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Med-BERT: pretrained contextualized embeddings on large-
scale structured electronic health records for disease prediction
Laila Rasmy 1,3, Yang Xiang 2,3✉, Ziqian Xie1,3, Cui Tao1 and Degui Zhi 1✉

Deep learning (DL)-based predictive models from electronic health records (EHRs) deliver impressive performance in many clinical
tasks. Large training cohorts, however, are often required by these models to achieve high accuracy, hindering the adoption of DL-
based models in scenarios with limited training data. Recently, bidirectional encoder representations from transformers (BERT) and
related models have achieved tremendous successes in the natural language processing domain. The pretraining of BERT on a very
large training corpus generates contextualized embeddings that can boost the performance of models trained on smaller datasets.
Inspired by BERT, we propose Med-BERT, which adapts the BERT framework originally developed for the text domain to the
structured EHR domain. Med-BERT is a contextualized embedding model pretrained on a structured EHR dataset of 28,490,650
patients. Fine-tuning experiments showed that Med-BERT substantially improves the prediction accuracy, boosting the area under
the receiver operating characteristics curve (AUC) by 1.21–6.14% in two disease prediction tasks from two clinical databases. In
particular, pretrained Med-BERT obtains promising performances on tasks with small fine-tuning training sets and can boost the
AUC by more than 20% or obtain an AUC as high as a model trained on a training set ten times larger, compared with deep learning
models without Med-BERT. We believe that Med-BERT will benefit disease prediction studies with small local training datasets,
reduce data collection expenses, and accelerate the pace of artificial intelligence aided healthcare.
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INTRODUCTION
Artificial intelligence (AI)-aided disease prediction has undergone
considerable development in recent years1–3. At present, it can
improve the precision of diagnosis, enable disease prevention by
early warning, streamline clinical decision making, and reduce
healthcare costs4–7. Powerful AI tools, advanced conventional
machine learning8–10, and deep learning11–14 approaches also
have been widely applied in clinical predictive modeling and have
gained numerous successes. Given enough training samples, deep
learning models can achieve comparable or even better
performance than domain experts in the diagnosis of certain
diseases15–19. One prerequisite of typical deep learning-based
methods is the availability of large and high-quality annotated
datasets, which are used to model the underlying complex
semantics of the input domain as much as possible and to avoid
under-fitting of model training20,21. Big EHR data, however, often
are not accessible for numerous reasons, including the limited
number of cases for new or rare conditions; difficulty in data
cleaning and annotation, especially if collected from different
sources; and governance issues that hinder the data acquisition22.
Transfer learning was developed to address the issue whereby

some representations were first pretrained on large volumes of
unannotated datasets and then further adapted to guide other
tasks23. A recent trend in transfer learning is to use self-supervised
learning over large general datasets to derive a general purpose
pretrained model that captures the intrinsic structure of the data,
which can be applied to a specific task with a specific dataset by
fine-tuning. This pretraining fine-tuning paradigm has been
proven to be extremely effective in natural language processing
(NLP)24–30 and, recently, computer vision31,32. Bidirectional enco-
der representations from transformers (BERT) is one of the most
popular models for handling sequential inputs, e.g., text, with

numerous variations29,33–39. BERT has also been embraced by the
clinical domain33,34,40. However, these models were pretrained on
clinical text and are only for clinical NLP tasks.
Structured EHR, as a primary input source for disease prediction,

offers rich and well-structured information that reflects the disease
progression of each patient and is one of the most valuable
resources for health data analysis41,42. Adapting the transfer
learning framework to structured EHR is a natural idea based on
the analogy between natural language text and EHR, i.e., both are
sequential modalities for tokens from a large vocabulary. However,
a one-to-one mapping between the elements of natural language
and structured EHR is not available.
There is a growing literature on transfer learning for EHR. Some

researchers directly repurpose internal layers of trained deep
models (e.g., RNN) for an existing task to a new task43 but these
transfer learning might be too tightly coupled with specific tasks
and its generalizability has not been well established. For the
pretraining style transfer learning, previous studies on structured
EHR showed some successes44,45 but they mainly focused on static
embeddings such as word2vec24 and GloVe25, which failed to
capture deep context information.
In this work, we choose the BERT framework, including its

architecture and its training methodology, for training models on
large EHR data. Notably, other contextualized pretrained embedding
frameworks from the NLP domain, such as ULMFiT46 and ELMo26,
could also be tested in the EHR domain. However, we choose BERT
in this work because it is widely adopted with proven success.
To the best of our knowledge, there are only two relevant

studies in the literature of the clinical domain: BEHRT47 and G-
BERT48. These models, however, have the following limitations.
BEHRT aims to develop pretrained models to predict the existence
of any medical codes in certain visits. It uses positional
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embeddings to distinguish different visits and adds an age layer to
imply temporal orders. The authors’ definition of the area under
the receiver operating characteristics (AUC), however, was a non-
standard one, making it difficult to compare their results with
previous studies. G-BERT applied a graph neural network (GNN)
model to expand the context of each clinical code through
ontologies and jointly trained the GNN and BERT embeddings. It
modified the masked language model (Masked LM) pretraining
task into domain-specific ones, including maximizing the gap
between the existing and non-existing codes and using different
types of codes to predict each other. However, G-BERT’s inputs are
all single-visit samples, which are insufficient to capture long-term
contextual information in EHR. In addition, the size of their
pretraining dataset is not large, making it difficult to evaluate its
full potential. Furthermore, neither BEHRT nor G-BERT uses disease
prediction tasks as the evaluation of their pretrained model by
fine-tuning.
To alleviate the aforementioned issues and to evaluate a

pretrained contextualized embedding model specific to disease
prediction, we designed Med-BERT, an adaption of the BERT
methodology for the structured EHR modality. Med-BERT is trained
on structured diagnosis data coded using the International
Classification of Diseases (ICD) codes, unlike the original BERT
and most of its variations that were trained on free text. Note that
we can also include other types of codes such as medications and
laboratory tests, and we leave its investigation as future work.
We compare Med-BERT with BEHRT and G-BERT in Table 1.

