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Engineering digital biomarkers of interstitial glucose from
noninvasive smartwatches
Brinnae Bent 1, Peter J. Cho1, Maria Henriquez2, April Wittmann3, Connie Thacker3, Mark Feinglos3, Matthew J. Crowley3 and
Jessilyn P. Dunn 1,4✉

Prediabetes affects one in three people and has a 10% annual conversion rate to type 2 diabetes without lifestyle or medical
interventions. Management of glycemic health is essential to prevent progression to type 2 diabetes. However, there is currently no
commercially-available and noninvasive method for monitoring glycemic health to aid in self-management of prediabetes. There is
a critical need for innovative, practical strategies to improve monitoring and management of glycemic health. In this study, using a
dataset of 25,000 simultaneous interstitial glucose and noninvasive wearable smartwatch measurements, we demonstrated the
feasibility of using noninvasive and widely accessible methods, including smartwatches and food logs recorded over 10 days, to
continuously detect personalized glucose deviations and to predict the exact interstitial glucose value in real time with up to 84%
and 87% accuracy, respectively. We also establish methods for designing variables using data-driven and domain-driven methods
from noninvasive wearables toward interstitial glucose prediction.
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INTRODUCTION
There is currently no commercially-available noninvasive method for
monitoring glycemic status; specifically, noninvasive glucose mon-
itoring to inform glycemic self-management, particularly for predia-
betics, is lacking. Prediabetes affects over one-third of people in the
United States1. While prediabetes is highly prevalent and has serious
consequences, it is also seriously underdiagnosed—only ten percent
of people with prediabetes are aware that they have the disease2. For
those who have been diagnosed, prediabetes is often poorly
managed3–5, leading to 70% of individuals with prediabetes to
eventually develop type 2 diabetes (T2D) and to a 10% annual
conversion rate from prediabetes to T2D6. Prediabetes is reversible
with lifestyle modifications: the Diabetes Prevention Program
reduced diabetes incidence by 58% through interventions aimed
at weight loss, dietary change, and physical activity in patients with
prediabetes7. Recently, monitoring of blood glucose levels has been
added to several prediabetes treatment plans8,9 and tracking of
blood glucose is even being used by those with normal glucose
levels in order to better understand and track glycemic and
metabolic health10,11. Long-term lifestyle changes are more likely
when patients self-monitor their blood glucose12, and this practice
can be upheld by easily accessible methods for glycemic health
monitoring that aid in self-management of prediabetes.
Glucose control is often a main objective of diabetes manage-

ment, which includes regulating glucose variability and avoiding
glucose deviations. Definitions of glucose deviations, including
‘hyperglycemia’ (glucose that is too high) and ‘hypoglycemia’
(glucose that is too low), have been widely cited in literature
pertaining to type 1 diabetes (T1D) and T2D5,13–24. Hyperglycemia
is traditionally defined as having non-fasting glucose above
180mg/dL and hypoglycemia is traditionally defined as having
non-fasting glucose below 70mg/dL25. These definitions were
developed for diabetes management19. However, these may not
be adequate to explain glucose deviations in individuals with

prediabetes and normal hemoglobin A1c (HbA1c) due to lower
fasting glucose levels and lower glucose variability than in those
with diabetes. The importance of personalization of glycemic
health has been demonstrated previously using ‘glucotypes’ to
describe intraindividual differences in glycemic responses26.
Management of glucose fluctuations begins with an under-
standing how specific behaviors influence a person’s own blood
glucose levels. Current methods for monitoring blood glucose27,
including blood glucose meters and continuous glucose monitors,
are not frequently utilized by non-insulin-dependent patients due
to their inconvenience, invasiveness28, and high cost. There is
currently no commercially-available noninvasive tool to estimate
interstitial glucose in real-time.
Non-invasive wrist-worn biometric monitoring technologies29,

often referred to as ‘wearables’30, are becoming nearly ubiquitous
in the United States, with 117 million currently in use and an
expected 100% growth in the next three years31. Because of this
widespread use, wearables can enable digital biomarker discovery
which will facilitate detection and monitoring of chronic
diseases30. Digital biomarkers are digitally collected data (e.g.,
heart rate measurements from a wearable) that may be used as
indicators of health outcomes (e.g., prediabetes)32. Digital
biomarker algorithms support the aggregation of high-resolution,
intra-individual data into summary metrics that are interpretable
and actionable33.
There are many competing factors that affect blood glucose

levels, including diet34, activity and exercise35, stress36, circadian
rhythm37, and biological sex38. There are also factors that are
related to glycemic health and glucose fluctuations, although they
may not affect blood glucose directly, including heart rate39, body
temperature40, and autonomic functions41 including the sudo-
motor response42. The factors affecting and relating to blood
glucose are extremely personalized: individualized factors can
have significant impacts on the blood glucose dynamic25,
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glycemic responses to foods are highly individual, and the foods
that raise a person’s blood glucose can vary dramatically43.
The primary objective of this study is to determine whether we

can build models from noninvasive wearables data combined with
food logs to classify interstitial glucose levels and to predict
interstitial glucose (Fig. 1). This would enable a frictionless and
noninvasive method to monitor interstitial glucose in real time,
allowing patients to engage with their glycemic health and
actively monitor their progress while employing lifestyle
modifications.

