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Evaluation of biases in remote photoplethysmography
methods
Ananyananda Dasari1, Sakthi Kumar Arul Prakash1, László A. Jeni2 and Conrad S. Tucker 1,2,3,4,5✉

This work investigates the estimation biases of remote photoplethysmography (rPPG) methods for pulse rate measurement across
diverse demographics. Advances in photoplethysmography (PPG) and rPPG methods have enabled the development of contact
and noncontact approaches for continuous monitoring and collection of patient health data. The contagious nature of viruses such
as COVID-19 warrants noncontact methods for physiological signal estimation. However, these approaches are subject to
estimation biases due to variations in environmental conditions and subject demographics. The performance of contact-based
wearable sensors has been evaluated, using off-the-shelf devices across demographics. However, the measurement uncertainty of
rPPG methods that estimate pulse rate has not been sufficiently tested across diverse demographic populations or environments.
Quantifying the efficacy of rPPG methods in real-world conditions is critical in determining their potential viability as health
monitoring solutions. Currently, publicly available face datasets accompanied by physiological measurements are typically captured
in controlled laboratory settings, lacking diversity in subject skin tones, age, and cultural artifacts (e.g, bindi worn by Indian women).
In this study, we collect pulse rate and facial video data from human subjects in India and Sierra Leone, in order to quantify the
uncertainty in noncontact pulse rate estimation methods. The video data are used to estimate pulse rate using state-of-the-art rPPG
camera-based methods, and compared against ground truth measurements captured using an FDA-approved contact-based pulse
rate measurement device. Our study reveals that rPPG methods exhibit similar biases when compared with a contact-based device
across demographic groups and environmental conditions. The mean difference between pulse rates measured by rPPG methods
and the ground truth is found to be ~2% (1 beats per minute (b.p.m.)), signifying agreement of rPPG methods with the ground
truth. We also find that rPPG methods show pulse rate variability of ~15% (11 b.p.m.), as compared to the ground truth. We
investigate factors impacting rPPG methods and discuss solutions aimed at mitigating variance.
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INTRODUCTION
Changes in physiological signals of the human body, such as pulse
rate, body temperature, blood pressure, and respiration rate can
be monitored using invasive (sensors are inserted into the body)
or noninvasive (sensors are not inserted into the body) methods1.
Noninvasive methods are further classified as contact (sensor
makes contact with the skin) and noncontact (take measurements
from a distance) methods2. Contact-based methods monitor
physiological signals by measuring changes in physical properties,
such as pressure, temperature, and light transmitted/reflected3.
Noncontact physiological signal monitoring is primarily achieved
using camera, audio, infrared (IR), ultrasound, or Doppler-based
approaches (Advanced Non-contact Patient Monitoring Technol-
ogies: A New Paradigm in Healthcare Monitoring), each differing
in the type of input signal used for measurement. These
approaches have gained momentum for remote monitoring of
physiological signals of subjects (Advanced Non-contact Patient
Monitoring Technologies: A New Paradigm in Healthcare Monitor-
ing). Of these methods, video modality has become the
predominant input data type for noncontact approaches, driven
by the availability of low-cost cameras and smartphones4. The
COVID-19 pandemic has also contributed to increased usage of
noncontact technology for monitoring vital signs of patients, as
well as analyzing the effects of new drugs5. Remote photo-
plethysmography (rPPG) is a noncontact video-based method that

monitors the change in blood volume by capturing pixel intensity
changes from the skin to measure pulse rate6. In contrast, contact-
based photoplethysmography (PPG) sensors emit light onto the
skin and measure the pulse rate by detecting the amount of light
transmitted or reflected (i.e., Skin reflection model7). PPG
approaches may not be suitable for vital sign measurements
in situations involving contagious diseases (e.g., COVID-19), due to
the need for physical contact and sterilization procedures after
use8. rPPG approaches make no physical contact with the person
whose physiological measurements are being captured, making
them suitable for situations necessitating noncontact approaches.
Moreover, rPPG methods have the potential to be integrated into
existing mobile phones (e.g., via an app download), especially
given the increased prevalence of mobile devices in resource
constrained environments4.
The differences between estimated and actual physiological

signals can be due to multiple sources of noise9,10. Sensor noise
varies with the type of sensor, conditions during measurement,
human error, and bias due to subject demographics9. The
measurement noise for PPG methods across subject demo-
graphics has been studied in detail by Bent et al.11. The
quantification of rPPG measurement biases across demographics
remains an open area of scientific inquiry. The primary objective of
this work is to investigate sources of error across state-of-the-art
rPPG methods and an FDA-approved gold standard pulse rate
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measurement device in demographic populations typically not
represented in evaluation datasets. We investigate factors
responsible for causing pulse rate estimation bias, while using
state-of-the-art rPPG methods on facial videos.
Commonly used datasets for tasks related to processing facial

videos, such as BP4D and Multi-Pie, are unbalanced in terms of
demographic diversity12,13. A majority of subjects are from Euro-
American (49%) descent followed by Asians (27%) in the age
group of 19–29 years. Other publicly available datasets, such as
MAHNOB-HCI and MMSE-HR, also show similar demographic
composition14. These datasets are also collected under optimal
illumination conditions in controlled laboratory settings. In
contrast, the dataset used for this study is collected from two
geographically and culturally distinct countries, India and Sierra
Leone, introducing environmental and subject variations that are
typically underrepresented in publicly available face datasets.
Increasing the diversity of datasets is critical to minimizing
algorithmic biases. Further, the demographic representation in
the dataset used in this study contains subjects with features, such
as facial marks or adornments and headgear (Fig. 1), which are
typically not represented in existing datasets used to train or
evaluate rPPG methods. For example, the presence of facial marks,
such as a “bindi” worn by Indian women, may interfere with spatial
pixel averaging in the forehead skin region of interest and may
cause biased estimation of pulse rate. The presence of headgear,
such as hats or turbans, may cause occlusion leading to errors in
face detection. A knowledge gap exists in terms of how well
existing state-of-the-art rPPG methods perform when presented
with diverse datasets. This work

● Performs data collection of facial videos of subjects containing
demographics typically not represented in existing datasets
used to evaluate rPPG methods for pulse rate estimation.

● Compares and tests the estimation accuracy of state-of-the-art
rPPG methods against an FDA-approved ground truth PPG
sensor on the collected demographically diverse dataset.

● Investigates the sources of bias in rPPG approaches for pulse
rate estimation, such as country of origin, gender, and skin
tone, and quantifies the error due to each identified source.

Prior work on PPG-based pulse rate measurement methods can
be classified into PPG and rPPG methods. rPPG methods are
divided into traditional image processing approaches and deep-
learning approaches, depending on the type of algorithm used.
The following sections discuss studies on PPG and rPPG sensor
development, signal processing, and algorithm testing, high-
lighting the contributions of the current work.

Contact-based PPG
Research in the area of contact-based PPG by Yang et al. and Rhee
et al. started with the development of wireless finger ring-based
sensors for continuous monitoring of heart rate. These studies

used the red and IR components of transmitted light to monitor
heart rate over an extended period of time15,16. Renevey et al.
developed a wrist-based sensor using reflected IR light to measure
pulse rate17. Further, the study proposes automatic noise
cancellation methods to filter the input signal. Mendelson and
Pujary studied the effect of site of pulse rate measurement on the
readings for a wrist and forehead-based sensor18. Wang et al. and
Celka et al. developed sensors that can be placed on the ear to
measure pulse rate19,20. Celka et al. also introduced a principal
component analysis (PCA)-based noise reduction method that
reduces disturbances due to the subject motion20. Ear-based
sensors were further modified, and embedded in earrings and
earphones in studies by Poh et al.21. The main focus of the
aforementioned studies was the development of a physical sensor
and the identification of reliable measurement locations on a
human body for pulse rate, such as the wrist, forehead, and ear.
They also included analysis of noise reduction and signal
processing methods to extract high-quality PPG signals. These
studies also focused primarily on the IR and red regions of the
spectrum as studies22 showed that these regions contain useful
PPG information. The studies however did not include a discussion
of the accuracy or measurement bias of the wrist, forehead, and
ear-based sensors due to environmental or demographic varia-
tions in the subjects tested. Work by Tamura details the principles
of transmission and reflection-based PPG methods23. The study
finds the green channel to be suitable for reducing errors due to
small body movements. The findings were based on experiments
conducted on a single individual, using different sites for video-
based pulse rate measurement. A study by Tautan explores the
correlation of PPG signals to different types of motion and
wavelength of light, using accelerometer data for validation24. The
designed algorithm improves the visibility of the heart rate
component in the frequency domain of the signal. The study
however performs validation on a small population and gives no
quantification of the measurement bias due to demographic
diversity in the subjects. The development of PPG devices has
been studied in detail by Castaneda25. The study discusses the
types of PPG sensors, the possible sites of measurement, and
sources of error. An analysis of the accuracy of the PPG method
from diverse populations typically not represented in evaluation
datasets is not conducted. Zhang developed an algorithmic
framework to reduce the error in detected pulse rate due to wrist
motion in a contact-based wrist PPG sensor26. The study succeeds
in reducing the error due to small wrist movements by using an IR
PPG sensor as the motion reference. Generalization to larger
movements and different subject and environmental variations
has not been performed. Recent work in the area of contact-based
PPG by Bent et al. investigates the accuracy of wearable device
measurements obtained from PPG sensors from multiple manu-
facturers11. The study compares the accuracy of the sensor
measurements with the ground truth pulse readings from an
electrocardiogram (ECG), across subjects of varying skin tones.