Remarkably, Med-BERT has a much larger vocabulary and a much
larger pretraining cohort than the other two models, which help
to provide a reality check of EHR BERT-based models. The larger
cohort size and longer visit sequences in Med-BERT’s pretraining
set will greatly benefit the model in learning more comprehensive
contextual semantics. We also believe that, by using a large and
publicly accessible vocabulary, i.e., ICD-9 and ICD-10, and
pretraining the model on a multi-institutional dataset (Cerner),
Med-BERT will likely be easily deployable to different institutions
and clinical scenarios. Further, among all these pretrained models,
only Med-BERT has been successfully cross-tested by a fine-tuning
task on an external data source (Truven).
Similar to BEHRT and G-BERT, Med-BERT made several

modifications to the overall BERT methodology to fit the EHR
data modality. Med-BERT used code embeddings to represent
each clinical code, visit embeddings to differentiate visits, and the
transformer structure to capture the intercorrelations between

codes. Within each visit, we defined serialization embeddings to
denote the relative order of each code, whereas neither BEHRT nor
G-BERT introduced code ordering within a visit. In addition, we
designed a domain-specific pretraining task prediction of pro-
longed length of stay in hospital (Prolonged LOS), which is a
popular clinical problem that requires contextual information
modeling to evaluate the severity of a patient’s health condition
according to the disease progression and requires no human
annotation. We expect that the addition of this task can help the
model to learn more clinical and more contextualized features for
each visit sequence and facilitate certain tasks.
The usefulness of the pretrained Med-BERT was evaluated by

fine-tuning on the following two disease prediction tasks: the
prediction of heart failure among patients with diabetes (DHF) and
the prediction of onset of pancreatic cancer (PaCa), using three
patient cohorts from two different EHR databases, Cerner Health
Facts® and Truven Health MarketScan®. These tasks are different
from the pretraining prediction tasks (Masked LM and Prolonged
LOS) and, thus, are good evaluation tasks to test the general-
izability of the pretrained model. In addition, we chose these tasks
because they capture more complexity than merely the existence
of certain diagnosis codes, and are based on established
phenotyping algorithms that further integrate multiple pieces of
information beyond diagnosis codes, such as constraints on time
window, diagnosis occurrence times, medications, and laboratory
test values.
Fine-tuning experiments were conducted for the following

purposes: (1) to test the performance gains by adding Med-BERT
on three state-of-the-art predictive models; (2) to compare Med-
BERT with a pretrained non-contextualized embedding, the
clinical word2vec-style embedding45; and (3) to see how much
Med-BERT would contribute to disease predictions with different
fine-tuning training sizes.
Our primary contributions are summarized as follows:

(1) This work is the first proof-of-concept demonstration that a
BERT-style model for structured EHR can deliver a mean-
ingful performance boost in real-world-facing predictive
modeling tasks.

(2) We innovatively designed a domain-specific cross-visit
pretraining task that is prevalent among EHR data and is
effective in capturing contextual semantics.

(3) This work is the first demonstration of significantly boosted
performance over state-of-the-art methods on multiple
clinical tasks with phenotyped cohorts.

Table 1. Comparison of Med-BERT with BEHRT and G-BERT from multiple perspectives.

Criteria BEHRT G-BERT Med-BERT

Type of input code Caliber code for diagnosis
developed by a college in London

Selected ICD-9 code for diagnosis
+ ATC code for medication

ICD-9+ ICD-10 code for diagnosis

Vocabulary size 301 <4 K 82 K

Pretraining data source CPRD (primary care data)63 MIMIC III (ICU data)64 Cerner Health Facts (general EHR)

Input structure Code+ visit+ age embeddings Code embeddings from ontology
+ visit embeddings

Code+ visit+ code serialization
embeddings

Pretraining sample unit Patient’s visit sequence Single visit Patient’s visit sequence

Total number of pretraining patients 1.6 M 20 K 20M

Average number of visits for each
patient for pretraining

Not reported but >5 <2 8

Pretraining task Masked LM Modified Masked LM Masked LM+ prediction of
prolonged length of stay in hospital

Evaluation task Diagnosis code prediction in
different time windows

Medication code prediction Disease predictions according to
strict inclusion/exclusion criteria

Total number of patients in
evaluation tasks

699 K, 391 K, and 342 K for
different time windows

7 K 50 K, 20 K, and 20 K for three task
cohorts
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(4) This work is the first that presents the generalizability of EHR
BERT models by boosting the performance in a dataset
(Truven) other than the training dataset (Cerner).

(5) The performance boost of Med-BERT is observed across all
sample sizes, demonstrating the enabling power of
pretrained models for clinical tasks for which only limited
training data are available.

(6) We provided a visualization tool to demonstrate the
dependency semantics in EHRs, facilitating the interpret-
ability of the model.

(7) We made our pretrained models and code available,
enabling its applications by other researchers.

RESULTS
Data source
We extracted our cohorts from two databases: Cerner Health
Facts® (version 2017) (Cerner) and Truven Health MarketScan®

(Truven). Cerner is a de-identified EHR database that consists of
over 600 hospitals and clinics in the United States. It represents
over 68 million unique patients and includes longitudinal data
from 2000 to 2017. The Truven Health MarketScan® Research
Database (version 2015) is a de-identified patient level claims
dataset. It represents over 170 million patients from 2011 to 2015
from commercial insurance, Medicare supplemental claims, and
Medicaid claims.
Our pretraining cohort for Med-BERT is consisting of 28 million

patients extracted from Cerner (Fig. 1). For model evaluation, we
extracted three phenotyped cohorts, two of which were from
Cerner (DHF-Cerner and PaCa-Cerner) and one from Truven (PaCa-
Truven). The descriptive analysis of these cohorts is shown in
Table 2, see “Methods”: Cohort definition for details.

The data modality of structured EHR
We define structured EHR data of each patient as a sequence of
visits, each as a list of codes. This is a classic formulation
commonly used in the literature12,49–51. The codes within a visit
can be either ordered or unordered. If unordered, the EHR data for
each patient can be reduced to a sequence of sets. The Med-BERT
framework can handle both ordered and unordered codes inside a
visit. In this paper, we have access to the priority of the diagnosis
codes as coded by billers, e.g., the primary diagnosis is mostly
assigned the first priority followed by the second most important
diagnosis and so on, and thus we encode that information to
introduce order.
Both structured EHR and natural language text are sequential

data with tokens. Therefore, the data modality of EHR are similar
to text in many ways. However, EHR data have distinct
characteristics (Fig. 2). A direct comparison between the data
modalities of the structured EHR data with the natural language
text is shown in Table 3.

