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In this study, we explored the feasibility of using real-world data (RWD) from a large clinical research network to simulate real-world
clinical trials of Alzheimer’s disease (AD). The target trial (i.e, NCT00478205) is a Phase lll double-blind, parallel-group trial that
compared the 23 mg donepezil sustained release with the 10 mg donepezil immediate release formulation in patients with
moderate to severe AD. We followed the target trial’s study protocol to identify the study population, treatment regimen
assignments and outcome assessments, and to set up a number of different simulation scenarios and parameters. We considered
two main scenarios: (1) a one-arm simulation: simulating a standard-of-care (SOC) arm that can serve as an external control arm;
and (2) a two-arm simulation: simulating both intervention and control arms with proper patient matching algorithms for
comparative effectiveness analysis. In the two-arm simulation scenario, we used propensity score matching controlling for baseline
characteristics to simulate the randomization process. In the two-arm simulation, higher serious adverse event (SAE) rates were
observed in the simulated trials than the rates reported in original trial, and a higher SAE rate was observed in the 23 mg arm than
in the 10 mg SOC arm. In the one-arm simulation scenario, similar estimates of SAE rates were observed when proportional
sampling was used to control demographic variables. In conclusion, trial simulation using RWD is feasible in this example of AD trial
in terms of safety evaluation. Trial simulation using RWD could be a valuable tool for post-market comparative effectiveness studies
and for informing future trials’ design. Nevertheless, such an approach may be limited, for example, by the availability of RWD that

matches the target trials of interest, and further investigations are warranted.
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INTRODUCTION

Clinical trials, especially randomized controlled trials (RCTs), are
critical in the drug discovery and development process to assess
the efficacy and safety of the new treatment'. While the rigorously
controlled conditions of clinical trials can reduce bias and improve
the internal validity of the study results, they also come with the
drawbacks of high financial costs and long execution time? For
example, the total cost of developing an Alzheimer’s disease (AD)
drug was estimated at $5.6 billion with a timeline of 13 years from
the preclinical studies to approval by the Food and Drug
Administration (FDA)?. Nevertheless, yet no effective drugs have
been developed for either treatment or prevention of AD thus far.
Strategies that can accelerate the drug development process and
reduce costs will not only be of interest to pharmaceutical
companies but also ultimately benefit the patients.

Clinical trial simulation (CTS) is valuable to assess the feasibility,
investigate the assumptions, and optimize the study design before
conducting the actual trials*>. For example, Romero et al.
conducted a CTS study to explore several design scenarios
comparing the effects of donepezil with placebo®. Traditionally,
CTS studies use virtual cohorts generated based on pharmacoki-
netics/pharmacodynamics models of the therapeutic agents, so
these cohorts do not necessarily reflect the patients who will use
the drugs in the real world. More recently, the trial emulation (i.e.,

“the target trial") framework—emulating hypothetical trials to
establish the estimation of the casual effects—has attracted
significant attention’. For example, Danaei et al. emulated a
hypothetical RCT using electronic health record (EHR) data from
United Kingdom (UK) to estimate the effect of statins for primary
prevention of coronary heart disease®. Like many other emulation
studies”*°, this is essentially a retrospective cohort study, where
the authors followed a RCT design to identify unbiased initiation
of exposures and eventually to reach an unbiased estimation of
the casual relationship. Combining the ideas from CTS and trial
emulation, a simulation study using real-world data (RWD) to test
different assumptions (e.g., different drop-out rates) and trial
designs (e.g., different eligibility criteria) could provide insights on
the effectiveness and safety of the treatments to be developed in
a real-world setting that reflect the patient populations who will
actually use the treatment.

In this study, we explored the feasibility of using RWD from the
OneFlorida Clinical Research Consortium—a clinical data research
network funded by the Patient-Centered Outcomes Research
Institute (PCORI) contributing to the national Patient-Centered
Clinical Research Network (PCORnet)—to simulate a real-world AD
RCT as a use case. We considered two main scenarios: (1) a one-
arm simulation: simulating a standard-of-care (SOC) arm that can
serve as an external control arm; and (2) a two-arm simulation:
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Table 1. Population characteristics and SAE statistics of the target trial vs. TP, SP, and NEP from OneFlorida.
23 mg Arm 10 mg Arm
Original trial®  Overall TP®  Overall SP°  Overall NEPY  Original trial  Overall TP® Overall SP* Overall NEP?
No. of subjects 963 920 38 52 471 2048 782 1266
Age (years), mean (SD) 73.9 (8.53) 74.3 (9.01) 73.3(9.01) 81.6 (12.37) 73.8 (8.56) 734 (11.0) 74.2 (9.67) 77.1 (11.8)
Gender
Male 356 (37.0%) 24 (26.7%) 10 (26.3%) 14 (26.9%) 177 37.6%) 727 (35.5%) 234 (29.9%) 493 (38.9%)
Female 607 (63.0%) 66 (73.3%) 28 (73.7%) 38 (73.1%) 294 (62.4%) 1321 (64.5%) 548 (70.1%) 773 (61.1%)
Race
White 708 (73.5%) 63 (70.0%) 25 (65.8%) 38 (73.1%) 346 (73.5%) 829 (40.5%) 280 (35.8%) 549 (43.4%)
Asian/Pacific 161 (16.7%) 0 (0%) 0 (0%) 0 (0%) 87 (18.5%) 22 (1.1%) 11 (1.4%) 11 (0.9%)
Hispanic 67 (7.0%) 15 (16.7%) 4 (10.5%) 11 (21.2%) 26 (5.5%) 440 (21.5%) 192 (24.6%) 248 (19.6%)
Black 22 (2.3%) 11 (122%) 4 (10.5%) 7 (13.5%) 9 (1.9%) 380 (18.6%) 126 (16.1%) 254 (20.1%)
Other 5 (0.5%) 1(1.1%) 5 (13.2%) 7 (13.5%) 3 (0.6%) 377 (18.4%) 173 (22.1%) 204 (16.1%)
ccr N/A 1.54 1.32 1.53 N/A 2.36 1.64 2.36
Mean SAE' 0.15 1.89 0.92 2.60 0.14 1.68 0.64 2.59
No. of patients with 21 SAE 45 (9.6%) 20 (22.2%) 4 (10.5%) 16 (30.7%) 80 (8.3%) 573 (28.0%) 121 (15.5%) 452 (35.7%)