Fig. 1 Representative images illustrating challenging facial features (“bindi”, headgear). The images from left to right are ‘nestle, jodhpur’
by ‘nevil zaveri’ licensed under CC BY 2.0, ‘Sawai Madhopur, man with turban’ by ‘Arian Zwegers’ licensed under CC BY 2.0, ‘Wollayta Woman’
by ‘Rod Waddington’ licensed under CC BY-SA 2.0, and ‘Raymond’ by ‘Michael Downey’ licensed under CC BY 2.0.
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It also includes an analysis of errors due to the sensor movement
and physical activity, as well as variations among different
manufacturers. The study analyzes measurement bias of contact-
based sensors in measuring the pulse rate of both stationary and
exercising subjects in a laboratory setting.
Contact-based PPG algorithms performed tests on subject

groups with a largely homogeneous demographic distribution
(Caucasians in the age range of 19–29). Moreover, the subjects
were tested in stationary laboratory settings, which is not
representative of outside-the-lab conditions, that typically include
subject and background motion, as well as nonuniform illumina-
tion changes. The current work develops a dataset that is collected
from diverse subjects in their representative environments. An
FDA-approved ground truth PPG and state-of-the-art rPPG
approaches are evaluated on this dataset.

Image processing approaches for remote PPG
Early work in the area of rPPG was conducted by Verkruysse et al.
in the identification of the correct channel of ambient light for
best results27. The study shows that though the green channel
contains the most useful PPG information, the red and blue
channels contain important PPG information as well. Work by
Lewandowska et al. and Poh et al. used feature selection
algorithms (PCA and independent component analysis (ICA),
respectively) to extract useful features to obtain the desired PPG
signal28,29. Work on Eulerian video magnification by Hao-Yu Wu
et al. demonstrated a spatial decomposition and temporal filtering
approach to visualize small temporal changes (caused by blood
flow) in facial videos, leading to better detection of pulse rate30.
The algorithm was evaluated on three individuals with different
skin tones with a ground truth ECG. Work by De Haan and Van
Leest used the difference in absorption spectra of bloodless skin
and arterial blood to design a more “motion-robust”,
chrominance-based remote PPG algorithm (CHROM)31. This
algorithm was compared to a range of contact-based fitness
devices, and was found to be of comparable accuracy for both
stationary and moving subjects. The subject videos were captured
in laboratory conditions, as opposed to the dataset we developed,
where subject videos are captured in participants’ natural
environments that include artifacts typically not found in
laboratory-controlled environments. The Plane Orthogonal-to-
Skin (POS) algorithm developed by Wang et al., projects the PPG
signal on to a plane orthogonal to the skin tone to extract the
pulse signal. The algorithm was tested on subjects with different
skin tones and with different activity levels, in a laboratory setting
and was found to outperform CHROM and PCA/ICA algorithms32.
Wang et al. also developed a “Spatial Subspace Rotation” (SSR)
algorithm that observes a subspace of skin pixels over time and
measures their “rotation” for pulse extraction33. Subjects with
varying skin tones and under different illumination and activity
conditions were tested under laboratory conditions. The SSR
algorithm outperforms previous source separation methods (ICA)
and CHROM. Partial demographic analysis (across skin tones) was
performed in this study. The VideoVitals approach developed by
Prakash and Tucker employs a bounded Kalman Filter (BKF) and a
denoising algorithm to reduce the effect of motion and improve
feature tracking34. The BKF algorithm is tested on subjects
performing a range of head motions and is shown to outperform
the existing methods for reducing motion inaccuracies. Similar to
other state-of-the-art methods, the performance of BKF was tested
on subjects from a university setting, under laboratory conditions.
The Spherical Mean approach developed by Pilz et al. describes a
lower-dimensional representation of pixel intensities, using a
geodesic sphere. This representation unifies the invariance
properties with respect to a translation of features, increasing
the robustness to head motion and also eliminating the need for
parameter tuning35.

Image processing-based approaches for rPPG have been shown
to perform better than contact-based sensors for pulse rate
determination. The need for physical contact is minimized,
increasing the versatility of these rPPG methods. Image processing
approaches often involve multiple steps, such as face tracking,
skin segmentation, color space transformation, feature selection,
and noise filtering. Deep-learning approaches minimize the
requirement for multiple stages of processing and also automate
the task of feature selection.

Deep-learning approaches for remote PPG
The automation of feature selection and the reduction of
multistep video processing warrants the use of deep-learning-
based approaches for pulse rate estimation. “DeepPhys” is a deep-
learning-based convolutional attention network developed by
Chen and McDuff, that estimates the PPG signal from an input
facial video, using a finger pulse oximeter signal as the reference
pulse36. The model consists of two subnetworks, the first to
identify the skin region of interest in the facial video and the
second to estimate the PPG signal from the frame difference in
the observed frames. The method was tested on subjects with a
demographic (age, gender, and skin tone) composition similar to
the dataset we collected, but in laboratory settings with a
synthetic background. SynRhythm, developed by Niu et al., is a
transfer learning approach, where spatiotemporal features are
directly converted to heart rate37. This is tested on public domain
video datasets, which feature mainly Caucasian subjects in a static
setting (MAHNOB-HCI and MMSE-HR). HR-CNN is another model
developed by Speltik et al. using two convolutional neural
networks with different loss functions, to first extract face regions
of interest and use the extracted signals to predict heart rate38.
This model was tested on public domain datasets and on subjects
with high activity levels. PhysNet, developed by Yu et al. uses a
3D-CNN followed by an RNN to learn spatiotemporal facial
features and extract the PPG signal39. Testing on public domain
datasets shows improved correlation with the ground truth (ECG)
and improved performance over non deep-learning methods,
such as CHROM and POS. Deep-learning methods have been
shown to perform better than traditional image processing-based
approaches in pulse rate determination from a facial video.
Current state-of-the-art deep-learning models train using large
scale, diverse training datasets40–44, and complex architectures
such as attention masks45–48. While these approaches have
resulted in highly accurate models49–51, there is a risk of
overfitting to the training data. Deep-learning-based rPPG net-
works were tested on subjects from primarily Caucasian back-
grounds and in laboratory conditions. The performance of
deep-learning algorithms on subjects with diverse demographic
backgrounds and for videos captured outside-the-lab, has not
been evaluated.
In this work, we evaluate state-of-the-art rPPG algorithms on

subjects from different demographic groups in their natural
environmental settings and identify the estimation bias in the
measured signals. The measurements are compared with the
readings taken with an FDA-approved contact-based sensor for
the same challenging dataset. The factors causing pulse rate
variability with video-based methods are identified and compared
with the factors causing pulse rate variability with the FDA-
approved contact-based sensor. This work investigates the factors
impacting pulse rate estimation of rPPG methods, as opposed to
factors impacting PPG methods discussed by Bent et al.11.
Table 1 summarizes the aforementioned studies and focuses on

the properties of the dataset used for evaluation, such as subject
demographic diversity, presence of a laboratory setting, and the
inclusion of an outside-the-lab study. This study investigates the
performance of rPPG methods on data captured in the environ-
ment that is representative of our diverse subjects and hence,
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includes features and artifacts not typically explored in other
works. Knowledge gained from this work will help inform
researchers of the opportunities and challenges in deploying
rPPG methods in diverse, real-world conditions.