Med-BERT architecture
In this work, we utilized essentially the same transformer
architecture as that in the original BERT paper29, including multi-
level embeddings and bidirectional transformers. We also adopted
similar pretraining techniques (same loss function on masking and
classification pretraining tasks). Still, given the semantic differ-
ences between EHR and text, adapting the BERT methodology to
structured EHR is non-trivial. For example, while the input
modality of the original BERT was a 1-D sequence of words, our
input modality is structured EHR which is recorded in a multilayer
and multi-relational style. There are no clear rules on how to
flatten the structured EHR into a 1-D sequence and how to encode
the “structures” of the structured EHR in the BERT transformer
architecture. In addition, it is unclear how to organize the EHR data
efficiently to match the structured inputs of a pretrained model

Cerner HealthFacts® 
Patients [68,696,329]

Patients with Diagnosis 
Information
[39,398,846]

Pretraining Cohort
[28,490,650]

Exclude Patients with wrong 
dates [196,319]

Exclude Patients with <3 
unique diagnosis codes  

[10,711,877]

Fig. 1 Selection pipeline for the pretraining cohort from Cerner HealthFacts. The flow starts from left to right. Number of patients is
between square brackets.

Table 2. Descriptive analysis of the cohorts.

Characteristic Pretraining DHF-Cerner PaCa-Cerner PaCa-Truven

Cohort size (n) 28,490,650 672,647 29,405 42,721

Percent of patients with the eventa 15% 14% 0.07% 0.06%

Average age on last/index encounter (std) 41 61 65 63

Gender—Male (%) 45% 47% 45% 48%

Race

White (%) 68% 72% 77% NA

African American (%) 15% 16% 13%

Asian/Pacific Islander (%) 2% 2% 2%

African American (%) 2% 2% 1%

Average number of visits per patient 8 17 7 19

Average number of codes per patient 15 33 14 18

Vocabulary size 82,603 26,427 13,071 7002

ICD-10 codes (%) 33.8% 13.3% 20.7% 0%

aThe event for pretraining is a prolonged hospitalization >7 days. The event for DHF-Cerner is the development of heart failure for diabetic patients. The event
for PaCa-Cerner and PaCa-Truven is the diagnosis of pancreatic cancer and the percent is from the dataset total population.
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such as BERT, and what are the appropriate domain-specific tasks
for pretraining.
Figure 3 introduced our design of the Med-BERT embedding

layers to accommodate the new modality. Specifically, three types
of embeddings were taken as inputs for Med-BERT. These
embeddings were projected from diagnosis codes, the order of
codes within each visit, and the position of each visit and named,
respectively, code embeddings, serialization embeddings, and
visit embeddings. Code embeddings are the low-dimensional
representations of each diagnosis code; serialization embeddings
denote the relative order, in our case, the priority order, of each
code in each visit; and visit embeddings are used to distinguish
each visit in the sequence.
Unlike BERT, we did not use the specific tokens [CLS] and [SEP]

at the input layer. Our choice is mainly due to the differences in
the input formats of EHR and text. In BERT, only two adjacent
sentences are fed for each input sample, and the token [SEP]
serves as a separator of the two sentences for the pretraining task
of next sentence prediction. Next sentence prediction, however,

was not involved in our tasks (as explained in the next subsection).
We reasoned that the visit embeddings can separate well each
visit and that adding [SEP] would only be redundant. In BERT, the
token [CLS] was used mainly to summarize the information from
the two sentences. However, EHR sequences are usually much
longer; e.g., a sequence may contain ten or more visits, and simply
using one summarization token will inevitably lead to information
loss. Therefore, for the classification tasks, either our prolonged
LOS pretraining task or the downstream disease prediction tasks,
where the information of a long-range sequence is usually
needed, we added a feed-forward layer (FFL) to the sum of the
output from all of the codes within visits to represent a sequence,
instead of using only a single token. Of course, it is also possible to
use an RNN prediction layer instead of a simple FFL on top of Med-
BERT.

Pretraining Med-BERT
We utilized the same optimization algorithm and recommended
hyperparameters (see “Implementation details”) of the original

Table 3. Comparison of characteristics of EHR data versus Natural language data.

Criteria Natural language EHR

Token granularity The basic token is a word, which is a compressed semantic
unit in language and can express some basic meaning. But
in many cases, an integrated semantic unit (e.g., a named
entity or a prepositional phrase) requires the combination of
multiple tokens.

The basic token is a clinical code, which can represent an
integrated semantic unit, e.g., a disease description, a
drug, or a procedure.

Syntactic: Hierarchical
structure

A paragraph (document) contains multiple sentences, and a
sentence contains multiple words.

More complex, a patient’s information contains multiple
visits, and a visit contains multiple codes of different
categories.

Syntactic:
Sequential order

Simple and clear. The visits are sorted sequentially according to time but the
codes within a visit may be unordered or with certain
prioritized orders.

Semantic Dependency relations among sentences (e.g., discourse
relations) as well as words within each sentence (e.g.,
syntactic dependency, semantic roles) are clear.

Dependency relationships are not always clear, e.g.,
adjacent visits may be of little relevance owing to large
time intervals.

Time interval Regular, one between adjacent words. Usually no explicit intervals between codes, and irregular
intervals between adjacent visits.

Data completeness Relatively complete for regular texts such as written
language.

Usually incomplete and sometimes erroneous due to the
nature of EHR.

Sequence length Within a relatively narrow range: the maximum sequence
length of words in a sentence rarely reaches a hundred.

More variable: a patient’s medical records can include
anywhere from one to hundreds of visits. In a single visit, a
patient can have hundreds of medical codes.

Fig. 2 An example of structured EHR data of a hypothetical patient as it would be available from a typical EHR system (e.g., Cerner or
Truven). For this patient, four visits with dates and encounter types are organized according to chronological order at the bottom. Detailed
information including demographic and medical codes with time stamps are shown above. Note that not all information is recorded, as in
real-world EHR recording system.
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BERT model29 during our Med-BERT pretraining phase. We trained
the parameters of the Med-BERT model parameters on the
diagnosis information of a cohort of 20 million patients using the
following tasks.

Masked language model (Masked LM). This task was directly
inherited from the original BERT paper, which was used to predict
the existence of any code, given its context. In detail, there was an
80% chance that a code was replaced by [MASK], a 10% chance
that the code was replaced by a random code, and another 10%
chance that it was kept unchanged. This task is the core of the
contextualized embedding model.