RESULTS
Developing personalized definitions of interstitial glucose
excursions for detecting intraindividual excursions
Study participants were 35–65 years of age with elevated blood
glucose in the normal range (HbA1c 5.2–5.6) or prediabetes
(HbA1c 5.7–6.4) (Supplementary Table 2). Existing clinical defini-
tions of blood glucose excursions, including ‘hyperglycemia’
(glucose that is too high) and ‘hypoglycemia’ (glucose that is
too low), are defined at the population level and are largely used
to describe glucose excursions in T1D and T2D patients5,13–19;
however, these classifications were established for diabetes
management19 and may not be suitable to explain significant
glucose excursions in normoglycemic or prediabetic individuals
due to their lower overall fasting glucose levels and lower glucose
variability as compared with diabetic individuals. Examples
demonstrating this scenario are shown in Fig. 2, where three
separate participants had clear glycemic responses to specific
behaviors, including sugary food or drink intake (spike in blood
sugar) or not eating (drop in blood sugar). These excursions were
not sufficiently high or low as to be clinically categorized as hyper-
or hypoglycemia and would therefore be considered normal as
per the traditional definitions, even though they are high or low
compared to the individual’s own baseline. Personalized glucose
excursion classes (Fig. 2 circles) provide more tailored information
about glucose fluctuations and enable self-management and
tracking of diet, exercise, and stress-related behaviors that affect
blood glucose. Furthermore, the glycemic baseline is also dynamic

over time44–46, so single-valued population-level thresholds to
define glucose excursions are inadequate for understanding an
individual’s deviations over time from their typical state25,26,43.
Thus, we developed three personalized and dynamic designations
to categorize each interstitial glucose measurement to indicate
the presence and absence of personalized glucose excursions. We
denote these categories as PersHigh, PersLow, and PersNorm,
which correspond to an interstitial glucose measurement that is
greater than, less than, or within one standard deviation of the 24-
h personalized mean, respectively (Fig. 3a). These personalized
and time-varying calculations account for circadian, intra-, and
inter-day variability. Each of the three categories are approxi-
mately normally distributed (PersNorm Kolmogorov–Smirnov
Normality Test (KS) Statistic=0.03 (Fig. 3c); PersHigh KS Statis-
tic=0.05; PersLow KS Statistic=0.04) (Table 1). The PersHigh
distribution is skewed moderately right and is leptokurtic, with
more data located at the tails of the distribution rather than
around the mean (Fig. 3d, Table 1). PersLow is skewed slightly left
and is mesokurtic, with a distribution moderate in breadth and
approximately normally distributed (Fig. 3e, Table 1). The wider
distribution for PersHigh compared to PersLow likely reflects the
fact that there is a wider range of possible hyperglycemic values
than hypoglycemic values in our population. Interestingly, there is
an overlap in all three distributions between interstitial glucose
values of 66–164mg/dL (Fig. 2b), supporting the idea that what
may be considered a normal measurement for one person may
actually be a low or high measurement for another person, which
also points to the inadequacy of population-level thresholds.

Glucose excursion classification
For many patients with conditions like prediabetes, simply under-
standing which behaviors trigger high or low glucose excursions
would greatly improve disease management. A number of measur-
able factors influence blood glucose levels, including diet34,47–57,
physical activity and exercise35,58–62, stress36,63–69, circadian
rhythm37,55,70–73, and biological sex38,74–80. Additionally, physiological
parameters like vital signs are associated with glycemic health and
glucose fluctuations, including heart rate39,81,82, core body tempera-
ture40,83, and autonomic functions41,84–86 like the sudomotor

OObjective 1: Engineer features from non-invasive 
systems

Wrist-worn wearableFood Logs Demographics
Diet/Nutri�on Circadian Rhythm

Ac�vity/Exercise
Stress
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HbA1c

Objective 2: Develop personalized glucose 
defini�ons.

Objective 3: Classify glucose excursions using 
engineered features.

Normal 
Glucose

High 
Glucose

Low 
Glucose

Normal Glucose
Low Glucose
High Glucose

Objective 4: Build predic�ve models of glucose 
using both a popula�on approach with LOPOCV 

and a personalized approach. 

