten most important features and their relative importance based on thirty
bootstrapping experiments for the three prediction tasks based on the feature importance of the LightGBM classifiers.

ClinLab models achieved satisfactory performances in time-to-
event prediction. In particular, the combination of radiomics
features, clinical data, and lab test results contributed most to the
prediction and provided the most accurate estimates to the time
in days that critical care demands are required.
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DISCUSSION

Our study achieved three goals. First, we provided risk stratifica-
tion based on CT-based radiomics features and clinical data for
COVID-19-infected patients in terms of stable or severe disease
(requiring ICU) on admission. Second, our models provided

Published in partnership with Seoul National University Bundang Hospital



(a) icu
Strata == risk=0 == risk=1
1.0
2
=09
o
8
o 0.8
%
T 07 p < 0.0001
e
> 0.6
n
0.5
0 10 20 30 40
Time
Number at risk
risk=0 [ 642 524 298 83 5
rsk=1| 40 22 16 4 0
(b) Mechanical Ventilation
Strata == risk=0 == risk=1
1.0
2>
=09
o
8
o 0.8
a
[ 0.7 p < 0.0001
c
> 0.6
n
0.5
0 10 20 30 40
Time
Number at risk
risk=0 | 659 545 316 87 5
iske1 | 23 15 8 1 0
(c) Death
Strata == risk=0 == risk=1
1.0
2
=09
o
8
o 0.8
a
g o7 p = 0.00072
c
> 0.6
n
0.5
0 10 20 30 40
Time
Number at risk
risk=0 | 669 569 326 87 5
sk=1 13 13 8 1 0

Fig. 4 Kaplan-Meier curves for 3 tasks in Cohort 2. Risk groups
were divided according to model predicted scores. a ICU admission, b
mechanical ventilation, and ¢ death (high-risk: risk = 1, low-risk: risk = 0).

specific outcome prediction (MV and death) for critically ill
patients. Finally, we offered insights into estimating time to
progression of the severe events (i.e,, ICU, MV, and death). This
analysis potentially enables rapid stratification and timely
intensive care management of patients during this pandemic.
We carefully defined outcome events (i.e, ICU, MV, or death) as
prediction labels rather than the general risk severity, so that
different medical centers can optimize the resource allocation by
utilizing the prediction outcomes. According to our prognosis
estimation results, it is possible to request medical resource transfers,
such as personnel, local ICU beds, or MV from the Emergency
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Medical Services command as well as distribution of stable patients
from overloaded local ICUs to neighboring affected regions with
lower COVID-19 prevalence to balances ICU loads. In addition, the
prediction of MV on admission allows for closer monitoring and
repetitive assessments of patients over time to determine priority for
initiating MV, because there is typically only a limited time window
for life saving when the respiratory system deteriorates'. Further-
more, combining predictions of demand for medical resources with
outcome estimation of death anticipated the need to allocate
resources to the patients who are most likely to benefit, which may
also help develop priority rationing strategies during pandemics'®.

Our findings demonstrated the predictive value of CT-based
imaging for outcome predictions of CVOID-19 patients. Thin slice
chest CT has been an efficient and fast tool for detecting early
COVID-19 pneumonia with high sensitivity'®'”, assessing the
disease severity'®?', and surveilling the disease progression??2%,
which provides valuable information to guide clinical manage-
ment and aid in control of COVID-19'%?°"3"_ In our study, the
performance of radiomics-based models (Radiom) was better than
radiologist’s scores (defined as R-score). Concretely, we found that
first-order texture and higher-order radiomics features (i.e.,, GLSMZ
and GLCM-based) were the most important predictors. Our results
also indicated that the feature values of diffuse pulmonary
parenchymal ground-glass and consolidative pulmonary opacities
in the left upper lobe as well as pleural effusion were more
associated with the adverse outcomes (ICU, MV, death) in COVID-
19 patients, which were consistent with prior findings®**>*, In
addition, crazy-paving was a predictor of death®”.