RESULTS
Data collection
We collected the facial videos and ground truth pulse rate of
140 subjects (44 from India and 96 from Sierra Leone). The data
were collected on different days to minimize random errors. The
size of the dataset reported in this study is larger than some of the
previous work, such as Bent et al.11. While their dataset reports
equal distribution of individuals representing all skin tones, the
demographics (with respect to country of origin) of their subjects
are not reported. We developed the following protocol for data
collection. For each subject, (1) ensure the subject is seated
indoors and at rest, while facing the front camera of a mobile
phone, (2) capture a facial video of the subject for a minimum of
120 s, (3) simultaneously collect the ground truth pulse rate of the
subject using a contact-based pulse oximeter, (4) fill out a general
survey giving details of nationality, gender, and age (Fig. 2). The
duration of 120 s for video collection was decided based on the
minimum length of video required for each rPPG algorithm.
Though existing rPPG implementations use 60 s of video52, studies
have shown that longer videos provide better estimates of pulse
rate53. The 120 s duration was also found to capture sufficient
subject motion and ambient lighting changes. All the subjects

were completely rested before their pulse rate was recorded. The
facial videos were captured using a Samsung J7 smartphone that
captures 25 frames per second (f.p.s.) on average in ambient
lighting conditions. The default smartphone camera settings, such
as exposure time, are used for video capture, to test existing rPPG
algorithms with a video provided by a typical smartphone camera.
Since the default camera settings were used for video collection,
the effect of camera settings on the accuracy of pulse rate
determination is not a part of this study. The ground truth pulse
rate was captured using the MightySat Rx P/N 9709 Masimo finger
pulse oximeter (MightySat Rx P/N 9709 Masimo finger pulse-
oximeter documentation). The study was conducted with the
approval of and in accordance with the relevant guidelines and
regulations of The Pennsylvania State University’s Institutional
Review Board. Prior to the conduct of the study, informed consent
was obtained from all participants for participation in the study.
Only human subjects of age 18 or above were included in the
study.
In the following section, we conduct statistical analyses

between the pulse rate estimated by rPPG approaches and the
ground truth pulse rate values. Since our statistical analyses
involve between population comparison, we randomly sample 44
videos from the Sierra Leone dataset. The mean age of subjects
from the Sierra Leone dataset after sampling is 45.0 years, for 22
female and 22 male subjects. The mean age of subjects from the
India dataset is 37.0 years, for 25 female subjects and 19 male
subjects. The overall mean age of subjects from both the countries
is 41.9 years.

Table 1. Summary of contact-based PPG and rPPG methods for pulse rate monitoring.

Authors Year Contact sensor-based
on light reflection

Noncontact
video-based

Subject demographic
diversity

Lab control
environment

Outside-the-
lab study

Yang et al.15 1998 ✓

Rhee et al.16 2001 ✓

Renevey et al.17 2001 ✓ ✓

Celka et al.20 2004 ✓ ✓

Mendelson and Pujary18 2006 ✓ ✓

Wang et al.19 2007 ✓ ✓

Verkruysee et al.27 2008 ✓ ✓

Poh et al.29 2010 ✓ ✓

Poh et al.21 2010 ✓ ✓

Lewandowska et al.28 2011 ✓ ✓

Hao-Yu Wu et al.30 2012 ✓ ✓

Tamura23 2014 ✓ ✓

De Haan and Van Leest31 2014 ✓ ✓ ✓

Tautan 24 2015 ✓ ✓

Wang et al. (POS)32 2016 ✓ ✓ ✓

Wang et al. (SSR)33 2017 ✓ ✓ ✓

Castaneda25 2018 ✓

Prakash and Tucker
(BKF)34

2018 ✓ ✓ ✓

Chen and McDuff
(DeepPhys)36

2018 ✓ ✓

Niu et al. (Synrhythm)37 2018 ✓ ✓

Speltik et al. (HR-CNN)38 2018 ✓ ✓

Pilz (Spherical Mean)35 2019 ✓ ✓

Zhang26 2019 ✓ ✓

Yu et al. (PhysNet)39 2019 ✓ ✓

Bent et al. 11 2020 ✓ ✓ ✓

Current study 2021 ✓ ✓ ✓ ✓
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In this study, we consider the following baseline rPPG
approaches: CHROM (2014), POS (2016), BKF (2018), DeepPhys
(2018), and Spherical Mean (2019) for the evaluation against the
ground truth, which is the Masimo pulse oximeter. The Masimo
device is an FDA-approved transmittance type finger pulse
oximeter that measures pulse rate by monitoring changes in the
light passing through the finger tip54. We determine the pulse rate
estimation biases in rPPG technqiues across diverse demographics
to create a baseline evaluation procedure for rPPG methods. The
demographic factors considered in this study are gender, country,
and skin tone. We determine the pulse rate estimation bias in each
rPPG approach and for all factors considered. Results of all
hypothesis tests described in “Methods” section are discussed, and
the factors causing statistically significant differences are analyzed.

Analysis of the FDA-approved Masimo ground truth device
Performing the two-sample Kolmogorov–Smirnov (KS) test for the
hypothesis described in the section “Tests across populations for
the FDA-approved Masimo ground truth device” for the contact-
based sensor, we fail to reject the null hypothesis with a p value of
0.94 (α= 0.05). Hence, there is no statistically significant difference
in the mean pulse rate distributions between India and
Sierra Leone.
We perform a two-sample KS test for each hypothesis test

described in the section “Tests within populations for the FDA-
approved Masimo ground truth device”, with a significance level
of α= 0.0375 (as calculated in the section “Tests within popula-
tions for the FDA-approved Masimo ground truth device”).
For tests between genders in each country, we obtain p values

of 0.05 and 0.39, respectively. This shows that there is no
statistically significant difference in the mean pulse rate between
subjects of different genders within the same country. For the
tests comparing subjects of the same gender, but from different
countries, we obtain a p value of 0.63 for female subjects and 0.05
for male subjects. The p values obtained fail to reject the null
hypothesis and show that there is no statistically significant
difference in the mean pulse rate for subjects of the same gender,
but from different countries. The differences in the p values

between countries and between genders could be attributed to
factors, such as differences in diet or activity level, physiological
variation, or even cultural distinctions, which cannot be tested
with the collected data. Table 2 summarizes the findings.

Analysis of rPPG approaches
The results of the KS test conducted for each rPPG algorithm for
complete samples from India and Sierra Leone are tabulated in
Table 3.
The Masimo hypothesis testing shows a p value of 0.94, failing

to reject the null hypothesis. This shows that the mean pulse rate
distributions from India and Sierra Leone do not show a
statistically significant difference with the contact-based sensor.
We test the same hypothesis between India and Sierra Leone,
using the results from the rPPG methods.
The BKF method shows a p value of 0.47, which exceeds the

significance level for the hypothesis test, failing to reject the null
hypothesis. This shows that the BKF approach does not show a
significant difference in pulse rate between India and Sierra Leone.
As tabulated in Table 3, the other conventional non deep-learning
methods show p values exceeding the hypothesis test significance
level, failing to reject the null hypothesis. The deep-learning-based
DeepPhys network also shows a p value of 0.08 for the same
hypothesis test, failing to reject the null hypothesis. This result
shows that none of the rPPG methods show a statistically
significant difference in mean pulse rate distributions between
India and Sierra Leone, consistent with the findings of the Masimo
ground truth device. This suggests that the performance of rPPG
approaches could be comparable to the performance of the
Masimo device on our dataset. In order to determine the level of
agreement of pulse rate predicted by rPPG methods with the
pulse rate shown by the Masimo device, we perform Bland Altman
analysis between rPPG predictions and the Masimo device
readings for all videos.

Fig. 2 Experimental setup used for data collection. The graphical representation of the data collection process for rPPG approaches (mobile
phone video) and the contact-based ground truth PPG (Masimo device) is shown in the left figure. The right figure depicts the actual data
collection process showing the positioning of the ground truth Masimo device on the left hand and the subject facing the mobile phone
camera in an upright position (faces blurred to maintain anonymity).

Table 2. KS test—p value comparison with respect to gender.

Test p Values for Masimo

India (female, male) 0.05

Sierra Leone (female, male) 0.39

Female (India, Sierra Leone) 0.63

Male (India, Sierra Leone) 0.05

Table 3. Results (p values) for hypothesis tests conducted across
subjects of India and Sierra Leone for different rPPG approaches (test
15), compared to Masimo.