?Reported in the original trial on ClinicalTrials.gov.
>Tp: Target population—patients who (1) had the disease of interest (i.e.,, AD), and (2) had used the study drug (i.e., donepezil) for a specific time period

according to the study protocol.

are two different fields in OneFlorida.

fCharlson Comorbidity Index.

9Mean SAE: average number of SAEs per patient.
PCCI: Charlson Comorbidity Index.

ISAE: Serious adverse event.

°SP: Study population—patients in the TP who met the computable eligibility criteria of the original trial.
INEP: Trial not eligible population—patients in the TP who did NOT meet the eligibility criteria of the original trial.
€The original trial reported Hispanic as a race, thus, we followed the same convention to make sure the results are comparable even though race and ethnicity

simulating both intervention and control arms with proper patient
matching algorithms for comparative effectiveness analysis.

RESULTS

Computability of eligibility criteria in the original trial

(i.e., NCT00478205)

In total, there are 36 eligibility criteria in trial NCT00478205, where
17 are inclusion and 19 are exclusion criteria. However, not all
criteria are computable against the OneFlorida patient database:
(1) 11 are not computable, and (2) 7 are partially computable (i.e.,,
a part of the criterion is not computable). Similar to what we have
found in our prior study'', the common reasons for not
computable criteria are (1) data elements needed for the criterion
do not exist in the source database (e.g., “A cranial image is
required, with no evidence of focal brain disease that would account
for dementia."), or (2) the criterion asked for subjective information
either from the patient (e.g., “Patients who are unwilling or unable
to fulfill the requirements of the study.”) or the investigator (e.g.,
“Clinical laboratory values must be within normal limits or, if
abnormal, must be judged not clinically significant by the
investigator.”). When a criterion is not computable, we consider
all candidate patients met that criterion (e.g., they are all willing
and able to “fulfill the requirements of the study”).

Characteristics of the target, study, and trial not eligible
populations from OneFlorida

Overall, a total of 90 and 2048 patients were identified as the
effective target populations in OneFlorida for the 23 and 10 mg
arms, respectively. Among them, 38 and 782 met the eligibility
criteria of the original target RCT for the two arms, respectively.
Table 1 shows the demographic characteristics and serious
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adverse event (SAE) statistics of the original trial population as
well as the effective target population (TP), study population (SP),
and trial not eligible population (NEP) from OneFlorida.

For demographic characteristics, relative to the target RCT
population, we observed a large difference in race in our
OneFlorida population (all p-values of race group comparisons
were smaller than 0.05). OneFlorida had more Hispanics
(10.5-24.6% vs. 5.5-7%) and Blacks (10.5-20.1% vs. 1.9-2.3%),
but less Whites (35.8-73.1% vs. 73.5-73.5%) or Asian/Pacific
islanders (0-1.4% vs. 16.7-18.5%). The age distributions were
similar across all populations. For clinical variables, we calculated
the Charlson Comorbidity Index (CCl) of the various populations
from OneFlorida. Smaller CCls were observed in the SP compared
with the TP for both arms (p<0.05), and a smaller CCl was
observed in the 23 mg arm compared with the 10 mg arm (p <
0.05). Our primary outcomes of interest in this analysis were SAEs.
Thus, we calculated the mean SAE (i.e., the average number of
SAEs per patient) and the number of patients who had more than
1 SAE during the study period. For both 23 and 10 mg arms, the
mean SAE and the number of patients with SAEs were the largest
in the TP, followed by the SP, and then the original trial. Consistent
with the original trial, populations derived from the OneFlorida
data in the 23 mg arm have higher number of mean SAE and more
patients with SAE compared with the 10 mg arm.

Standard-of-care control arm (i.e., one-arm) simulation

We first simulated the control arm of the original trial (i.e., the
10mg SOC arm). Table 2 displays the demographics and SAE
outcomes in the simulated control arms. Here, we reported the
mean value and 95% confidence interval (Cl) of all 1000 bootstrap
samples. Two different sampling approaches were used: (1)
random sampling, and (2) proportional sampling accounting for
race distribution. When using the random sampling approach,
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Table 2. One-arm simulation results for the 10 mg control arm.