Among the identified clinical predictors in our study, age,
dyspnea, a liver biochemistry marker (higher lactate dehydrogen-
ase (LDH)) were significant in all three prediction tasks*—°,
Furthermore, the changes of various inflammatory factors (higher
white blood cell (WBC), C-reactive protein (CRP) and neutrophil,
and lower lymphocytes) were predictive for the three severe
events, consistent with current research that SARS-CoV-2 may
accelerate the inflammatory response and cause the fluctuation of
inflammatory factors, thereby leading to severe immune injury
and lymphopenia®®374%*3, Previous studies also indicated that
leukocytosis resulting from a mixed infection of bacteria and fungi
in the context of viral pneumonia indicates poor outcomes****. In
addition, our study suggested that electrolyte and acid-base
balance (K+) relating to respiratory function and the indicator of
myocardial infarction (higher a-Hydroxybutyrate dehydrogenase
(HBDH)) contributed to the prediction of progression to severe
illness requiring MV, while D-dimer was associated with an
increased risk of in-hospital mortality, in agreement with previous
studies'"1#36424¢  Other features such as comorbidity (e.g.,
hypertension) were also related to poor prognosis>’-°.

Although this study provided insights in using CT-based features
to optimize the medical resource allocation based on the patient
outcome prediction, our work has several limitations. First, we did not
consider the effect of different treatments on the prognosis of
patients among clinical centers. In our study, several treatments were
adopted including oxygen therapy, MV, ECMO, antiviral treatment,
antibiotic treatment, glucocorticoids, and intravenous immunoglo-
bulin therapy. In-depth comparison of different treatment outcomes
might improve response prediction. Second, ten well-experienced
thoracic radiologists analyzed the CT images in consensus and
evaluated tr aditional imaging features in our study, however, we did
not study inter-reader variability and such an analysis might need to
be addressed in future work. In addition, although our study had a
large sample size with clear prognosis information, the numbers of
endpoints were limited and only from Chinese hospitals which could
potentially limit the generalizability of models in other areas. Finally,
additional validation across populations from European and Amer-
ican hospitals is needed to further validate the reported models.

In conclusion, we developed computational models with clinical
prognostic estimation functions incorporating CT-based radiomics
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Fig. 5 Examples of lesion segmentation by the Al system. Left a, ¢, e: original images; right b, d, f: pulmonary lobes (colored lines) and

opacities segmentation (blue area).

features as well as clinical data from electronic medical records for
COVID-19 patients. This information may aid in delivering proper
treatment and optimizing the use of limited medical resources in
the current pandemic of COVID-19.

METHODS
Patient cohort

Our data in this study were collected from 39 hospitals in China (n=
3522). Patients selection followed the inclusion criteria: (a) confirmed
positive SARS-CoV-2 nucleic acid test; (b) chest CT examinations and
laboratory tests on the date of admission; (c) clear short-term prognosis
information was available (discharge, or adverse outcomes including the
admission to ICU, requiring MV support, and in-hospital death). Along
with the exclusion criteria, we collected 2363 patients for analysis (Fig. 1,
Supplementary Table 1).

Data collection and processing

Our multi-modal data (Supplementary Note 2) for each patient included:

(a) Clinical records (abbreviated as Clin): demographics, comorbidities,
and clinical symptoms.

(b) Laboratory results (abbreviated as Lab): blood routine, blood
biochemistry, coagulation function, infection-related biomarkers. To
alleviate missing values that occurred in records, we applied median
imputation on the lab data when a missing rate was <50%. Each inpatient
received laboratory tests within 24 h after admission and only clinical data
on or prior to the date of the CT were used for prediction.

(c) CT-based radiomics features (abbreviated as Radiom): each inpatient
underwent a non-contrast chest CT scan within 3 days after admission®’.
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A deep-learning Al system (Supplementary Fig. 2, Beijing Deepwise &
League of PhD Technology Co. Ltd) was first used to detect and segment
the pneumonia lesion (Fig. 5), and two radiologists confirmed the results of
the automatic segmentation (average dice = 0.95) (Supplementary Figs. 3,
4). Then pyradiomics (v3.0) running in the Linux platform was adopted to
extract radiomic features (1657 features per lesion). Next, for a given
patient, for each feature, we summarized the distribution of the feature’s
values across all the lesions for the patient by summary statistics (the
mean, median, standard deviation, skewness, quartile 1, quartile 3). Finally,
a total of 9943 quantitative radiomics features were extracted from CT
images for each patient. The radiomics quality score (RQS) of this study is
23 (Supplementary RQS Checklist).