Algorithm Type (India, Sierra Leone)

CHROM Non deep-learning rPPG 0.21

POS Non deep-learning rPPG 0.64

BKF Non deep-learning rPPG 0.47

Spherical Mean Non deep-learning rPPG 0.13

DeepPhys Deep-learning rPPG 0.08

Masimo Ground truth PPG 0.94
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The Bland Altman plots shown in Fig. 3 comparing predictions
by each rPPG approach with the FDA-approved Masimo readings
show points scattered above and below zero mean error for
CHROM, POS, and BKF, suggesting that there is no consistent bias
for these methods with the Masimo. The Spherical Mean approach
shows most points lying completely above zero mean error and
the DeepPhys approach shows most points completely below zero
mean error, indicating the presence of a consistent bias with the
Masimo. This shows that the Spherical Mean approach predicts a
lower pulse rate than ground truth, while DeepPhys predicts a
higher pulse rate than ground truth. CHROM and POS under-
predict lower heart rate values and overpredict higher heart rate
values. The overall mean error of rPPG approaches with the
Masimo is 0.94 b.p.m. (Std.= 11 b.p.m.). We observe that rPPG
methods, though accurate to within 1 b.p.m., (compared to
Masimo readings) show a standard deviation of 11 b.p.m.. This is
in contrast to the original studies introducing these rPPG methods,
which reported pulse rate variabilities of 3–4 b.p.m.31,32,34–36 with
ground truth. This difference in variability could be attributed to
reasons, such as the difference in the selected ground truth device
or the use of a diverse, challenging dataset for evaluation in this
work. The devices used for ground truth pulse rate for the original
rPPG studies are CMS50E pulse oximeter (2 b.p.m. error) for
CHROM and Spherical Mean, ECG (no error) for POS, and
DeepPhys and Polar H7 Bluetooth monitoring system for BKF.

The measurement error rates of these ground truth devices are
different from the measurement error rate of the Masimo device
used for this study. Though ECG is considered the gold standard in
estimating the pulse rate, it is not suitable to provide the ground
truth for an outside-the-lab environment (e.g., the dataset
collected in this study) due to the difficulty in installing the
equipment. The source of variability for rPPG approaches with
respect to the Masimo can also be attributed to the features
present in our dataset, such as environmental lighting changes,
head movements, and also facial marks (“bindi”) and headgear
(hats and turbans). Features, such as changes in lighting and head

Fig. 3 Bland Altman plots for rPPG approaches compared to the Masimo. The plots show the agreement of the selected rPPG methods
(BKF, Spherical Mean, DeepPhys, CHROM and POS) with the Masimo device readings for male subjects from India (yellow), female subjects
from India (blue), male subjects from Sierra Leone (red) and female subjects from Sierra Leone (purple). Error bars and 95% confidence
intervals are marked (in b.p.m.).

Table 4. Bland Altman error statistics of rPPG methods compared to
the Masimo (in b.p.m.).

Algorithm Mean error Std.

CHROM −6.40 14.15

POS 9.59 14.14

BKF 0.72 6.99

Spherical Mean 14.92 7.50

DeepPhys −14.11 12.24

Mean 0.94 11.00

A. Dasari et al.

6

npj Digital Medicine (2021)    91 Published in partnership with Seoul National University Bundang Hospital



movement, cause incorrect identification of the face in the video,
leading to an incorrect pulse rate prediction. The presence of
headgear or facial marks, such as “bindi”, causes occlusion of the
face region of interest (generally the forehead and cheeks) and
leads to erroneous estimation of pulse rate. The Bland Altman
statistics for each rPPG algorithm are tabulated in Table 4.
We examined the videos deviating by two standard deviations

from the mean to identify anomalies causing the high error with
respect to the mean. We found nine such outlier videos containing
one or more of the following anomalies, (1) excess or rapid head
or camera movement, (2) poor or rapidly changing lighting
conditions, and (3) the presence of an additional person in the
frame. The aforementioned anomalies cause errors in face tracking
resulting in incorrect identification of skin pixels and erroneous
prediction of pulse rate. The camera tripod was subjected to
movement in cases requiring adjustment to improve ambient
lighting conditions or to ensure proper positioning of the face in
the video frame. Since the data collection was performed in the
subject’s natural setting, the background consisted of ambient
lighting variations and people moving into the video frame. Since
the selected rPPG methods estimate the pulse rate using all the
identified regions of skin, the detection of a second person
introduces noise in the estimation of the subject’s pulse rate. Table
5 details the types of anomalies found in the outlier videos.
Conducting the KS test for each rPPG algorithm after removing
the outlier videos, we obtain the p values tabulated in Table 6. For
the rPPG methods, the p values obtained fail to reject the null
hypothesis and show that there is no statistically significant
difference in the mean pulse rate distributions of India and Sierra
Leone, after removing the outlier videos. In addition, the p values
obtained for the Masimo device also show that there is no
statistically significant difference in the mean pulse rate distribu-
tions of India and Sierra Leone after removing the outlier videos.

Performing the Bland Altman analysis after removing the nine
outlier videos, we observe a reduction in the average standard
deviation (11–10.05 b.p.m.; Table 7) of rPPG pulse rate predictions
compared to the Masimo readings. From the analysis of the outlier
videos, we define minimal head/camera movement, proper face
lighting, and the presence of only one person in the video frame
to be conditions for optimal performance of rPPG approaches in
an outside-the-lab setting. Also, a larger percentage of outlier
videos were found to be from Sierra Leone subjects than Indian
subjects, leading us to hypothesize that differences in skin tone
could impact rPPG approaches. The skin tone analysis is covered
in detail in the sections “Variation of skin tone across populations”
and “Impact of variation in skin tone on pulse rate estimation
bias”.
The results (p values) of the KS test conducted for each rPPG

algorithm for subjects of different genders within populations are
tabulated in Table 8.
The p values obtained for each rPPG method (Table 8) fail to

reject the null hypothesis described in the section “Tests within
populations for rPPG methods with respect to gender”, showing
that there is no statistically significant difference for any rPPG
method between the pulse rate distributions of subjects of
different genders in the same country or subjects of the same
gender, but in different countries. This result is consistent with the
results of hypothesis tests of the section “Tests within populations
for the FDA-approved Masimo ground truth device”, where the
tests conducted on the Masimo device readings showed no
statistically significant difference for subjects of different genders
in the same country or subjects of the same gender, but in
different countries. Conducting the hypothesis tests within
populations (section “Tests within populations for rPPG methods
with respect to gender”) after removing the outlier videos, we
obtain the p values tabulated in Table 9. The p values obtained
after the removal of outlier videos show that there is no
statistically significant difference for the rPPG methods between
pulse rate distributions of subjects of different genders within the
same country or subjects of the same gender in different
countries. In addition, the p values obtained for the Masimo
device also show that there is no statistically significant difference
between pulse rate distributions of subjects of different genders
within the same country or subjects of the same gender, but in
different countries.
This result combined with the result in the section “Analysis of

the FDA-approved masimo ground truth device” shows that the
pulse rate measured by rPPG methods does not show a significant
estimation bias across or within countries and genders. The pulse
rate measured by the FDA-approved sensor also shows no
significant estimation bias across or within countries and genders.
The removal of outlier videos does not reveal any statistically
significant difference in the mean pulse rate across, or within
countries and genders (Tables 6 and 9), but reduces the variability
in the pulse rate measured with rPPG approaches (Tables 4 and 7).
The performance of rPPG methods is comparable to that of the
FDA-approved sensor, as observed in the Bland Altman plots,

Table 5. Frequency of anomalies in outlier videos (each video can
have more than one anomaly).

Rapid head/
camera
movement

Changing
lighting/poor
lighting

Presence of
additional person

Video 1 ✓

Video 2 ✓ ✓

Video 3 ✓ ✓

Video 4 ✓

Video 5 ✓

Video 6 ✓

Video 7 ✓

Video 8 ✓

Video 9 ✓ ✓

Table 6. Results (p values) for hypothesis tests conducted across
subjects of India and Sierra Leone for different rPPG approaches (test
15), compared to Masimo, after the removal of the outlier videos.

Algorithm Type (India, Sierra Leone)

CHROM Non deep-learning rPPG 0.27

POS Non deep-learning rPPG 0.27

BKF Non deep-learning rPPG 0.40

Spherical Mean Non deep-learning rPPG 0.40

DeepPhys Deep-learning rPPG 0.05

Masimo Ground truth PPG 0.77

Table 7. Bland Altman error statistics of rPPG methods compared to
the Masimo after the removal of outlier videos (in b.p.m.).

Algorithm Mean error Std.

CHROM −5.10 11.78

POS 9.12 14.43

BKF 1.03 6.32

Spherical Mean 14.95 6.53

DeepPhys −14.41 11.17

Mean 1.12 10.05
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providing validity to our hypothesis that rPPG methods are
sufficiently robust in challenging conditions.