Prediction of prolonged length of stay (Prolonged LOS) in hospital.
For the classification task, instead of using the question–answer
pairs as in BERT, we decided to choose a clinical problem with a
relatively high prevalence in our pretraining dataset and one that
is not disease-specific to ensure better generalizability of our
pretrained model. The three most commonly used quality-of-care
indicators, mortality, early readmission, and Prolonged LOS in
hospital were selected and tested. Through comparison, we found
that the mortality and the early readmission tasks are relatively
easy: the model quickly converges to >99% accuracy. Therefore,
we chose prolonged LOS, the task of assessing each patient for
whether an incident of prolonged hospital visit (LOS > 7 days) had
ever occurred throughout the entire EHR sequence of the patient,
as a pretraining task. We used this simplified version of prolonged
LOS prediction by targeting at the patient level rather than the
visit level to reduce the pretraining complexity. Also, similar to the
Masked LM task, we are not aiming to define a real future
predicting task during the pretraining phase.
We found that the prolonged LOS task for pretraining leverages

the bidirectional structure of Med-BERT. A prolonged LOS not only
reflects the patient’s health status recorded in the past visits but
also has an impact on the subsequent visits. On the other hand,
tasks such as disease onset prediction or mortality always will be
terminated at the last visit of the patient sequence, the input data
of which can be constructed in only one direction.

Applying Med-BERT for downstream prediction tasks by fine-
tuning
Med-BERT, similar to BERT, follows the pretraining fine-tuning
paradigm. The pretrained model itself only generates contextua-
lized embedding for each input token. The model outputs a
general purpose embedding and does not directly output any
prediction labels. For any specific downstream prediction task, a
classification layer (prediction head) needs to be added on top of
the Med-BERT model. One can use a simple prediction head such
as FFL on top of the sequential output from the final Med-BERT
layer. For EHR predictive models, a commonly used prediction
head is the RNN rolling over the output of token embeddings.
During fine-tuning, following the original BERT, we attached a

prediction head on top of the Med-BERT architecture. The
parameters of the Med-BERT part were loaded and initialized

from the pretrained model, and then the parameters of both the
Med-BERT part and the prediction head were updated by gradient
descent. The input of the model was data from a disease-specific
training cohort, which we referred to as the fine-tuning cohort. To
understand the added values by the pretrained Med-BERT
(especially the usefulness of big training data), we compared the
results of fine-tuning the pretrained model and the untrained
model (same architecture with a randomly initialized token+
segment+ position embedding layers and the multi-head trans-
former layers). All models were fine-tuned on a validation set (part
of the fine-tuning cohort) and the reported numbers are the
results on the test set.

Evaluation of Med-BERT
We conducted evaluations on two disease prediction tasks on
three cohorts from two databases. The two tasks are DHF and
PaCa. We used Cerner for both tasks, forming the DHF-Cerner and
PaCa-Cerner cohort; and used Truven for only the pancreatic
cancer prediction task, forming the PaCa-Truven cohort, for
generalizability evaluation. The detailed cohort definitions are
presented in the “Methods” section. Unlike BEHRT and G-BERT,
whose evaluation tasks are simply the prediction of certain codes
which are similar to the tasks in pretraining, our definition of
disease prediction tasks is more complex, as it requires the
phenotyping from multiple perspectives, e.g., the existence of
certain diagnosis codes, drug prescriptions, procedures, laboratory
test results, and, sometimes, the frequency of events in predefined
time windows. Therefore, we claim that our evaluation tasks are
more realistic (compared with BEHRT) and more helpful in
establishing the generalizability of Med-BERT.
For all three tasks, we conducted three experiments: (1) Ex-1: to

evaluate how Med-BERT can contribute to state-of-the-art
methods; (2) Ex-2: to compare Med-BERT with one state-of-the-
art static clinical word2vec-style embedding, t-W2V (trained on the
full Cerner cohort)45; and (3) Ex-3: to investigate how much the
pretrained model can help in transfer learning with various
training sample sizes.
For each fine-tuning task, we randomly selected a subset of the

original cohort and further split it into training, validation, and
testing sets with the ratio of 7:1:2. Since we have enough patients
that are not included in the pretraining, we prioritized the
assignment of samples to the test set to ensure that our test sets
did not include any patient previously included in the Med-BERT
pretraining set. For performance measurement, we used the AUC
as our primary evaluation metric, which has been widely adopted
by many previous studies of disease prediction12,14,52. Additional
performance evaluation metrics are reported in Supplementary
Tables 1 and 2.
For Ex-1, to evaluate the augmented power of pretrained Med-

BERT on top of state-of-the-art base models, we compare the
performances of the base models only and the performance of the
base models on top of Med-BERT. We use GRU53, Bi-GRU54, and
RETAIN12 as our base recurrent neural networks (RNN) models.
While GRUs were shown to be very competitive baseline models,
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we also included RETAIN, a popular disease prediction model with
double GRUs with attention. We also presented the results by
using Med-BERT only; i.e., only FFL was added on top of the last
layer of Med-BERT. This Med-BERT only model will provide an
evaluation beyond RNN-based models. In addition, to evaluate the
effect of pretraining using big data, we compare the performance
of pretrained Med-BERT with the untrained Med-BERT architec-
ture. For the sake of completeness, we also included L2-
regularized logistic regression (L2LR) and random forest (RF),
two popular non-deep learning methods, using standard multi-
hot input format, as baseline models.
For Ex-2, to compare Med-BERT against static embeddings, we

chose the t-W2V model. Our decision to use t-W2V to represent
non-contextualized static embeddings was based on a previous
study45 where different static embedding techniques including
word2vec24, fasttext55, and pointwise positive mutual information-
singular value decomposition56 were compared and t-W2V was
found to perform best in the evaluated disease prediction task.
Notably, Glove25 is a competent alternative of word2vec (w2c) for
static EHR concept embedding but it was documented as having a
comparable performance with w2c. Therefore, we selected t-W2V
as our baseline for static embedding for the sake of convenience.
For Ex-3, to evaluate the value-added of Med-BERT with various

fine-tuning training sizes, we selected samples with increasing
sizes from the training data for each cohort for fine-tuning.
Intuitively, the pretrained model would be more helpful when the
training size is smaller, as it helps inject a broader scope of
knowledge.
For Ex-1 and Ex-2, where we used the full fine-tuning training

cohorts, we reported the average AUC and standard deviation for
each model, based on ten runs with randomly initialized
prediction head weights. For all iterations in Ex-3, we conducted
a random bootstrap sampling ten times and reported the average
AUC and standard deviation for each cohort.