(d) Radiologists’ semantic data (abbreviated as R-score): (1) lesion
distribution: subpleural or diffuse; (2) lesion morphology: round or other;
(3) main signs: the presence of pure ground-glass opacity (GGO), pure
consolidation, GGO with consolidation, interstitial lung disease (ILD), and
crazy-paving pattern, (4) other abnormality: pleural effusion; and (5) the
total number of lesions and lesion count in each lobe per patient. First,
four experienced radiologists annotated 60 randomly selected cases
separately as quality assessment, reaching a high intraclass correlation
coefficient (0.989, 95% confidence interval 0.983-0.993). Next, they
reviewed in consensus on the representative cases to set up the
annotation standard. Then, ten radiologists were assigned subsets of CT
scans for the annotation task independently without access to the clinical
or laboratory results of patients.

(e) Time-to-event data: the three outcome events were defined as the
occurrence of the following adverse events through 28 days of follow-up, and
they are (a) ICU admission; (b) start to receive MV therapy; and (c) in-hospital
death. Discharge criteria and treatment protocols were based on the diagnosis
and treatment of novel coronavirus (2019-nCoV) infected pneumonia (trial
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seventh edition)?’. The time interval between the dates of admission to the
hospital and the corresponding outcomes or discharge were recorded
(Supplementary Table 2). Patients’ outcomes were defined as censored if
they were transferred to other hospitals during the observation period.

Feature processing

To address the imbalance and high feature dimensionality in modeling,
we adopted several combinations of methods to downsample the
negative cases (n=2207, the adverse group where patients required
ICU admission) and oversampling the positive cases (n=155, the
adverse group where patients required ICU admission, including 94
patients who needed MV and 59 death) to enhance models’ general-
izability for the imbalanced data.

Several feature engineering methods were applied: (1) SMOTEENN
(synthetic minority oversampling technique and edited nearest neigh-
bors)*®: The method performs oversampling using SMOTE and cleaning
using ENN to deal with imbalanced classes. In this study, a 1:1 (positive
cases: negative cases) balanced dataset and a 1:3 imbalanced dataset were
created respectively; (2) SMOTEENN + PCA (principal component analy-
sis)*®": upon enlarging the dataset, PCA was applied to reduce the
dimensionality of the features. It applies singular value decomposition
(SVD) to find the orthogonal principal components and the low-dimension
representation of data. In this study, the number of principal components
was chosen to explain 0.998 or 0.954 variance; (3) SMOTENN + LASSO
feature selection®®: LASSO feature selection was applied to extract the
most important features used in logistic regression with L1 normalization,
coefficients of L1 normalization (‘C’) were tuned; (4) SMOTEENN + GUS
(generic univariate selection)®: Generic univariate selection selects the
best features based on univariate statistical tests; (5) SMOTENN -+ FPR
(false-positive rate test)’>. The feature engineering was done with the
toolbox of scikit-learn 0.23.0°>. In our study, for the last two feature
selection methods, F-test and mutual information were used as the scoring
function. The feature selection was done with the scikit-learn 0.23.0%. The
modeling process was done with the raw data and preprocessed data with
the methods mentioned above.

Feature visualization

Feature visualization provides an intuitive manner to understand the
distribution of features used in this study. Therefore, we first visualized the
distribution of 37 clinical data (including 18 clinical features and 19
laboratory test results), 9943 CT-based radiomics features, and 17
traditional semantic CT features for all patients, with the help of heatmaps
and t-distributed Stochastic Neighbor Embedding (t-SNE) in terms of ICU,
MV, and death (ComplexHeatmap version 2.2.0)>*>. The patients were
reasonably grouped based on the adverse outcomes and whether the
event occurred within 48 h.