Original control arm

Simulated control

Random sampling

Proportional sampling

No. of subjects
Mean age (years)
Gender
Female
Male
Race
White
Black
Hispanic
Asian & other
SAE? rates (patient with >1 SAE)
Mean SAE (average SAE per patient)
SAE event rates by category
Blood and lymphatic system disorders
Cardiac disorders
Eye disorders
Gastrointestinal disorders
General disorders
Hepatobiliary disorders
Infections and infestations
Injury, poisoning, and procedural complications
Musculoskeletal and connective tissue disorders
Neoplasms benign, malignant, and unspecified
Nervous system disorders
Psychiatric disorders
Renal and urinary disorders
Reproductive system and breast disorders
Respiratory, thoracic, and mediastinal disorders
Vascular disorders

471
73.8

62.4%
37.6%

73.5%
1.9%
5.5%
19.1%
8.3%
0.14

0/471 (0.00%)
6/471 (1.23%)
1/471 (0.2%)
2/471 (0.4%)
3/471 (0.6%)
2/471 (0.4%)
9/471 (1.9%)
8/471 (1.7%)
2/471 (0.4%)
2/471 (0.4%)
15/471 (3.3%)
11/471 (2.3%)
2/471 (0.4%)
0

1/471 (0.2%)
1/471 (0.2%)

400 240
78.5+0.1 78.2+0.1
70.1£0.1% 66.1+0.1%
29.9+0.1% 33.9+0.1%
28.1+0.1% 73.3+0.1%
16.0+0.1% 2.1+0.1%
24.5+0.1% 54+0.1%
31.3+£0.2% 19.2% +0.1%
155+0.1% 8.9+0.1%
0.64+0.01 0.48 +£0.01
49+0.1% 3.2+£0.1%
29+0.1% 2.0+£0.1%
0 0
7.0+0.1% 59+0.1%
1.7+0.1% 1.1+£0.1%
1.2+0.1% 1.9+£0.1%
58+0.1% 4.7 £0.1%
3.2+0.1% 3.0+0.1%
0.7+0.1% 0.8+0.1%
0 0
6.6+0.1% 4.8+0.2%
33+£0.1% 25%0.1%
42+0.1% 1.9+0.1%
0 0
1.0+0.1% 1.4+0.1%
0.7+0.1% 0.3+£0.1%

2SAE: serious adverse event.

compared with the control arm in the original trial, higher mean
SAE and SAE rates were observed, in addition to discrepancies in
demographic variables. When using proportional sampling, the
results were closer and more consistent with the original trial.
Notably, the SAE rates in the simulated control were similar to the
SAE rates from the original control (8.9% vs. 8.3%), and a z-score
test for population proportion had a p-value of 0.75, suggesting
there were no significant differences between the two SAE rates.
In addition to SAE rates and mean SAE, we also explored the SAE
event rates in the simulated control arms stratified by the SAE
category reported in the original trial. Compared with the control
arm in the original trial, the simulated control arms have larger
SAE rates in most categories.

Two-arm trial simulation

Because the proportional sampling had better performance in the
one-arm simulation, we used this sampling strategy in the two-
arm simulation to match the race distribution, and tested two
scenarios of different matching ratios (i.e., proportional 1:1
matching and proportional 1:3 matching). However, since there
is no Asian/Pacific in our SP who used 23 mg donepezil, all Asians
in the original trial and the simulated control arm were grouped
into “other”, and the sample size of the 23 mg arm was set at 30
(because of the limited number of 23mg patients in the
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OneFlorida data). Table 3 shows our two-arm simulation results,
where we show the average and 95% Cl of all variables for the
simulation arms across all 1000 bootstrap samples. In both
matching scenarios, the mean SAE and SAE rates were higher in
the 23 mg arm than in the 10 mg arm, which is consistent with the
original trial. However, the variance for both SAE outcomes for the
10 mg arm are higher in the 1:1 matching scenario than in the 1:3
matching scenario, as the sample size for the 10 mg arm in the 1:3
matching scenario is much bigger. Because of the sample size
difference, estimates from the 1:3 matching scenario should be
more reliable. Consistent with the original trial, patients in the
23 mg arm have higher event rates in most of the SAE categories
compared to the patients in the 10mg arm. Note that we
observed no SAE events in several categories in our simulation,
especially in the 23 mg arm, due to the limited sample size.
Finally, we conducted an additional experiment to simulate
patients who withdrew from the trial. In the original trial, among
the 963 and 471 patients from each arm, 296 (30%) and 87 (18%)
patients, respectively, discontinued the study for various reasons.
Among the dropouts, 182 and 39 patients discontinued due to
AEs. We simulated the dropouts by (1) randomly removing 18% in
the 10 mg group and 30% in the 23 mg in our simulations; and (2)
removing the patient after his or her first AE using the same
proportion as the original trial (i.e., due to small sample size, we
did not simulate this scenario for the two-arm simulation). The
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Table 3. Results of the two-arm simulation for proportional 1:1 and 1:3 matching.
Original trial Simulated trial
Proportional 1:1 matching Proportional 1:3 matching
23mg 10 mg 23mg 10 mg 23 mg 10 mg
No. of subjects 963 471 24 24 24 72
Mean age (years) 73.9 73.8 79.2+0.1 795+0.2 79.1+£0.1 79.4+0.2
Gender
Female 63.0% 62.4% 70.2 +0.6% 69.8 £0.7% 70.4 + 0.6% 69.4 £ 0.6%
Male 37.0% 37.6% 29.8 £ 0.6% 30.2+£0.7% 29.6 £ 0.6% 30.6 £ 0.6%
Race
White 73.5% 73.5% 70.8+0.1% 70.3+0.1% 70.8+0.1% 70.2+0.1%
Hispanic 7.0% 5.5% 83+0.1% 7.9+ 0.3% 83+0.1% 8.1+£0.3%
Black 2.3% 1.9% 42+0.1% 4.2+0.3% 4.2+0.1% 4.2+0.2%
Asian & other 17.2% 0.6% 16.7 £0.1% 17.6 £0.3% 16.7 £0.1% 17.6 £0.3%
Charlson Comorbidity Index N/A 1.25+0.02 1.17 £0.03 1.25+0.02 1.23+0.02
SAE? rates (patient with >1 SAE) 9.6% 8.3% 9.8 £ 0.4% 12.6 +£0.4% 9.4+0.2% 11.2+0.2%
Mean SAE (average SAE per patient) 0.15 0.14 0.99 +£0.05 0.46 £ 0.05 0.99 +0.05 0.47 £0.02
SAE event rates by category
Blood and lymphatic system disorders 0.2% 0 14.5 £ 0.9% 0.052 +0.004 0.146 £0.10 0.042 £ 0.001
Cardiac disorders 1.9% 1.3% 6.7 £0.3% 0.012+0.001 0.068 + 0.005 0.016 £0.015
Eye disorders 0 0.2% 0 0 0 0
Gastrointestinal disorders 2.4% 0.4% 0 0.082 + 0.004 0 0.059 £ 0.057
General disorders 0.6% 0.6% 1.1£0.1% 0.006 + 0.001 0.010+0.001 0.008 +0.001
Hepatobiliary disorders 0.5% 0.4% 0 0.007 £ 0.002 0 0.009 £ 0.001
Infections and infestations 1.3% 1.9% 20.1+0.1% 0.026 + 0.002 0.199+0.010 0.037 £ 0.002
Injury, poisoning, and procedural complications 2.5% 1.9% 0 0.014+£0.003 0 0.021 £ 0.004
Musculoskeletal and connective tissue disorders 0.3% 0.4% 0 0.019£0.001 0 0.013£0.001
Neoplasms benign, malignant, and unspecified 1.5% 3.2% 0 0 0 0
Nervous system disorders 1.5% 3.2% 9.8+0.3% 0.039 £ 0.002 0.094 £ 0.003 0.042 £ 0.002
Psychiatric disorders 1.1% 2.3% 2.0+0.5% 0.019 +0.002 0.019+0.001 0.023 +0.001
Renal and urinary disorders 0.4% 0.004 279+ 1.8% 0.011£0.002 0.281+0.018 0.016 £ 0.001
Reproductive system and breast disorders 0.1% 0 0 0 0 0
Respiratory, thoracic, and mediastinal disorders 0.1% 0.2% 0 0.011£0.001 0 0.014 £ 0.007
Vascular disorders 0.5% 0.2% 0 0.003 £0.001 0 0.003 £0.001
°SAE: serious adverse event.