Variation of skin tone across populations
We analyze the temporal skin tone variation between Indian and
Sierra Leone subjects to identify the impact of a difference in skin
tone on the pulse rate estimation bias. Figure 4 illustrates a scatter
plot of various chroma components of subjects from both
populations. Following color space normalization and transforma-
tions, we now perform a between population skin tone analysis by
keeping color as a response and varying population (country) and
gender.
Let f denote a color space mapping function as follows,

f : C 7!C0i , where C0i denotes the transformed color space i such
that i 2 S and S ¼ ½HSV; LAB; YCrCb�. We formally state and test
the following hypotheses on each element of C0i for all color
spaces considered, with a significance level of α= 0.05 from
power analysis (effect size= 0.5 (Cohen’s d), no. of samples= 88,
power= 0.8).

H0 : PðC0iðIndiaÞÞ ¼ PðC0iðSierra LeoneÞÞ (1)

Ha : PðC0iðIndiaÞÞ≠ PðC0iðSierra LeoneÞÞ (2)

We perform a two-sample KS test between the Hue C0iðIndiaÞ
and Hue C0iðSierra LeoneÞ pixel distributions, and we reject the null
hypothesis with p values tabulated in Table 10.
Through hypothesis testing, we conclude that there is a

statistically significant difference between skin tone samples from
two ethnically and geographically divided populations. Figure 4
shows the large difference in the mean skin tone of subjects from
India and Sierra Leone. The mean pulse rate distributions however
do not show a statistically significant difference between countries
(section “Analysis of rPPG approaches”) for rPPG methods,
suggesting that skin tone may not be a critical factor impacting
the bias in estimating pulse rate.

DISCUSSION
In this study, we present an analysis of pulse rate estimation bias
of rPPG approaches across subjects with diverse demographic
backgrounds in outside-the-lab conditions. A key achievement is
the collection of a demographically diverse dataset, collected in
outside-the-lab settings. The collected dataset consists of videos
of subjects with unique facial and cultural features under dynamic
lighting conditions, making it different from currently available
face video datasets. Also, the subjects in the dataset collected
belong to demographics (country and skin tone) typically not
represented in existing face video datasets. We hypothesize that
state-of-the-art rPPG pulse rate estimation methods should not
differentiate between pulse rate distributions of subjects from
different countries or between pulse rate distributions of subjects
belonging to different genders from our dataset. To this effect, we
tested five different rPPG pulse rate estimation methods on our
dataset, using an FDA-approved contact-based device as the
ground truth. Performing hypothesis testing, we found that the
selected rPPG approaches do not make a distinction between
subjects of different countries or different genders. Interestingly,
this result is in accordance with the results of hypothesis testing
between countries and genders for the FDA-approved ground
truth sensor, showing that rPPG methods perform on a scale
comparable to the FDA-approved sensor. To determine the exact
level of error between pulse rates predicted by rPPG approaches
and the ground truth, we conducted a Bland Altman analysis
comparing pulse rate predictions of each rPPG approach with the
ground truth sensor readings. Surprisingly, we found that though
the mean pulse rate error of rPPG predictions with the ground
truth readings was within acceptable limits, the variability in error
was higher than the values reported in the studies introducing the
rPPG methods. We find that the use of a different ground truth
sensor in our study may partly contribute to the higher variability.
Analyzing the videos causing the highest error (2 Std. from mean),
we observe that these videos show excess subject movement and
rapid lighting changes. Also, some of these videos contain more
than one person in the frame. Removing these videos, we
conducted the Bland Altman analysis and hypothesis testing once
again comparing each rPPG approach with the ground truth
sensor and found that the variability in pulse rate error decreased,

Table 8. Gender analysis within populations for rPPG methods showing p values for hypothesis tests defined in the section “Tests within populations
for rPPG methods with respect to gender”.

Algorithm India (female, male) Sierra Leone (female, male) Female (India, Sierra Leone) Male (India, Sierra Leone)

CHROM 0.63 0.22 0.22 0.39

POS 0.39 0.99 0.63 0.11

BKF 0.05 0.22 0.05 0.05

Spherical Mean 0.63 0.63 0.39 0.11

DeepPhys 0.11 0.11 0.87 0.05

Masimo 0.05 0.39 0.63 0.05

Table 9. Gender analysis within populations for rPPG methods showing p values for hypothesis tests defined in the section “Tests within populations
for rPPG methods with respect to gender” after the removal of the outlier videos.

Algorithm India (female, male) Sierra Leone (female, male) Female (India, Sierra Leone) Male (India, Sierra Leone)

CHROM 0.57 0.18 0.57 0.34

POS 0.18 0.83 0.57 0.34

BKF 0.18 0.57 0.18 0.08

Spherical Mean 0.98 0.98 0.57 0.57

DeepPhys 0.18 0.34 0.83 0.08

Masimo 0.04 0.34 0.18 0.34
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though the pulse rate distributions do not show a statistically
significant difference between countries or genders. We thus
postulate that the presence of subject or environmental
disturbances in videos causes higher pulse rate measurement
error with rPPG approaches. The key finding from this study is that
rPPG approaches generalize well to datasets with subject features
not typically seen (such as different countries, darker skin tones, or
facial marks/cultural artifacts) if the subject motion or environ-
mental disturbance is maintained within acceptable limits. The
quantification of the acceptable limits for subject motion or
environmental disturbance is part of future exploration. This work
provides motivation for future studies to explore more diverse
datasets or physiological signals other than the pulse rate to
improve the generalizability of rPPG approaches.

METHODS
Overview
Figure 5 illustrates our data collection process. Each sensor reading
consists of a main signal that is associated with a noise signal. The source
of the noise signal is a combination of factors, such as conditions during
measurement and bias due to subject demographics, as shown in Fig. 5.

The manufacturing error for the Masimo device is modeled as a normal
distribution with mean= 0 b.p.m. and standard deviation= 3 b.p.m., as
specified in its official operating manual (Masimo Operating Manual). Since
data collection in India and Sierra Leone followed the same experimental
protocol, the setup error can be assumed to be minimal and hence can be
neglected. The weather data of the location was collected, and the
temperature (Climate of the World) was found to be within the Masimo
device’s acceptable range specified by the manufacturer (Masimo
Operating Manual), thus minimizing measurement error due to local
weather changes. Hence, we neglect weather as a source of error in our
study. To analyze the age distributions of the subjects from India and Sierra
Leone, we design a hypothesis test as follows:

H0 : Age ðIndiaÞ ¼ Age ðSierra LeoneÞ (3)

Ha : Age ðIndiaÞ≠Age ðSierra LeoneÞ (4)

Fig. 4 Color space visualization of skin pixels from Sierra Leone and India. The sub-plots show the variation of skin pixel intensities of
subjects from India (blue) and Sierra Leone (green) in the HSV Color space (top left), the Normalized RGB Color space (top right), the LAB Color
space (bottom left) and the YCrCb Color space (bottom right).

Table 10. KS test—p value comparison between population samples
(gray shading highlights a statistically significant result).

Color Component (color space) (India, Sierra Leone)

Normalized red (RGB) 0.00

Normalized green (RGB) 0.01

Normalized blue (RGB) 0.03

Hue (HSV) 0.00

A component (LAB) 0.02

B Component (LAB) 0.00

Component red (YCrCb) 0.00

Component blue (YCrCb) 0.03

Fig. 5 Sources of noise in the measured signal, highlighting the
sources covered in this study. The variation of heart rate measured
with rPPG methods across the demographic factors of age, skin
tone, gender and country of origin, is analyzed using statistical
hypothesis testing.
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Using power analysis, we determine a significance level of α= 0.05 (effect
size= 0.5 (Cohen’s d (ref. 55)), no. of samples= 88, power= 0.8, degrees of
freedom= 1). We perform a two-sided KS test and we fail to reject the null
hypothesis with a p value of 0.73. This shows that the age distributions of
the two countries show no statistically significant difference between
them. The similarity in the age distributions of India and Sierra Leone
shows that any pulse rate bias between the subjects of the two countries
cannot be attributed to differences in subject ages. In the following
sections, we test the bias in rPPG approaches due to change in gender,
country of origin, and skin tone.

Contact-based sensor analysis across demographics
The FDA-approved contact-based sensor was tested for two factors—
country and gender. Demographic groups on the basis of gender and
country are defined as: Gender= [female, male] and Country= [India,
Sierra Leone]. Hypothesis tests are designed to (i) analyze variations
between populations and (ii) analyze variations within populations. The
tests are designed to determine the variation of pulse rate measurement
error across different groups. For larger demographic groups, (such as the
entire population sample of each country) the significance level of α= 0.05
is computed based on power analysis (effect size= 0.5 (Cohen’s d), no. of
samples= 88, power= 0.8, degrees of freedom= 1). For smaller demo-
graphic groups, (such as female subjects) the significance level of α= 0.15
is determined, according to power analysis (effect size= 0.5 (Cohen’s d),
no. of samples= 44, power= 0.8, degrees of freedom= 1).