We recognized the marked differences of radiomics data, clinical data,
and R-score data on Cohort 1 and Cohort 2 between negative outcome
patients and positive outcome patients (Fig. 2, Supplementary Fig. 1).
Almost all CT image features showed good discrimination between
negative and severe outcome patients and had more obvious distinctions
compared to clinical data. Among clinical data, lab results and demo-
graphics had good discriminating power. Part of radiologists’ score features
had good discriminating power while clinical features have comparatively
weak discriminating power. Regarding the distinctions between ICU
admission, mechanical ventilation, and death, CT image features showed
better discriminating power than clinical data. In CT image features, from
ICU to MV to death, trends of value increasing or decreasing can be
observed while in clinical data, this kind of trend is not visible.

Model development and prediction evaluation

There were three binary classification tasks in this study, namely, stable
(negative) samples vs. adverse (ICU) samples, non-MV samples vs. MV
samples, and survival samples vs. death samples. To test the prediction
performances of different data type combinations, multivariable models
based on five types of data were developed and compared: (1) radiomics
data only (denoted as “Radiom”); (2) radiomics, clinical features (including
demographics, comorbidity, and clinical symptoms) (denoted as “Radio-
Clin”); (3) radiomics data, clinical features, and laboratory results data
(denoted as “RadioClinLab”); (4) clinical features and laboratory results
(denoted as “ClinLab”); (5) radiological score based on the linear
combination of semantic imaging features evaluated by radiologists
(denoted as “R-score”). To confirm that the patients were reasonably
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grouped based on the adverse outcomes and whether the event occurred
within 48 h, we first provided an intuitive manner to understand the
distribution of all types of features used in this study with the help of
heatmaps and t-distributed stochastic neighbor embedding (t-SNE) in
terms of ICU, MV, and death.

To systematically explore the performance of multiple machine-learning
classifiers, we used the following approaches to predict outcomes: (1)
Logistic Regression (LR)*%; (2) Random Forest (RF)*’; (3) Support Vector
Machine (SVM)%; (4) Multilayer Perceptron (MLP)*%; (5) LightGBM®. The
hyperparameters tuned for each of the algorithms included: (1) LR: the
coefficient of L2 normalization (‘C'); (2) RF: the number of estimators
(‘n_estimators’), maximum depth (‘max_depth’); (3) SVM: the coefficient of
soft margin relaxation (‘C’) with the radial basis function kernel; (4) MLP:
the number of hidden units in a two-layer fully connected neural network;
(5) LightGBM: learning rate, the number of estimators (‘n_estimators’), the
number of leaves (‘num_leaves’). In Cohort 1 (n = 1662), the data were split
into training and testing sets (ratio 7:3) using stratified random sampling
based on death cases. We used fivefold cross-validation on the training set
(70% data of Cohort 1) only to tune the model hyperparameters. Both a
randomized search with accuracy as the optimization goal and a grid
search with F1 score as the optimization goal were implemented on the
fivefold cross-validation on the Cohort 1 training set to find the best
candidate hyperparameter sets and the predictive performances were
evaluated on the test set of Cohort 1 to finalize the hyperparameters
associated with each combination of the classifier and the feature
engineering method. Finally, to select an optimal model for each
prediction task, five models with the top receiver operating characteristic
(AUROQ)®" were firstly selected, and the model with the highest precision-
recall (AUPRC)® curves was then chosen as the optimal model for each
outcome prediction because AUROC and AUPRC could show model
accuracy, precision, and recall in a more comprehensive manner with
varying thresholds. Model calibration was performed on the three final
RadioClinLab models in the prediction of ICU/MV/death, on Cohort 2 and
Cohort 3. The model calibration was based on the Sklearn package in
Python via fivefold cross-validation on the training set (Cohort 1)
(Supplementary Fig. 9).