results are displayed in Supplementary Tables 3 and 4. For the
random dropout scenario, similar SAE rates and smaller mean SAE
were observed across all scenarios. For example, in the control
arm of the random dropout scenario, mean SAE decreased from
0.64 to 0.19 and 0.23 in the two different dropout simulations,
while in the two-arm simulation, the mean SAE for the 10 mg arm
were 0.22 and 0.19 in the two scenarios, both were much lower
than simulations without dropout (0.46 and 0.47, respectively).
However, the effects of dropout were mostly observed in control
arms, the SAE rates and mean SAE remained the same for the
23 mg arm before and after dropout simulation. In the AE-based
dropout scenario, both smaller SAE rates and smaller mean SAE
were observed: the SAE rates decreased from 8.8% to 7.3% and
the mean SAE decreased from 0.64 to 0.23, where the mean SAE
estimate was closer to the original trial results.

DISCUSSION

In this work, we simulated an AD RCT utilizing RWD from the
OneFlorida network, a large clinical data research network,
considering three different simulation scenarios. In the one-arm
simulation scenario, we attempted to simulate an external control

npj Digital Medicine (2021) 84

arm for the original trial. We demonstrated that we could achieve
similar estimate of SAE rates as the original trial when proportional
sampling accounting for race distribution was used; and the
statistics of the simulated control arm were stable across all
bootstrap simulation runs, which suggests that using RWD we can
robustly simulate the “standard of care” control arm. In the two-
arm comparative effectiveness simulations, we used propensity
score matching (PSM) on baseline characteristics to simulate the
randomization process. It has been demonstrated that PSM could
reduce bias in the estimate of the treatment response'®™'%, and in
our study, we successfully simulated two groups of patients that
have similar age, sex, race, and CCl distributions using PSM.
However, the SAE outcomes in the simulated trial were still
different from the original trial for various reasons: (1) The original
trial was conducted in research settings, while RWD data reflect
patients the real-world clinical settings. The total time at risk for
SAEs in our simulated cohort may be longer than the original trial,
because in clinical trials, patients may withdraw from the study
once experiencing an SAE, while patients in real-world setting may
not. This is demonstrated by our simulation of dropouts, which
achieved smaller number of SAEs and closer results to the original
trial; (2) Sample size issue, where 23 mg donepezil has not been
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Table 4. Overall study design of the simulated trial in comparison with the original trial.

Component Target trial (NCT00478205) Simulated trial

Aim Assess the safety and effectiveness of 23 mg  Assess whether the simulated trial can generate similar results to the “real” trial
SR compared to 10 mg IR in terms of its safety profile

Eligibility 36 eligibility criteria 25 are computable or partially computable

Treatment strategies

Sampling strategies

Follow-up
Outcome
Statistical analysis

Randomized allocation of 23 mg:10 mg
ratio is 2:1

N/A

The outcomes were measured from the first dose to 24 weeks after the first dose.