Performance boost of Med-BERT on fine-tuning tasks
Table 4 presents the AUCs for Ex-1 on the three fine-tuning
evaluation tasks. The trends of additional performance evaluation
metrics (Supplementary Tables 1 and 2) are largely consistent with
that of AUC shown in Table 4 and Fig. 4. For DHF-Cerner, it is
notable that Bi-GRU+Med-BERT and RETAIN+Med-BERT obtain
the best results and perform comparably, followed by Med-

BERT_only and GRU+Med-BERT. For each base model, adding t-
W2V (except GRU) will generally achieve better results, but adding
Med-BERT improves the results much further. It is remarkable that
those powerful deep learning-based models, such as GRU, Bi-GRU,
and RETAIN that already obtain over 0.83 on AUC with relatively
large training data, e.g., 50 K samples, adding Med-BERT still
makes a considerable performance boost.
For PaCa-Cerner, similar trends also were observed, whereby Bi-

GRU+Med-BERT, Med-BERT_only, and GRU+Med-BERT gener-
ally outperform methods without Med-BERT and adding Med-
BERT enhanced the AUCs of the base models by 1.62–6.14%. For
PaCa-Truven, the best AUC was obtained by GRU+Med-BERT,
whereas the other Med-BERT-related models also have better
results than those without Med-BERT. On this Truven dataset, we
still observe performance gains of 1.96–3.78%, although the
average improved AUCs appear to be a bit lower than those on
PaCa-Cerner. Nevertheless, it is reassuring to see that Med-BERT
can be generalized well to a different dataset whose data
distributions might be quite different from Cerner, the one it
was pretrained on.
As an ablation experiment, we also made a comparison

between the result of pretrained Med-BERT and that of untrained
Med-BERT, where “untrained” means we did not feed the model
with large EHR for a self-supervised pretraining but only took
advantage of its structure. Table 4 shows that untrained Med-BERT
performs much worse than Med-BERT only and does not even
outperform the baseline method of logistic regression (LR) for
PaCa prediction tasks. Therefore, we can conclude that the
pretraining phase plays a more important role for the boosted
performance. Cases where untrained Med-BERT does not outper-
form the baseline LR are likely due to overfitting, although we
used the standard practice of both early stopping and dropout to
reduce the likelihood of overfitting during the model training. This
is possibly due to the fact that the untrained Med-BERT is an over-
parameterized model (around 17 million parameters) with a huge
number of configurations, so it might overfit to the training data57.
On the other hand, the pretrained model started with a good
configuration that is robust to a very large dataset for the
pretraining, and thus is likely to generalize well.
It is a standard practice that the pretrained BERT model is not

used on its own for prediction, rather a prediction head is needed
for the fine-tuning tasks29. Since Med-BERT is an unsupervised
pretraining model, fine-tuning should be done with certain
configurations for different tasks, especially on the input data
formats. However, in Table 4, we observed that a Med-BERT model
with only an FFL on top of the last layer (Med-BERT_only (FFL)) can
also obtain competitive performances.
In Fig. 4 we show how much Med-BERT can help boost the

prediction performance of the base deep learning models by
incorporating contextual information through pretraining. In the
line chart of DHF-Cerner, we notice that, without Med-BERT, it is
difficult for GRU only to have an AUC exceeding 0.65 when given
fewer than 1000 training samples. The addition of Med-BERT,
however, greatly increases the AUCs by about 20% and helps the
model to reach 0.75, even when training on 500 samples. For Bi-
GRU, considerable improvements also can be observed, but they
are not as high as those for GRU. For RETAIN, Med-BERT seems to
be more helpful when the training set contains more than
500 samples.
For PaCa-Cerner, large improvements by adding Med-BERT to

GRU and Bi-GRU were demonstrated for almost all training sizes. In
particular, for Bi-GRU, Med-BERT enables the AUC to reach 0.75
when training on only 300 samples. The charts for PaCa-Truven
show similar trends, but the overall AUC values are lower
compared to those on PaCa-Cerner when training on smaller
sample sizes.
LR, a popular non-DL machine learning algorithm, serves

consistently as a competitive baseline model, especially on small

Table 4. Average AUC values and standard deviations (in parentheses)
for the different methods for the three evaluation tasks.

Model DHF-Cerner PaCa-Cerner PaCa-Truven

GRU 83.93 (0.13) 78.26 (0.84) 78.17 (0.21)

GRU+ t-W2V 83.95 (0.24) 80.08 (1) 77.54 (0.27)

GRU+Med-BERT 85.14 (0.06) 82.13 (0.24) 80.37 (0.12)

Bi-GRU 82.82 (0.17) 76.09 (0.61) 76.79 (0.29)

Bi-GRU+ t-W2V 84.23 (0.06) 79.35 (0.27) 77.44 (0.22)

Bi-GRU+Med-BERT 85.39 (0.05) 82.23 (0.29) 80.57 (0.21)

RETAIN 83.28 (0.16) 79.68 (0.32) 78.02 (0.19)

RETAIN+ t-W2V 84.98 (0.02) 81.8 (0.17) 79.46 (0.18)

RETAIN+Med-BERT 85.33 (0.09) 81.3 (0.55) 79.98 (0.17)

Med-BERT_only (FFL) 85.18 (0.12) 81.67 (0.31) 79.98 (0.26)

untrained Med-BERT only 82.76 (0.13) 75.16 (0.77) 75.9 (0.18)

Logistic Regression (LR)a 81.01 (0) 79.94 (0) 77.28 (0)

Random Forest (RF)a 81.88 (0.08) 79.48 (0.31) 77.00 (0.12)

aLR and RF input is one hot representation while other models using
embeddings.
The numbers in boldface indicate the highest AUROC per task.
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Fig. 4 Comparison of prediction AUC for the test sets by training on different sizes of data on various cohorts between the methods with
or without the pretrained Med-BERT layer. Logistic regression (LR) results are included as a baseline. a Cohort: DHF-Cerner, method: GRU;
b cohort: DHF-Cerner, method: bidirectional GRU; c cohort: DHF-Cerner, method: RETAIN; d cohort: PaCa-Cerner, method: GRU; e cohort: PaCa-
Cerner, method: bidirectional GRU; f cohort: PaCa-Cerner, method: RETAIN; g cohort: PaCa-Truven, method: GRU; h cohort: PaCa-Truven,
method: bidirectional GRU; i cohort: PaCa-Truven, method: RETAIN. The shadows indicate the standard deviations.
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datasets. Indeed, for smaller training sizes as 500 or less in our
experiment, L2LR showed decent performances. However, Med-
BERT outperforms L2LR in all prediction tasks when the sample
size is over 1000.