Model external validation and comparison

We tested the statistical difference of the performance of selected models
with 30 iterations of bootstrapped resampling on unseen data (Cohort 2
n =700, Cohort 3 n =662, Fig. 1) and used the AUROC and AUPRC curves
to estimate their generalization ability. Particularly, with Cohort 3, we could
verify models’ ability to predict events that will occur two days later, which
may allow the healthcare system to have at least two days to plan ahead
and react to the demand for resources. Box plots were also drawn to
compare the performances of the optimal models found based on Cohort
1 in three classification tasks. Finally, we selected an optimal model for
each prediction task based on the results of the paired one-sided t-test,
which compared the AUROC and AUPRC of models consisting of different
data types (Radiom, RadioClin, RadioClinLab, ClinLab). In addition, we
constructed the R-score model using logistic regression based on semantic
features to compare with the Radiom model (on both Cohort 2 and Cohort
3) and found out the traditional image features that were helpful to predict
the outcome events.

Analysis of predictive features

We identified the feature importance from the selected optimal models
and normalized the highest importance scores in each of the boot-
strapping experiments on Cohort 2 (n = 700). By taking an average of the
feature importance values over 30 bootstrapping experiments, we then
focused on the ten most important features for each prediction task.
We also plotted the pairplot of the most important features to visualize the
relationship of the top ten features. Furthermore, we performed the
independent two-sided t-test (continuous variables, with normal distribu-
tion), proportional z-test (categorical variables), and rank-sum test
(continuous variables, without normal distribution) to validate the
statistical significance in the feature values of positive cases and all cases
in Cohort 1, Cohort 2 after firstly using Shapiro-Wilk normality test.

Time-to-event modeling

Cox regression with the |; penalty and scikit-survival package 0.12.1 was
adopted on time-to-event data in Cohort 1 (n = 1277, 77% of the patients
originally in Cohort 1 had event time recorded) and Cohort 2 (n = 682, 97%
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of the patients originally in Cohort 2 had event time recorded)®* . Three
different data combinations were used for the time-to-event modeling:
Radiom, RadioClinLab, and ClinLab. We used fivefold cross-validation on
Cohort 1 to determine the “alpha_min_ratio” hyperparameter®>%®, and
calculated the performance on Cohort 2. We used the concordance index
(Cindex) and the integrated Brier score to evaluate the models. On Cohort
1, the optimal model for each data combination was chosen in a similar
manner as previously described for the classification tasks by first filtering
based on mean C index and then optimizing the mean integrated Brier
score on the three tasks. Next, we used Kaplan-Meier analysis to visualize
the time-to-event models and the log-rank test to estimate significance. A
“high-risk” and “low-risk” group was created according to the predicted
score for each patient on each task with the optimal RadioClinLab model.
To group the patients into the high-risk group and the low-risk group, we
first calculated the ratios of positive cases in Cohort 1, then set thresholds
on the predicted probability of the test samples to separate patients
according to the ratios based on Cohort 2.

Statistical analysis

SPSS v15.0 [SPSS Inc., Chicago] and MedCalc statistical software were used
for statistical analysis. The Shapiro-Wilk test was used to evaluate the
normality of quantitative data among the selected top important features.
Mean and standard deviation (SD) were used to describe normally
distributed data, while the median and interquartile range (IQR) was used
to describe non-normally distributed data. Categorical variables were
presented as numbers and percentages. The AUROC, AUPRC, accuracy
value, and their 95% Cl were listed to assess the model performance. The
paired one-sided t-test was used to calculate the statistical significance of
the difference between each AUROC and AUPRC value in the boot-
strapping experiments. Chi-square test and Fisher's exact test were
exploited to compare categorical data while independent t-test and
Wilcoxon rank-sum test were used to compare the feature values of
continuous variables in positive and negative cases in the entire cohort
(n = 2362). Proportional test was done to compare the feature values of
categorical variables in positive and negative cases among the most
important features found by classifiers and test the statistical significance
of categorical variables between Cohort 1 and Cohort 2. Kaplan-Meier
survival analysis was done on the high-risk and low-risk group based on
predictions and log-rank test was used to evaluate statistical significance.

Ethics and registration

The protocol of this multi-center study was approved by the institutional
review board of Jinling Hospital, Nanjing University School of Medicine
(2020NZKY-005-02). The written informed consent was waived because
this was a retrospective study and present no more than minimal risk of
harm to subjects and involved no such procedures.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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