SAE and cognition function measures

Compare the average number of SAEs per patient, and the SAE rates (i.e., how many patients have SAE).

One-arm simulation of the 10 mg control arm using random sampling and
proportional sampling with the same sample size as the original trial.
Two-arm simulations considering different case-to-control ratios. Propensity
score matching was performed on the following baseline covariates: sex, race,
age, and Charlson Comorbidity Index (CCl).

Bootstrap with replacement was repeated 1000 times to randomly generate
the sample population, and mean value and 95% confidence interval were
reported.

SAE®

2SAE: serious adverse event.

the SOC for AD in the real world, leading to considerably fewer
patients in the 23mg arm. For the two-arm simulation, we
conducted a post hoc power analysis with the SAE rates and mean
SAE. Assuming a significant level at 0.05, a 65% power were
achieved; and (3) Although PSM derived two simulation arms that
are comparable, we were unable to compare it directly to the SP in
the original trials as the data for calculating propensity scores
were not available from the original trial. For example, the
switching to the 23 mg treatment after receiving at least 3 months
of the 10 mg does not occur at random in a real-world setting, but
based on clinical guidelines; and indeed, we found that patients in
the 23 mg arm have a longer history of diagnosis (i.e, mean of
days between first diagnosis and first prescription in 23 mg arm is
398 days vs. 128 days in the 10 mg arm). Therefore, in our two-arm
simulation, there may be residue selection bias causing a
difference between the two populations. Nevertheless, this is an
issue of using observational data in general. Even though we can
simulate randomization, e.g.,, through PSM, trial simulations
cannot replace RCTs. In addition, there are still gaps, especially
data gaps in RWD, which also contributed to the differences
between our simulation results and the original trial results. Future
studies are warranted to identify strategies to fill these gaps.

While simulating the original AD trial that followed the study
protocol in Table 4, we found it is difficult to replicate all the
eligibility criteria of the original trial. Out of the 36 eligibility
criteria, only 25 of them were computable or partially computable
against the OneFlorida data. Since these criteria were used to
weed out patients who are unlikely to complete the protocol (e.g.,
due to safety concerns), ignoring some of the criteria (not
computable eligibility criteria) could potentially explain some of
the increases either in the mean SAE or the SAE rates. One
strategy for future simulation studies is to classify each of the
eligibility criteria based on their clinical importance to the
simulation study and the endpoints (i.e., effectiveness or safety)
related with the criterion. By doing so, we can adjust the eligibility
criteria and customize the simulation based on questions of
interest. For example, efficacy-related criteria may have very small
impact on a trial that is focused on examining safety and toxicity;
so simulations of such trials can loosen the restrictions on efficacy-
related criteria. Nevertheless, as all the patients we identified in
the OneFlorida data have taken the study drugs of interest (i.e.,
different dosages of donepezil), they should all have been eligible
to the original trial in an ideal world, where the trial participants
truly reflect the TP (i.e., higher trial generalizability).

Published in partnership with Seoul National University Bundang Hospital

Our findings are consistent with previous literature on clinical
trial generalizability'®™'®. More SAEs were observed in real-world
settings. In our data, the overall number of patients who had SAEs
and the average number of SAEs per patient were: (1) the highest
in the effective TP (i.e., patients who took donepezil for AD), which
is the population who actually used the medication in real-world
settings, and also (2) higher in the SP, patients who used
donepezil for AD and also met the original trial’s eligibility criteria.
Some of the differences may be due to the incomputable
eligibility criteria (e.g., general physical health deterioration) that
we cannot account for, but it is also possible that the original trial
samples did not adequately reflect the TP and thus there might be
treatment effect heterogeneity across patient subgroups, not
captured by the original trial. In the two-arm simulations, large
variances were observed, especially when the matched sample
size was small. This may also indicate the heterogeneous
treatment effects of donepezil when applied to different patient
subgroups in real-world settings.

Our study demonstrated the feasibility of trial simulation using
RWD, especially when simulating external SOC control arms. Our
one-arm simulation provided stable and robust estimates and
sufficient sample sizes to compare with the original trial’s control
arm. The SAE rates observed in the simulated control arm with
proportional sampling were very close to what was reported in the
original trial. The mean SAE per patient and SAE event rates,
however, were larger in the simulated control arms, which
suggested that, in a real-world setting, the patients who
experienced SAEs tend to have more occurrences of SAEs. On
the other hand, the two-arm simulation, although it provided
insights, was not entirely successful. Although the randomization
process was effectively simulated by using PSM, the outcome
measures were very different from the original trial. The reasons
for the differences could be multi-fold (e.g., research setting vs.
real-world clinical setting, difference in sample size, overly
restrictive eligibility criteria that limits the generalizability of the
original trial), but cannot be explored due to limited data reported
by the original trial (i.e., no patient-level data are available). When
we simulated dropouts using information from the original trial,
we observed similar SAE rates and mean SAE compared to the
original trial in both random dropout and AE-based dropout
strategies, especially in the control arms. This suggests that the
additional simulation scenarios have led to results more compar-
able to the cohorts in the original trial. However, due to the small
sample size in the 23 mg arm, we were only able to simulate
random dropout for the two-arm simulation, and the SAE
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measurements did not change much comparing to the simula-
tions without dropout. Future studies with sufficient sample sizes
could conduct more sophisticated analysis based on treatment
delay and adherence.