Visualization of attention patterns in Med-BERT
Med-BERT not only offers improvement for prediction accuracy
but also enables prediction interpretation. It is interesting and
meaningful to explore how the pretrained model has learned
using the complex structure and a huge volume of data. We show
several examples of how codes are connected with each other
according to the attention weights from the transformer layers,
the core component of Med-BERT.
The bertviz tool58 was adapted and improved to better visualize

the attention patterns in each layer of the pretrained model. We
added “SEP” tokens between visits only for visualization purposes.
We observed distinct patterns in different layers of the model. In
the pretrained model, among the six layers of the BERT
transformer model, the connections of the first two layers are
mostly syntactic, some attention heads are restricted within a visit,
and some point to the same codes across different visits. In the
middle two layers, some medically meaningful attention patterns
that capture contextual and visit-dependent information emerge.

For the final couple of layers, the attention patterns become
diffused and difficult to interpret.
Figure 5 is an example of the same code in different visits,

showing different attention patterns. This demonstrates the ability
of Med-BERT to learn contextualized representations. The earlier
code for type 2 DM focuses mainly on the code for the long-term
use of insulin within the same visit, but the later diabetes code
focuses on the insulin code, both in the current and the previous
visits. This could potentially indicate that the model learns the
temporal relationship between visits through the segment
embedding. More examples are provided in Supplementary Fig. 3.
The attention patterns of the fine-tuned model are different.

The fine-tuned models express distinct task-dependent patterns
across different layers, showing the generalizability and adapt-
ability of the model for learning different levels of knowledge in
real-world scenarios. Figure 6 provides an example of the Med-
BERT model fine-tuned on the DHF-Cerner dataset with attention
converging onto several related codes in the second layer. Figure
7 is an example of the attention pattern in the fourth layer of the
Med-BERT model fine-tuned on the PaCa-Cerner dataset, captur-
ing the relevant correlation between diagnosis codes. Additional
visualization patterns can be seen in Supplementary Fig. 3. We
believe that these kinds of visualization patterns can help us to
better understand the inner mechanism of the neural network

Fig. 5 Example of different connections of the same code, “type 2 diabetes mellitus”, in different visits. a The first visit, b the second visit.
Connection lines from the code in the left panel to the code in the right panel indicate attentions of the Med-BERT model. Color of the line
indicates individual attention head, and intensity of the line indicates attention weights.
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model and to build trusting and better communications of health
information.

DISCUSSION
Med-BERT shows its power in helping to improve the prediction
performance on multiple tasks with different configurations, and it
is particularly effective in the “extreme transfer learning”
paradigms, i.e., fine-tuning on only several hundreds of samples.

Deep learning-based predictive models usually require at least
thousands of samples. These models need to learn complex
semantics through feeding samples that convey different under-
lying disease progressions and variational context information so
that they can be capable of dealing with intricate unseen cases.
However, most deep learning algorithms are insufficient in
modeling the data comprehensively due to their limitation in an
in-depth understanding of the inputs. Pretrained models can well
address this issue by using more sophisticated structures to better

Fig. 6 Example of the dependency connections in the DHF-Cerner cohort. Connection lines from the code in the left panel to the code in
the right panel indicate attentions of the Med-BERT model. Color of the line indicates individual attention head, and intensity of the line
indicates attention weights.

Fig. 7 Example of the dependency connections in the PaCa-Cerner cohort. Connection lines from the code in the left panel to the code in
the right panel indicate attentions of the Med-BERT model. Color of the line indicates individual attention head, and intensity of the line
indicates attention weights.
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capture the complex semantics of inputs, behaving as a knowl-
edge container, and injecting the knowledge into new tasks.
Similar to pretrained models on other domains, Med-BERT, by
using its bidirectional transformer and deep structure as well as
big data, also have been shown in this study to be extremely
helpful when transferring to new tasks.
Masked LM and Prolonged LOS were designed and included to

reinforce the modeling of contextual information and to help
collect sequential dependencies. Labels for both can be generated
in an unsupervised way, i.e., without human annotations. In
Masked LM, the goal is to predict a masked code using the
sequential information from the forward and the backward
directions. In Prolonged LOS, the goal is to determine whether a
patient is associated with any visit that is a prolonged stay, which
also relies on cumulative contexts. We believe that, by including
the prediction tasks from both the code level and the patient
(sequence) level, Med-BERT can further strengthen the represen-
tation learning of EHR sequences from different granularities.
Intuitively, a better parameter initialization of deep learning

models could lead to better performance and faster convergence.
However, these benefits would gradually diminish with the
growth of training samples. We consider 50 and 20 K as
acceptable scales of samples for training satisfactory (converging)
deep learning models. When we added Med-BERT, however,
considerable improvements also could be observed. For example,
RETAIN obtains satisfactory performances on all the three tasks,
but adding Med-BERT brings further improvements by
1.62–2.05%. In addition, for GRU and Bi-GRU, whose model
structures are simpler than that of RETAIN, the improvements can
be much larger, which bring these simple models to a comparable
level of or even better than RETAIN. Further, according to the
results of Med-BERT_only, which also achieves good performance,
we may conclude that Med-BERT will potentially release
researchers from developing complex models for disease predic-
tion problems.
Similar to Med-BERT, static embedding method t-W2V also can

serve as a good performance booster to the base deep learning
models. However, the improvements of t-W2V are smaller
compared to Med-BERT in most cases. A probable explanation is
that t-W2V has limitations in modeling long-sequential informa-
tion, considering its shallow structure and the limited size of the
context window which cannot be guaranteed to act well in all
situations.
In practice, Med-BERT will significantly help to reduce the