Tests across populations for the FDA-approved Masimo
ground truth device
Hypothesis tests are defined to identify pulse rate variations between the
sample populations of India and Sierra Leone. Let cPRðIndiaÞ and
cPRðSierra LeoneÞ be the mean distributions of pulse rate for all subjects
from India and Sierra Leone, respectively. The hypothesis is formally stated
as,

H0 : cPRðIndiaÞ ¼ cPRðSierra LeoneÞ (5)

Ha : cPRðIndiaÞ≠cPRðSierra LeoneÞ (6)

where, H0 and Ha are the null and alternate hypotheses, respectively. We
perform a two-sided KS test between the mean pulse rate distributions
from India and Sierra Leone to determine if there exists a statistically
significant difference between the two-sample populations.

Tests within populations for the FDA-approved Masimo
ground truth device
The presence of a statistically significant difference in mean pulse rate
distributions within sample populations requires hypothesis testing with

respect to gender. First, we test for variation in pulse rate between the two
genders within each sample population, in order to determine if change in
gender affects the pulse rate distribution. The hypothesis is formally
stated as,
For sample population from India,

H0 : cPRðIndiaFemaleÞ ¼ cPRðIndiaMaleÞ (7)

Ha : cPRðIndiaFemaleÞ≠cPRðIndiaMaleÞ (8)

and for Sierra Leone,

H0 : cPRðSierra LeonFemaleÞ ¼ cPRðSierra LeonMaleÞ (9)

Ha : cPRðSierra LeonFemaleÞ≠cPRðSierra LeonMaleÞ (10)

where H0 and Ha are the null and alternate hypotheses, respectively.
Following the within population gender hypothesis testing, we compare

the mean pulse rate distributions for subjects of the same gender, but from
different sample populations. The tests are defined as follows,

H0 : cPRðIndiaFemaleÞ ¼ cPRðSierra LeonFemaleÞ (11)

Ha : cPRðIndiaFemaleÞ≠cPRðSierra LeonFemaleÞ (12)

H0 : cPRðIndiaMaleÞ ¼ cPRðSierra LeonMaleÞ (13)

Ha : cPRðIndiaMaleÞ≠cPRðSierra LeonMaleÞ (14)

where H0 and Ha are the null and alternate hypotheses, respectively. Using
power analysis, for demographic groups with fewer samples, the
calculated significance level is α= 0.15. Four hypothesis tests need to be
conducted to investigate the effect of gender, warranting the use of
multiple hypothesis testing theory56. Due to the small number of
hypotheses (here, four), multiple hypothesis testing is incorporated by
dividing the original significance level by the number of tests (Bonferroni
Correction)57. The final Bonferroni-corrected significance level for testing
the effect of gender is α= 0.15/4= 0.0375.

Analysis of rPPG approaches across demographics
Figure 6 presents a visual illustration of the workings of rPPG-based pulse
rate estimation using image processing and deep-learning approaches.
Both image processing and deep-learning methods use a sequence of
frames as input to estimate the pulse rate. The image processing approach
uses a multistep process for face detection, skin segmentation, and color
space transformations, involving handcrafting of features, noise filtering,
and signal processing as opposed to deep-learning approaches, where
intermediate processing steps are learnt by the model.
Each rPPG method outputs a pulse rate reading for every 5 s of video.

The pulse rate for the complete video is calculated by computing the mean

Video

Fully Connected Layers

Pulse 
Rate

Sequence of frames Feature Maps Feature Maps Feature Maps

Convolution + Activation Pooling

Convolution + Activation

Sequence of frames
Identify ROIs Concatenate 

ROIs
Detect face 
and identify 

facial landmarks

Compute
mean
pixel

intensity

Concatenate
mean pixel

intensity to a
moving
window 

For each
frame

Perform colorspace 
transformation, 

if necessary
Detect pulse rate frequencyProcess moving window signal

Fig. 6 rPPG approaches to estimating pulse rate. Figure a (top) shows image processing-based detection of heart rate from a facial video,
detailing the steps of face detection, skin segmentation, color space transformation and signal processing. Figure b (bottom) shows a deep
convolutional neural network that predicts the heart rate using a facial video as the input.
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of all the readings obtained over the duration of the video (120 s). Each
rPPG algorithm also includes a video processing step, where color space
transformations are performed to reduce the impact of bright external
lights on the accuracy of pulse rate measurement. Hypothesis tests as
described in the section “Tests across populations for the FDA-approved
Masimo ground truth device” are performed across populations for each of
the baseline rPPG approaches. The results are compared with the
measurements of the Masimo pulse oximeter (averaged over 120 s) for
each of the corresponding videos. The factors affecting the mean pulse
rate distribution are identified and compared with the factors affecting the
mean pulse rate captured by the Masimo device. The level of agreement
between the two approaches provides a quantitative evaluation of the
robustness of rPPG methods in measuring pulse rate of subjects across
demographic and environmental conditions.

Tests across populations for rPPG approaches
Hypothesis tests are defined to identify pulse rate variations in sample
populations from India and Sierra Leone for each rPPG method. The
presence of such variations would require further hypothesis tests with
respect to gender, as described in the section “Tests within populations for
the FDA-approved Masimo ground truth device”. The hypothesis for each
rPPG approach is defined as,

H0 : cPRðIndiaÞ ¼ cPRðSierra LeoneÞ (15)

Ha : cPRðIndiaÞ≠cPRðSierra LeoneÞ (16)

where, cPRðIndiaÞ and cPRðSierra LeoneÞ are the mean pulse rate distribu-
tions of all subjects from India and Sierra Leone, respectively, measured
using the rPPG approach. The significance level α is determined to be 0.05
using power analysis (effect size= 0.5 (Cohen’s d), no. of samples= 88,
power= 0.8). Two-sided KS tests are performed to identify variations in
mean pulse rate distributions between the sample populations from the
two countries.

Tests within populations for rPPG methods with respect to
gender
Testing with respect to gender is required if the hypothesis test conducted
for sample populations (section “Tests across populations for rPPG
approaches”) shows a significant difference in mean pulse rate distribu-
tions. These hypothesis tests are designed as described in the section
“Tests within populations for the FDA-approved Masimo ground truth
device” for each video-based method. Using multiple hypothesis testing
theory and applying Bonferroni’s correction, we set the significance level α
to be 0.0375 for hypothesis tests analyzing the effect of gender as
described in the section “Tests within populations for the FDA-approved
Masimo ground truth device”.

Impact of variation in skin tone on pulse rate estimation bias
We investigate the effect of skin tone on pulse rate measurement and
analyze differences in skin tone between subjects from different
demographic groups. PPG-based vital technologies measure variation in
blood volume (pulse rate) by computing the change in pixel intensity
values in a particular color space or a particular channel from a color
space58. The total illumination from a region of interest, such as human
skin can typically be captured as skin reflectance by an optical sensor, such
as a camera59, which typically decomposes the reflected light using red (R),
green (G), and blue (B) components of the RGB color space. However, the
dichromatic reflection model suggests that light reflected from the skin
consists of two components, namely a diffuse component and a specular
component. Between these components, the light which gets reflected
back from the skin after undergoing subsurface scattering is called the
diffuse reflectance component60 and due to its interaction with skin
contains more physiological information61.
The skin color of a face region of interest captured by a camera and

averaged over all frames of the video is dependent on the relative
contribution of specular and diffuse reflectance components, which again
is dependent on the angles between camera, skin, and light source53.
Hence, in order to compensate for these variations while preserving color
information, we perform a per frame per channel RGB color space
standardization and normalization on each element of the following tuple,

Fig. 7 Comparison of 10 s time window pixel intensities in various color spaces after and before normalization for a random subject.
Pixel intensities after normalization are denoted by solid lines and pixel intensities before normalization are denoted by dashed lines.
Variation of pixel intensities in individual components of the RGB (top left), HSV (top right), LAB (bottom left) and YCrCb (bottom right) color
spaces are depicted.
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which we consider as the default color space tuple:

C ¼ ðR�μR
σR

Þ; ðG�μG
σG

Þ; ðB�μB
σB

Þ
Rþ Gþ B

(17)

where μ(.) and σ(.) denotes the mean and standard deviation of each
element in the tuple (C) respectively. Following the normalization and
standardization, the sum of the elements in C sum to 1. However, though
the color space normalization is advantageous in that it compensates for
unequal distribution of lighting, as well as change in color of lighting
(other than white light)53, it does not however remove the specular
components from the normalized R, G, and B channels. Hence, we further
decompose C into chroma (color information) and luma (lighting intensity
information) signals by exploring transforming to alternate color spaces,
such as HSV (Hue-Saturation-Value), LAB (Luma component, A and B
chroma components), and YCrCb (Luma component, blue-difference and
red-difference chroma components) color spaces, which inherently
represent pixel values in a decomposed form.
Figure 7 presents a time analysis of the varying pixel intensities in the

RGB, HSV, YCrCb, and LAB color spaces before and after standardization
and normalization for a randomly selected subject from our dataset. The
time analysis reveals that color spaces that are able to seperate luminance
information from chrominance information indeed preserve the chromi-
nance information, and remain unaltered post standardization and
normalization. This characteristic of HSV, LAB, and YCrCb color spaces
make them suitable for estimating pulse rate in the presence of varying
background lighting and brightness. While the variations between the
normalized, standardized RGB pixel intensities, and the un-normalized RGB
pixel intensities are fairly large, the reason for such variations is due to
lighting intensity changes53. While Haan and Jeanne53 propose an
empirical ratio for skin-tone standardization in the presence of unknown
and colored lighting sources, such a standardization is primarily beneficial
to the R, G, and B components of the RGB color space, as shown in the
paper. Tsouri and Li58 on the other hand analyze the benefits of using
alternative color spaces, such as HSV, HSI, CIE XYZ, etc. to estimate pulse
rate and find that HSV and CIE XYZ are indeed better replacements to RGB
color space for non-contact pulse rate estimation. Our analysis also shows
that color preserving color spaces preserve chrominance information
under non-white illumination and varying background lighting color and
intensity. Chrominance preserving color spaces can be utilized by future
rPPG algorithms for pulse rate estimation.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The dataset collected in this study is to be uploaded to https://github.com/
ananyananda-dasari/bias-eval-rppg. To protect subject privacy, a frame-by-frame skin
region of interest color space value dataset is to be uploaded instead of actual videos.

CODE AVAILABILITY
All code used for statistical analysis is open source with no restrictions and can be
found on https://github.com/ananyananda-dasari/bias-eval-rppg. Code used for each
rPPG algorithm is sourced from the respective public repositories.

Received: 31 January 2021; Accepted: 3 May 2021;

REFERENCES
1. Rolfe, P., Zhang, Y. & Sun, J. Invasive and non-invasive measurement in medicine

and biology: calibration issues. In Proc. of Sixth International Symposium on Pre-
cision Engineering Measurements and Instrumentation, Vol. 7544, International
Society for Optics and Photonics, 754454 (SPIE, 2010).

2. Burritt, M. F. Noninvasive and invasive sensors for patient monitoring. Lab. Med.
29, 684–687 (1998).

3. Raluca, M. A., Pasca, S. & Strungaru, R. Heart rate monitoring by using non-
invasive wearable sensor. In 2017 E-Health and Bioengineering Conference (EHB),
587–590 (IEEE, 2017).

4. Bhavnani, A., Chiu, R. W., Janakiram, S., Silarszky, P. & Bhatia, D. The role of mobile
phones in sustainable rural poverty reduction http://documents.worldbank.org/
curated/en/644271468315541419/The-role-of-mobile-phones-in-sustainable-
rural-poverty-reduction (2008).

5. Taylor, W. et al. A review of the state of the art in non-contact sensing for covid-
19. Sensors 20, 5665 (2020).

6. Allen, J. Photoplethysmography and its application in clinical physiological
measurement. Physiol. Meas. 28, R1 (2007).

7. So-Ling, C. & Li, L. A multi-layered reflection model of natural human skin. In
Proceedings. Computer Graphics International 2001, 249–256 (IEEE, 2001) .

8. Corciovă, C., Andritoi, D. & Ciorap, R. Elements of risk assessment in medical
equipment. In 2013 8th International Symposium On Advanced Topics In Electrical
Engineering (ATEE), 1–4 (ATEE, 2013) 1–4.

9. Cai, L. & Zhu, Y. The challenges of data quality and data quality assessment in the
big data era. Data Sci. J 14, 1–10 (2015).

10. Wang, F. & Liu, J. Networked wireless sensor data collection: issues, challenges,
and approaches. IEEE Commun. Surveys Tutor. 13, 673–687 (2010).

11. Bent, B., Goldstein, B. A., Kibbe, W. A. & Dunn, J. P. Investigating sources of
inaccuracy in wearable optical heart rate sensors. NPJ Digital Med. 3, 1–9 (2020).

12. Zhang, X. et al. A high-resolution spontaneous 3d dynamic facial expression
database. In 2013 10th IEEE International Conference and Workshops on Automatic
Face and Gesture Recognition (FG), 1–6 (IEEE, 2013) 1–6.

13. Gross, R., Matthews, I., Cohn, J., Kanade, T. & Baker, S. Multi-PIE. Image Vis. Comput.
28, 807–813 (2010).

14. Soleymani, M., Lichtenauer, J., Pun, T. & Pantic, M. A multimodal database for
affect recognition and implicit tagging. IEEE Trans. Affect. Comput. 3, 42–55
(2012).

15. Yang, B., Rhee, S. & Asada, H. H. A twenty-four hour tele-nursing system using a
ring sensor. In Proceedings 1998 IEEE International Conference on Robotics and
Automation (Cat. No. 98CH36146). Vol. 1., 387–392 (IEEE, 1998).

16. Rhee, S., Yang, B. & Asada, H. H. Artifact-resistant power-efficient design of finger-
ring plethysmographic sensors. IEEE Trans. Biomed. Eng. 48, 795–805 (2001).

17. Renevey, P., Vetter, R., Krauss, J., Celka, P. & Depeursinge, Y. Wrist-located pulse
detection using ir signals, activity and nonlinear artifact cancellation. In 2001
Conference Proceedings of the 23rd Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. Vol. 3, 3030–3033 (IEEE, 2001) .

18. Mendelson, Y. & Pujary, C. Measurement site and photodetector size considera-
tions in optimizing power consumption of a wearable reflectance pulse oximeter.
In Proceedings of the 25th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (IEEE Cat. No. 03CH37439),Vol. 4, 3016–3019 (IEEE,
2003).

19. Wang, L., Lo, B. P. L. & Yang, G. Multichannel reflective ppg earpiece sensor with
passive motion cancellation. IEEE Trans. Biomed. Circuits Syst. 1, 235–241 (2007).

20. Celka, P., Verjus, C., Vetter, R., Renevey, P. & Neuman, V. Motion resistant ear-
phone located infrared based heart rate measurement device.Biomed. Eng. 2,
33–35 (2004).

21. Poh, M., Kim, K., Goessling, A., Swenson, N. & Picard, R. Cardiovascular monitoring
using earphones and a mobile device. IEEE Pervasive Comput. 11, 18–26 (2010).

22. L indberg, L. G. & Oberg, P. A. Photoplethysmography. part 2. influence of light
source wavelength. Med. Biol. Eng. Comput. 29, 48–54 (1991).

23. Tamura, T., Maeda, Y., Sekine, M. & Yoshida, M. Wearable photoplethysmographic
sensors-past and present. Electronics 3, 282–302 (2014).

24. Tautan A. M., Young A., Wentink. E. & Wieringa. F. Characterization and reduction
of motion artifacts in photoplethysmographic signals from a wrist-worn device. In
37th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), 6146–6149 (IEEE, 2015).

25. Castaneda, D., Esparza, A., Ghamari, M., Soltanpur, C. & Nazeran, H. A review on
wearable photoplethysmography sensors and their potential future applications
in health care. Int. J. Biosens. Bioelectron. 4, 195–202 (2018).

26. Zhang, Y. et al. Motion artifact reduction for wrist-worn photoplethysmograph
sensors based on different wavelengths. Sensors 19, 673 (2019).

27. Verkruysse, W., Svaasand, L. O. & Nelson, J. S. Remote plethysmographic imaging
using ambient light. Opt. Express 16, 21434–21445 (2008).

28. Lewandowska, M., Rumiński, J., Kocejko, T. & Nowak, J. Measuring pulse rate with
a webcam-a non-contact method for evaluating cardiac activity. In 2011 Feder-
ated Conference on Computer Science and Information Systems (FedCSIS), 405–410
(IEEE, 2011).