Compared with trial emulation, which focus on making the
target trial explicitly characterized with a defined protocol, our
approach takes the advantage of having observational RWD,
where different trial protocols (i.e., simulation scenarios) with
different study designs can be readily tested. For example, in our
current study, there are several potential simulation points that
can be further tuned. First, the sample size of each arm can be
adjusted. In the one-arm simulation (i.e., the control arm of 10 mg
donepezil), we choose the same sample size as the original trial,
but it can be adjusted to increase power. Second, the eligibility
criteria of selecting SP could also be adjusted to test different
hypotheses. For example, we can adjust the eligibility criteria in
the trial simulation process to assess how the original trial results
may be generalized into real-world TP, and provide insights on
how to balance internal validity while retaining good external
validity'’?°. Third, different scenarios of dropout may be
simulated. The dropout rate and timing can be varied, so that it
can be used to simulate different patient population. Further, we
can also explore whether other dropout reasons such as lack of
recovery and lack of access to care can be simulated based on
RWD. Many other potential simulation scenarios can be tested,
such as varying the 3 month lead time for switching from 10 to
23 mg. In this current work, as our main goal was to establish the
feasibility of such a simulation approach, we only conducted
limited number of major simulation scenarios (e.g., we used two
different sampling scenarios using different intervention arm vs.
control arm ratios). In future work, informed by literature, we shall
systematically simulate the different trial design scenarios, which
can (1) provide critical information on the comparative effective-
ness of the interventions in real-world settings, and also (2) better
inform the study designs of future clinical trials. Last but not the
least, the one-arm simulation is as important as the two-arm
simulation, even though it does not provide comparative
effectiveness results of the intervention. In addition to informing
future design of control arms, one-arm simulation allows us to
utilize readily available RWD of patients taking the SOC to
determine SOC's treatment effectiveness and safety profile, and
consider different study protocols and scenarios. The demon-
strated feasibility of one-arm simulation is a building block
towards the potential of using RWD to generate synthetic and
external controls for clinical trials, leading to significant cost
savingsm. Nevertheless, other issues with RWD such as its data
quality (e.g., missing key measures of endpoints) and the inherent
biases that exist in observational data warrant further
investigations.

There are some other limitations in this study. First, we only
looked at one original trial for one medication (i.e., donepezil).
Simulations on different drugs and diseases may have different
results. Second, the population who took the 23 mg form in our
data is very small (even though the overall OneFlorida population
is large with more than 15 million patients), where we only
identified 38 patients who took the 23 mg donepezil and met the
eligibility criteria of the original trial. The 23 mg donepezil form
was approved by the FDA in 2010, so it is still a relatively new drug
on the market, and following its approval, the clinical utility of the
23mg form was called into question because of its limited
effectiveness and higher rates of AEs*>%*. The current practice of
using the donepezil 23 mg form is reserved for AD patients who
have been on stable donepezil 10 mg form for at least 3-6 months
with no significant improvement®>2°, which limited its use in real-
world clinical practice. In addition, patients who switched to the
23 mg treatment may have different characteristics that we did
not account for in this analysis. Third, we found that some of the
SAEs (e.g., abnormal behavior, presyncope) reported in the trial’s
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results cannot be mapped to any AE terms in CTCAE, and the
definitions of AEs in the original trial were unavailable, which
increased the difficulty of accurately accounting for all SAEs.
Further, even though trials’ SAEs reported in ClinicalTrials.gov
largely follow the Medical Dictionary for Regulatory Activities
Terminology (MedDRA), not all reported SAEs were correctly
defined in the trial results. For example, we found “Back pain” and
“Fall" were defined as SAEs in the original AD trial we modeled.
However, in CTCAE, there is no corresponding category 4 or 5
definition for them. More effort is needed to consistently model
SAEs reported in clinical trials. Finally, because of data limitations,
we were not able to assess the effectiveness of AD treatment (e.g.,
AD endpoints such as Mini-Mental State Examination and Severe
Impairment Battery are not readily available in structure EHR data,
but may exist in clinical narratives). Thus, we only examined safety
outcomes in our current study. This may also contribute to the
different results we obtained from our simulation compared with
results from the original trial as the original trial was designed and
powered with primary efficacy-based outcomes. Future studies
that explore the use of advanced natural language processing
(NLP) methods to extract these endpoint measurements from
clinical notes will be important. Further, variables extracted from
clinical notes with NLP could also be used to render some of the
incomputable eligibility criteria computable.

In conclusion, in this study, we investigated the feasibility of
using the existing patient records to simulate clinical trials using
an AD trial (i.e, NCT00478205) as the use case. We examined two
main simulation scenarios: (1) a one-arm simulation: simulating
the SOC arm that can serve as an external control arm; and (2) a
two-arm simulation: simulating both intervention and control
arms with proper patient matching algorithms for comparative
effectiveness analysis. We have also considered a number of
different simulation parameters such as sampling strategies,
matching approaches, and dropout scenarios. In the case study,
our simulation can robustly simulate “standard of care” control
arms (i.e.,, the 10 mg donepezil arm) in terms of safety evaluation.
However, trial simulation using RWD may be limited by the
availability of RWD that matches the target trials of interest and
may not yield reliable and consistent results if the sample sizes of
the interventions of interest (i.e, we found few patients were
prescribed the 23 mg donepezil) are limited from the real-world
databases. Further investigations on this topic are warranted,
especially how to address the data quality issues (e.g., using NLP
to extract more complete patient information) and reduce
inherent biases (e.g., more advanced matching methods to tackle
the problems of high dimensionality, nonlinear/nonparallel treat-
ment assignment, and other complex confounding situations®’) in
observational RWD. Last but not the least, it will also be beneficial
to have access to more complete information (e.g., de-identified
individual-level trail participant data) of the target trials, so that
more realistic simulation settings can be explored.