burden of data labeling, which can be seen through comparing
the sizes of training samples required to achieve certain AUC
levels. Ex-3 proved the effectiveness of transferring Med-BERT into
realistic disease prediction tasks. Most of the charts in Fig. 4 reflect
that Med-BERT can substantially boost the performance of base
models on small samples. For example, in the first sub-chart of
PaCa-Cerner in Fig. 4, if we draw a horizontal line across the y-tick
of 0.75, we will see a requirement of 1000 samples for GRU+Med-
BERT and over 10,000 samples for GRU only. Similarly, we can see
the Bi-GRU+Med-BERT trained on 5000 samples can provide
slightly better performance than Bi-GRU only trained on more
than 50,000 samples as appears in Supplementary Table 2A.
Thus, Med-BERT brought the model performance on par with a

training set almost ten times larger. The data acquisition cost of
these over 9000 samples, which sometimes can be quite
expensive, will be substantially saved by using Med-BERT. In this
situation, with Med-BERT, researchers and clinicians are able to
quickly get a general and acceptable understanding of the
progressions of new diseases before collecting enough annotated
samples.
Admittedly, although Med-BERT empowers deep learning

models throughout all training sample sizes tested, Med-BERT
powered models still do not outperform the non-deep learning
baseline model LR for the smallest training sample sizes (n < 500).

This is consistent with the literature that LR remains a competitive
predictive model for small training sample sizes in a number of
studies14. LR benefits from its simple and shallow structure, which
is much easier to fit based on even only a few samples compared
with the complex structure and immense parameter space of
deep learning models. However, this advantage is gradually
weakened as the training size grows. Therefore, for practice, we
would recommend the use of Med-BERT fine-tuning for the
scenarios where the training sample size is sufficiently large (e.g.,
n > 500).
The vocabulary of the current version of Med-BERT is the union

of ICD-9 and ICD-10 codes with 82,000 tokens. Compared with
BEHRT and G-BERT, our vocabulary has broader coverage and is
widely adopted in practice. We believe that it will greatly facilitate
the transferability of the model, as ICD is a global health
information standard recommended by the World Health
Organization and is used by different institutions from over 100
countries around the world. This can be demonstrated in our
PaCa-Truven evaluation, in which we tested our models’ efficacy
using a cohort extracted from a health insurance dataset.
In this work, we chose BERT, an advanced contextualized

embedding methodology in NLP, for EHR modality. However,
there are alternative ideas: such as ULMFiT46, ELMo26 GPTs27,28,59,
etc. It is probably necessary to evaluate these alternatives for
pretraining and fine-tuning on EHR. We will leave it as future work.
There are still several limitations of the current work. First, we

used only the diagnosis information in the ICD format. Second, we
did not include the length of time intervals between visits in this
study, which may cause some temporal information loss. Third, we
did not fully explore the order of concepts within each visit, and
the current setting based on code priorities might not be
sufficiently reliable. In the future, more research on designing
different pretraining tasks will be conducted, and different types
of fine-tuning tasks beyond disease prediction also will be tested.
We also plan to include other sources, such as time, medications,
procedures, and laboratory tests, as inputs of Med-BERT. In
addition, task-specific visualizations and interpretations are other
areas that we plan to explore.
In conclusion, we proposed Med-BERT, a contextualized

embedding model pretrained on a large volume of structured
EHR data, and further evaluated the model in disease prediction
tasks. Domain-specific input formats and pretrained tasks were
designed. Extensive experiments demonstrated that Med-BERT
has the capacity to help boost the prediction performance of
baseline deep learning models on different sizes of training
samples and can obtain promising results. The visualization
module enabled us to look deeper into the underlying semantics
of the data and working mechanisms of the model, in which we
observed meaningful examples. Those examples were further
verified by clinical experts, indicating that Med-BERT can capture
the semantics among EHRs during both pretraining and fine-
tuning. Methodologically, our work establishes the feasibility and
usefulness of contextualized embedding of structured EHR data.
Practically, our pretrained model enables training powerful deep
learning predictive models with limited training sets.

METHODS
Med-BERT pretraining cohort
Cerner Health Facts® (version 2017) is a de-identified EHR database that
consists of over 600 hospitals and clinics in the United States. It represents
over 68 million unique patients and includes longitudinal data from 2000
to 2017. The database consists of patient-level data, including demo-
graphics, encounter meta-information, diagnoses, procedures, lab results,
medication orders, medication administration, vital signs, microbiology,
surgical cases, other clinical observations, and health systems attributes.
Data in Health Facts® are extracted directly from the EMRs of hospitals with
which Cerner has a data use agreement. Encounter meta-information
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includes the identification of pharmacy, clinical and microbiology
laboratory, and admission and billing information from affiliated patient
care locations. All admissions, medication orders and dispensing,
laboratory orders, and specimens are date and time-stamped, providing
a temporal relationship between treatment patterns and clinical informa-
tion. The Cerner Corporation has established Health Insurance Portability
and Accountability Act-compliant operating policies to establish de-
identification for Health Facts®.
During the data preprocessing phase for pretraining, for each patient in

the cohort, we organized the visits in a temporal order and ranked the
diagnosis codes within each visit according to three criteria: (1) the
diagnosis was flagged as present on admission; (2) the diagnosis was
captured during the visit (e.g., hospitalization) or only at the billing phase;
and (3) the diagnosis priority is provided by the Cerner database,
indicating some priorities of the diagnoses, e.g., principal/secondary
diagnosis (the priority is provided by the database, but it might not be a
perfect priority ranking)
For each visit, we extracted the diagnosis codes (represented by ICD,

Ninth Revision, Clinical Modification (ICD-9) and ICD, Tenth Revision,
Clinical Modification (ICD-10)) and the length of stay in hospital. We then
ranked the codes in each visit according to the above three criteria and
determined the order by using (1)→ (2)→ (3) in sequence. We observed
only very limited performance gains, however, by adding the code order
during the evaluation, compared with randomly scattering the codes.
Hence, we set it as a placeholder here and assume that more effective
orders could be defined in the future.
Patients with fewer than three diagnosis codes in their records as well as

those with wrong recorded time information, e.g., discharge date before
admission date, were removed from the population. In total, we had
28,490,650 unique patients (Fig. 1), which were further separated into
training, valid, and testing sets by the ratio of 7:1:2 on both the pretraining
and evaluation phases.