29. Poh, M., McDuff, D. J. & Picard, R. W. Non-contact, automated cardiac pulse
measurements using video imaging and blind source separation. Opt. Express 18,
10762–10774 (2010).

30. Wu, H. et al. Eulerian video magnification for revealing subtle changes in the
world. ACM Trans. Graph 31, 1–8 (2012).

31. De Haan, G. & Van Leest, A. Improved motion robustness of remote-ppg by using
the blood volume pulse signature. Physio. Meas. 35, 1913 (2014).

A. Dasari et al.

12

npj Digital Medicine (2021)    91 Published in partnership with Seoul National University Bundang Hospital

https://github.com/ananyananda-dasari/bias-eval-rppg
https://github.com/ananyananda-dasari/bias-eval-rppg
https://github.com/ananyananda-dasari/bias-eval-rppg
http://documents.worldbank.org/curated/en/644271468315541419/The-role-of-mobile-phones-in-sustainable-rural-poverty-reduction
http://documents.worldbank.org/curated/en/644271468315541419/The-role-of-mobile-phones-in-sustainable-rural-poverty-reduction
http://documents.worldbank.org/curated/en/644271468315541419/The-role-of-mobile-phones-in-sustainable-rural-poverty-reduction


32. Wang, W., den Brinker, A. C., Stuijk, S. & de Haan, G. Algorithmic principles of
remote ppg. IEEE Trans. Biomed. Eng. 64, 1479–1491 (2016).

33. Wang, W., den Brinker, A. C., Stuijk, S. & de Haan, G. Robust heart rate from fitness
videos. Physiol. Meas. 38, 1023 (2017).

34. Prakash, S. K. A. & Tucker, C. S. Bounded kalman filter method for motion-robust,
non-contact heart rate estimation. Biomed. Opt. Express 9, 873–897 (2018).

35. Pilz, C. On the vector space in photoplethysmography imaging. In Proceedings of
the IEEE International Conference on Computer Vision Workshops (IEEE, 2019).

36. Chen, W. & McDuff, D. Deepphys: video-based physiological measurement using
convolutional attention networks. Proceedings of the European Conference on
Computer Vision (ECCV), 349–365 (ECCV, 2018).

37. Niu, X., Han, H., Shan, S. & Chen, X. Synrhythm: Learning a deep heart rate
estimator from general to specific. 2018 24th International Conference on Pattern
Recognition (ICPR), 3580–3585 (IEEE, 2018).

38. Špetlík, R., Franc, V. & Matas, J. Visual heart rate estimation with convolutional
neural network. In Proceedings of British Machine Vision Conference (IEEE,
2018).

39. Yu, Z., Li, X. & Zhao, G. Remote photoplethysmograph signal measurement from
facial videos using spatio-temporal networks. In 30th British Machine Vision
Conference (BMVC) (BMVC, 2019).

40. Taigman, Y., Yang, M., Ranzato, M. & Wolf, L. Deepface: closing the gap to human-
level performance in face verification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognitio, 1701–1708 (IEEE, 2014).

41. Huang, G. B., Mattar, M., Berg, T. & Learned-Miller, E. Labeled faces in the wild: a
database for studying face recognition in unconstrained environments. In
Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, And Recognition
(HAL-Inria, 2008).

42. Liu, F., Tran, L. & Liu, X. 3d face modeling from diverse raw scan data. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, 9408–9418
(IEEE, 2019) .

43. Guo, Y., Zhang, L., Hu, Y., He, X. & Gao, J. MS-Celeb-1M: A dataset and benchmark
for large-scale face recognition. In European Conference On Computer Vision,
87–102 (Springer, 2016).

44. Nech, A. & Kemelmacher-Shlizerman, I. Level playing field for million scale face
recognition.In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 7044–7053 (IEEE, 2017).

45. Pang, Y. et al. Mask-guided attention network for occluded pedestrian detection.
In Proceedings of the IEEE/CVF International Conference on Computer Vision.,
4967–4975 (IEEE, 2019).

46. Wang, C., Zhang, Q., Huang, C., Liu, W. & Wang, X. Mancs: a multi-task attentional
network with curriculum sampling for person re-identification. In Proceedings of
the European Conference on Computer Vision (ECCV), 365–381 (IEEE, 2018) .

47. Cai, H., Wang, Z. & Cheng, J. Multi-scale body-part mask guided attention for
person re-identification. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (IEEE, 2019).

48. Liu, X. et al. Hydraplus-net: Attentive deep features for pedestrian analysis. In
Proceedings of the IEEE International Conference on Computer Vision, 350–359
(IEEE, 2017).

49. Grant, J. M. & Flynn, P. J. Crowd scene understanding from video: a survey. ACM
Trans. Multimedia Comput. Commun. Appl. (TOMM) 13, 1–23 (2017).

50. Nguyen, D. T., Li, W. & Ogunbona, P. O. Human detection from images and
videos: a survey. Pattern Recogn. 51, 148–175 (2016).

51. Brunetti, A., Buongiorno, D., Trotta, G. F. & Bevilacqua, V. Computer vision and
deep learning techniques for pedestrian detection and tracking: a survey. Neu-
rocomputing 300, 17–33 (2018).

52. McDuff, D. & Blackford, E. iphys: an open non-contact imaging-based physiolo-
gical measurement toolbox. In 2019 41st Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, 2019).

53. De Haan, G. & Jeanne, V. Robust pulse rate from chrominance-based rppg. IEEE
Trans. Biomed. Eng.g 60, 2878–2886 (2013).

54. Goldman, J. M., Petterson, M. T., Kopotic, R. J. & Barker, S. J. Masimo signal
extraction pulse oximetry. J. Clin. Monit. Comput. 16, 475–483 (2000).

55. Cohen, J. Statistical Power Analysis for the Behavioral Sciences–Second Edition, 12
(Lawrence Erlbaum Associates Inc, 1988).

56. Haynes, W. Bonferroni Correction, 154 (Springer, 2013).

57. Higdon, R. Multiple Hypothesis Testing, 1468–1469 (Springer, 2013) .
58. Tsouri, G. R. & Li, Z. On the benefits of alternative color spaces for noncontact

heart rate measurements using standard red-green-blue cameras. J. Biomed. Opt.
20, 048002 (2015).

59. Xiao, K. et al. Improved method for skin reflectance reconstruction from camera
images. Opt. Express 24, 14934–14950 (2016).

60. Barron, J. T. Convolutional color constancy. In Proceedings of the IEEE International
Conference on Computer Vision, 379–387 (IEEE, 2015) .

61. Daly, J. Video Camera Monitoring to Detect Changes in Haemodynamics. PhD
thesis, University of Oxford (2016).

ACKNOWLEDGEMENTS
This project is funded by the Bill & Melinda Gates Foundation (BMGF). Any opinions,
findings, or conclusions are those of the authors and do not necessarily reflect the
views of the sponsors. The authors would like to thank Mr. Srihari Boregowda,
President, AIRA Sociocare and Dr. Karthik Shekhar, RMV Hospital, Bangalore for their
efforts in collecting Indian subject data. We would like to thank Dr. Brima Osaio
Kamara, Mr. Nathaniel Houston, and Mr. Sheku Kamara from the Sierra Leone data
collection team for their efforts in collecting Sierra Leone subject data. We would also
like to thank Sweta Priyadarshi, for performing the initial data analysis.

AUTHOR CONTRIBUTIONS
A.D. was involved in data analysis and interpretation, and paper preparation. S.K.A.
P. was involved in study design, data collection, data analysis and interpretation,
and paper preparation. L.A.J. was involved in paper preparation. C.S.T. was involved
in funding, study design, data collection, data interpretation, and paper
preparation.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41746-021-00462-z.

Correspondence and requests for materials should be addressed to C.S.T.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

A. Dasari et al.

13

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2021)    91 

https://doi.org/10.1038/s41746-021-00462-z
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Evaluation of biases in remote photoplethysmography methods
	Introduction
	Contact-based PPG
	Image processing approaches for remote PPG
	Deep-learning approaches for remote PPG

	Results
	Data collection
	Analysis of the FDA-approved Masimo ground truth device
	Analysis of rPPG approaches
	Variation of skin tone across populations

	Discussion
	Methods
	Overview
	Contact-based sensor analysis across demographics
	Tests across populations for the FDA-approved Masimo ground truth device
	Tests within populations for the FDA-approved Masimo ground truth device
	Analysis of rPPG approaches across demographics
	Tests across populations for rPPG approaches
	Tests within populations for rPPG methods with respect to gender
	Impact of variation in skin tone on pulse rate estimation bias
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