METHODS

This study was a secondary data analysis using existing data, the study was
approved by the University of Florida Institutional Review Board
(IRB201902362).

The target Alzheimer’s disease (AD) trial and its characteristics
Although there is no cure for AD yet, the U.S. FDA approved two classes of
medications: (1) cholinesterase inhibitors and (2) memantine, to treat the
symptoms of dementia. Donepezil (Aricept®), a cholinesterase inhibitor,
was the most widely tested AD drug and approved for all stages of AD. The
target trial NCT00478205%% is a Phase Il double-blind, double-dummy,
parallel-group comparison of 23 mg donepezil sustained release (SR) with
the 10 mg donepezil immediate release (IR) formulation (marketed as the
SOQ) in patients with moderate to severe AD. Patients who have been
taking 10 mg IR (or a bioequivalent generic) for at least 3 months prior to
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screening were recruited. The original trial consisted of 24 weeks of daily
administration of study medication, with clinic visits at screening, baseline,
3 weeks (safety only), 6 weeks, 12 weeks, 18 weeks, and 24 weeks, or early
termination. Patients received either 10 mg donepezil IR in combination
with the placebo corresponding to 23 mg donepezil SR, or 23mg
donepezil SR in combination with the placebo corresponding to 10 mg
donepezil IR. A total of 471 and 963 patients were enrolled from
approximately 200 global sites (Asia, Oceania, Europe, India, Israel, North
America, South Africa, and South America). The results of the original trial
yielded that donepezil 23 mg/d was associated with greater benefits in
cognition compared with donepezil 10 mg/d and led to the FDA approval
of the new 23 mg dose form for the treatment of AD in 2010°, despite the
debate on whether the 2.2 point of cognition improvement (on a 100 point
scale) over the 10 mg dose form is sufficient®**°.

In our simulation, we followed the detailed study procedures outlined by
Farlow et al?® to formulate our simulation protocol, including the
treatment regimen, population eligibility, and follow-up assessments for
SAEs. Table 4 describes how the original trial design was followed in our
simulation.

Real-world patient data (RWD) from the OneFlorida network

The OneFlorida data contain robust longitudinal and linked patient-level
RWD of ~15 million (>60%) Floridians, including data from Medicaid claims,
cancer registries, vital statistics, and EHRs from its clinical partners. As one
of the PCORI-funded clinical research networks in the national PCORnet,
OneFlorida includes 12 healthcare organizations that provide care through
4100 physicians, 914 clinical practices, and 22 hospitals, covering all 67
Florida counties. The OneFlorida data is a Health Insurance Portability and
Accountability Act (HIPAA) limited data set (i.e., data are not shifted and
location data are available) that contains detailed patient characteristics
and clinical variables, including demographics, encounters, diagnoses,
procedures, vitals, medications, and labs>'. We focused on the structured
data immediately available to us formatted according to the PCORnet
common data model (PCORnet CDM)*2,

Cohort identification: the target population, the study
population, and the trial not eligible population

From the OneFlorida data, we identified three populations: the target
population (TP), the study population (SP), and the trial not eligible
population (NEP) for the target trial following the process shown in Fig. 1a,
and the relationship between these populations are displayed in Fig. 1b.
The true TP should be those that will benefit from the drug, thus, should be
broader as patients with AD in general. However, as patients who were not
treated with donepezil in real world would not have any safety or

OneFlorida Data

Trust population » OneFlorida Data Trust population ;

N ~ 15 million

True target population
Patients with AD
N = 108,639

!

! True target
Effective target population !

population

Effective target

Patients with AD, and used the A
population

study drugs for 24 weeks
N=2,138

!

Study population
Patients who meet the clinical
trial eligibility criteria
N =820

Study population

Panel b

Panel a

Fig.1 Workflow implemented to select the target, study, and trial
not eligible populations are selected from the OneFlorida Data
Trust. Panel a shows thedefinition of different population, and
number of patients identified. Panel b shows the relationships
between the target, study, trial not eligible, and entire OneFlorida
Data Trust populations. The cohort identification process for the
target, study, and trial not eligible populations.
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effectiveness data of the drug in RWD, the effective TP of interest is a
constrained subset: patients who (1) had the disease of interest (i.e., AD),
and (2) had used the study drug (i.e., donepezil) for a specific time period
according to the study protocol. The 10 mg donepezil is only in IR form
while the 23 mg donepezil is exclusively in SR form, so we used the
corresponding RxNorm concept unique identifier (RXCUI) and the National
Drug Code (NDQ) to identify the two groups (i.e, 10 mg vs. 23 mg) of
patients in our data®>?°, We then identified the SP (i.e., patients who met
both the TP criteria and the trial eligibility criteria) and NEP (i.e., patients
who meet the TP criteria but do not meet the trial eligibility criteria) by
applying the eligibility criteria of the target trial to the TP. To do so, we
analyzed the target trial’s eligibility criteria and determined the comput-
ability of each criterion. A criterion is computable when its required data
elements are available and clearly defined in the target patient database
(i.e., the OneFlorida data in our study). Then, we manually translated the
computable criteria into database queries against the OneFlorida database.
We assumed that all patients met the non-computable criteria (e.g.,
“written informed consent”), which is a limitation of our study. The full list of
eligibility criteria and their computability are listed in Supplementary Table
2. We first decomposed each criterion (e.g., “Patients with dementia
complicated by other organic disease or Alzheimer’s disease with delirium”)
into smaller study traits (e.g., “dementia complicated by other organic
disease” and “Alzheimer’'s disease with delirium”). We then checked
whether each of the study trait is computable based on the OneFlorida
data as shown in Supplementary Table 2. We then used the computable
study traits to determine patients’ eligibility. Many of the incomputable
study traits are not clinically relevant for our studies (e.g., “No caregiver
available to meet the inclusion criteria for caregivers.”). Nevertheless, how
computability of these study traits affects the trial simulation results—a
limitation of our current study—warrant further investigations in future
studies.