Diabetes heart failure cohort (DHF)
We originally identified 3,668,780 patients with at least one encounter with
a diabetes diagnosis, based on the associated ICD-9/10 codes. We decided
to exclude patients with any history of diabetes insipidus, gestational
diabetes, secondary diabetes, neonatal diabetes mellitus (DM), or type I
DM from our cohort, as we focus on patients with type II DM and need to
avoid any chance of wrong coding, taking into consideration that most of
the EHR data are based on user manual entries and that there is a high
associated chance of data entry mistakes. For the same reason, we decided
to include patients who have more than one encounter with a diabetes
diagnosis code. In addition, for type II DM patients, we verified that the
patients’ A1C reading is ≥6.5 or that they are taking an antidiabetic agent,
including metformin, chlorpropamide, glimepiride, glyburide, glipizide,
tolbutamide, tolazamide, pioglitazone, rosiglitazone, sitagliptin, saxagliptin,
alogliptin, linagliptin, repaglinide, nateglinide, miglitol, acarbose, or insulin.
For these cases, we identified patients with incidences of heart failure

(HF) (using ICD-9 code equivalents, such as 428, or in 404.03, 404.13,
402.11, 404.11, 402.01, 404.01, 402.91, 398.91, 404.93, and 404.91, or ICD-10
code equivalents, such as I50%, or in I11.0, I09.81, I13.2, I97.13, I97.131,
I13.0, and I97.130). In addition, we verified that the eligible cases are either
prescribed a diuretic agent, had high B-type natriuretic peptide or had
been subjected to relevant procedures, including dialysis or an artificial
heart-associated procedure following60. We included only those patients
who reported HF at least 30 days after their first encounter with a type II
DM code and excluded patients with only one HF encounter.
Further data cleaning included the exclusion of patients with incorrect

or incomplete data, for example, patients who were recorded as expired in
between their first encounter and our event (first HF encounter for cases or
last encounter for controls) as well as patients who are younger than 18
years old at their first diabetes diagnosis. The final cohort is shown in
Supplementary Fig. 1 and includes 39,727 cases and 632,920 controls.

Pancreatic cancer cohort (PaCa)
Using ICD-9 codes that start with 157 and ICD-10 codes that start with C25,
we originally identified around 45,000 pancreatic cancer patients from the
Cerner Health Facts dataset, of which 11,486 cases of individuals of 45
years or older did not report any other cancer disease before their first
pancreatic cancer diagnosis were eligible for inclusion in this cohort.
Further details of the cohort definition are shown in Supplementary Fig. 2.

Similarly, we extracted a PaCa cohort from Truven Health MarketScan®

Research Databases for evaluation purposes. The Truven Health Market-
Scan® Research Databases (version 2015) are a family of research datasets
that fully integrate de-identified patient-level health data (medical, drug,
and dental), productivity (workplace absence, short- and long-term
disability, and workers’ compensation), laboratory results, health risk
assessments, hospital discharges, and electronic medical records into
datasets available for healthcare research. It captures person-specific
clinical utilization, expenditures, and enrollment across inpatient, out-
patient, prescription drug, and carve-out services. The annual medical
databases include private sector health data from ~350 payers. Historically,
more than 20 billion service records are available in the MarketScan
databases. These data represent the medical experience of insured
employees and their dependents for active employees, early retirees,
Consolidated Omnibus Budget Reconciliation Act continues, and Medicare-
eligible retirees with employer-provided Medicare Supplementary plans.
Most of the diagnosis codes in Truven are ICD-9 codes, as the version of
the database that we used is 2015, but the implementation of ICD-10
started in October 201561.

Implementation details
For the transformer architecture of Med-BERT, we used six layers, six
attention heads, and a hidden dimension of 192 (L= 6, H= 192, A= 6). We
set the feed-forward/filter size to be 64.
For pretraining, we set the maximum sequence length as 512 tokens. We

masked one diagnosis code per patient during Masked LM. We used the
default BERT optimizer, AdamWeight decay optimizer. We used the
recommended learning rate of 5e−5, and a dropout rate of 0.1. We used
the TensorFlow code of the original BERT from https://github.com/google-
research/bert (February 2019 version). We used a single Nvidia Tesla V100
GPU of 32 GB graphics memory capacity, and we trained the model for a
week for more than 45 million steps, for which each step consists of 32
patients (batch size).
Before fine-tuning, we first converted the pretrained model to the

PyTorch version, using the HuggingFace package (version 2.3)62. For fine-
tuning, we utilized our established codebase https://github.com/ZhiGroup/
pytorch_ehr for the implementation of BERT_only, GRU, bi-GRU, and
RETAIN models with minor modification to implement multilayer embed-
dings instead of visit-level embeddings. We used the Adam optimizer and
a learning rate of 1e−5 for most of the models except for unidirectional
GRU with static embedding for which a learning rate of 0.001 was
associated with the best results. For the evaluation tasks, we used Nvidia
GeForce RTX 2080 Ti GPUs of 12 GB memory.
For L2LR and RF, we used the scikit-learn package version 0.24. We used

the default hyperparameters for both the LR and the RF classifiers.

On ethical data use related to this manuscript
The IBM® MarketScan® Research Databases (Formerly, Truven®) contain
individual-level, de-identified, healthcare claims information from employ-
ers, health plans, hospitals, and Medicare and Medicaid programs. The data
in Health Facts® are extracted directly from the EMR of hospitals with which
Cerner has a data use agreement. Both IBM and Cerner Corporation have
established Health Insurance Portability and Accountability Act-compliant
operating policies to establish de-identification for IBM® MarketScan®

Research Databases and Health Facts®. The use of IBM®MarketScan®

Research Databases and Cerner Health Facts® mandates compliance with
all vendor contractual obligations; of specific ethical relevance is the legally
binding directive that no user of these data may attempt to re-identify the
de-identified data. As an additional safeguard, at an institutional level,
UTHealth researchers employing the IBM® MarketScan® Research Data-
bases and Cerner Health Facts® for their studies are subject to oversight
and approval by the Committee for the Protection of Human Subjects
(UTHSC-H IRB) under protocol HSC-SBMI-13-0549. The use of the IBM®

MarketScan® Research Databases and Cerner Health Facts® for this study is
covered by the approval by the Committee for the Protection of Human
Subjects (UTHSC-H IRB) under protocol HSC-SBMI-13-0549.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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