Definition and identification of serious adverse events (SAE)
from EHRs

The target trial used Severe Impairment Battery (SIB) and the Clinician’s
Interview-Based Impression of Change Plus Caregiver Input scale (CIBIC+;
global function rating) to assess the efficacy of donepezil in AD patients.
Because these effectiveness data are not readily available in the structured
EHR data, we focused on assessing drug safety in terms of the occurrences
of SAEs. To define an SAE, we followed the FDA3? definition of SAEs and
the Common Terminology Criteria for Adverse Events (CTCAE) version 5—a
descriptive terminology for Adverse Event (AE) reporting. In CTCAE, an AE
is any “unfavorable and unintended sign, symptom, or disease temporally
associated with the use of a medical treatment or procedure that may or may
not be considered related to the medical treatment or procedure,” and the
AEs are organized based on the System Organ Class (SOC) defined in
Medical Dictionary for Regulatory Activities (MedDRA3*). CTCAE also
provides a grading scale for each AE into Grade 1 (mild), Grade 2
(moderate), Grade 3 (severe or medically significant but not immediately
life-threatening), Grade 4 (life-threatening consequences), and Grade 5
(death).

We mapped each reported SAE in the trial results section of the target
trial NCT00478205 on ClinicalTrails.gov at https://www.clinicaltrials.gov/
ct2/show/results/NCT00478205 to the CTCAE term and identified the
severity based on the CTCAE grading scale. We considered an AE as SAE if
it meets the criteria for Grade 3/4 (results in hospitalization), and Grade 5
(death). As shown in Fig. 2, to count as an SAE related to donepezil, the SAE
event has to occur within 24 weeks after the first donepezil prescription
(which is the same follow-up period as the original trial). Note that we
excluded chronic conditions that happened before the study, for example,
different types of cancer.

Trial simulation

Table 4 shows our design of the simulated trial corresponding to the
original target trial. Based on the calculation from the original trial”’, a
sample size of 400 and 800 were needed for the 10 and 23 mg arms,
respectively. We first simulated the control arm of the standard therapy
(i.e,, the 10 mg arm of the original trial), where we have a sufficiently large
sample size from the OneFlorida data. We designed our simulation based
on the sample size of the arm in the original trial (N =400), and tested two
different sampling approaches: (1) random sampling, and (2) proportional
sampling controlling for race distribution.
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Fig.2 Timeline showing how baseline and follow-up window are defined. Patients who used 3 months of 10 mg donepezil were included
in the study, their first use of 10 mg or 23 mg donepezil after the 3-month were used as baseline. The follow-up window is from baseline to
180 days after drug initiation. Follow-up window for serious adverse events (SAEs) related to treating Alzheimer’s disease with donepezil.

Even though we did not find a sufficient number of patients who took
23 mg donepezil in our data, we still simulated both case-control arms
using the same sampling strategy in the one-arm simulation that yielded
the closest effect sizes compared with the original trial. We explored two
different scenarios with different sample sizes: (1) the ratio of the number
of subjects in the 23 mg arm to the 10 mg arm was set as 1:1; and (2) the
ratio was set as 1:3. Because of the limited number of individuals who took
the 23 mg form, we can only increase the number of subjects in the 10 mg
arm in the second sample size scenario. We used PSM to simulate
randomization. The variables used for PSM included age, gender, race, and
CCl (i.e, as a proxy for baseline overall health of the patient) prior to
baseline. Specifically, we fitted a logistic regression model using different
treatments (i.e., case vs. control) as the outcome variable and age, gender,
race, and CCl as covariates to generate the logistic probabilities of
propensity scores of individuals in the two comparison groups and then
used the nearest neighbor method to carry out the mapping process. The
two arms were matched with the propensity scores with a 1:1 or 1:3 ratio.

Specifically, we first used proportional sampling to extract a sample of
patients for the 23 mg SP using the same race distribution as in the original
trial, and then identified a matched sample for the 10 mg SP using PSM.
We then calculated the SAEs in the 10 mg vs. 23 mg arms as the safety
outcomes. The simulation process was performed 1000 times with
bootstrap sampling with replacement, and the mean value and 95% Cl
of each bootstrap sample were calculated to generate the overall
estimates. We focused on comparing the average number of SAE per
patient, the overall SAE rates (i.e, how many patients had SAEs), and
stratified the analysis by major SAE categories according to the CTCAE
guideline. The effects of PSM were evaluated by examining the
distributions of propensity scores using jitter plot (Supplementary Table
1 and Supplementary Fig. 1).

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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