LOPOCV Personalized

84.3% accuracy
84.3% recall
84.5% precision
84.3% F1 score
0.51 R2

85.7% accuracy
14.3 % MAPE
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86.7% accuracy
13.3 % MAPE

21.1 RMSE

Study Sensor Placement

CGM

Fig. 1 Graphical abstract of study. This study has four objectives: (1) Engineer features from non-invasive systems using a combined data-
driven and domain-driven feature engineering approach. (2) Develop personalized glucose excursions definitions. (3) Classify glucose
excursions using engineered features. (4) Build predictive models of glucose using both a population approach with leave-one-person-out
cross validation and a personalized approach. Sensor placement for the study (Empatica E4 on the wrist and a Dexcom G6 continuous glucose
monitor on the abdomen) is also shown.
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response42. These relationships suggest that it may be possible to
estimate glucose values from novel modes of measurement. To
determine whether this is possible, we developed classification
models using data from these alternative modes of measurement
with the goal of detecting when interstitial glucose was outside of
the personal norm.
We engineered 69 variables based on the previously described

literature34–42,47–86 as inputs into our prediction models using a
combination of data-driven and domain-driven feature engineer-
ing (Supplementary Table 1). These variables were built using data
collected from a noninvasive wearable, a food log, and electronic
reports of demographics. Measurements included metrics of

stress, circadian rhythm, diet, activity and exercise, heart rate,
skin temperature, and biological sex.
We defined the ground truth for intraindividual excursions,

classified as PersHigh, PersLow, or PersNorm, based on a
personalized, rolling basis from CGM measurements. We devel-
oped a multi-class model to classify between PersLow, PersHigh,
and PersNorm interstitial glucose using a class-balanced dataset
(N= 8666). The decision tree classifier with repeated stratified
k-fold cross validation achieved an accuracy of 84.3 ± 0.013%
(recall= 84.3 ± 0.013%; precision=84.5 ± 0.013%; weighted F1
Score=84.3 ± 0.013%; R2= 0.505 ± 0.050) (Table 2). We repeated
this modeling task using a 70/30 train/test (TT) split. The decision

Tradi�onal Hyperglycemic Range > 180 mg/dL

Tradi�onal Hypoglycemic Range < 70 mg/dL
7AM                                                                      7PM 7AM

Time (24 Hour Cycle)

3AM                                                                      3PM 3AM

12AM                                                                     12PM 12AM

Fig. 2 Case studies of CGM data over 24 h for 3 participants highlighting eating habits and subsequent glucose excursions. Green bands
indicate a meal or snack, pink bands indicate consumption of a sugary beverage or soda, and orange bands indicate a sugary snack or dessert.
Shown in red is the traditional hyperglycemic range (>180mg/dL) and shown in yellow is the traditional hypoglycemic range (<70mg/dL).
Note that the participants do not exceed the traditional definitions of glucose excursions. A system that would alert prediabetes patients
based on traditional definitions of glucose excursions would be inadequate in these cases. The personalized classifications we propose in this
paper would better inform prediabetes patients so they can begin to self-manage their diet, exercise, and stress levels based upon this
information. As shown, the personalized classes PersHigh (shown in plum) and PersLow (shown in teal) would provide more personalized
information about fluctuating glucose. For example, sugary drinks and snacks result in higher glucose fluctuations. By reducing the amount
and frequency of sugary drinks and snacks, participants would be less likely to experience a glucose excursion.
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tree classifier using the 70/30 TT split achieved 82.0% accuracy
(recall= 82.0%; precision=82.3%; F1 Score=82.1%; R2= 0.46)
(Table 2). The confusion matrix for the decision tree classifier
using the 70/30 TT split is shown in Fig. 4. The per-class accuracies
for each of the three interstitial glucose classes were similar: the
class accuracy for PersHigh glucose was 82.6%, the class accuracy
of PersNorm was 81.3%, and the class accuracy for PersLow was
82.1%. The decision tree models both outperformed logistic
regression (accuracy= 52.0%; recall=52.0%; precision=52.3%; F1
Score=52.0%; R2= 0 (Method of calculation for R2 enabled
negative values, which were thresholded at zero), indicating that
more complex relationships in the data need to be captured to
perform highly accurate classification (Table 2).

Glucose prediction
Prediction of precise interstitial glucose values as opposed to
whether or not a person is experiencing a high or low excursion
would give additional information for glucose self-monitoring and
tracking. Thus, we extended our models to determine whether
noninvasive wearables could serve as a proxy for a continuous
glucose monitor. In order to predict glucose at 5-min intervals, we
developed both a gradient-boosted population model validated
with leave-one-person-out cross validation (LOPOCV) and a
gradient-boosted personalized model, trained and tested on each
individual’s previously measured data. Our population model
validated with LOPOCV had an average root mean squared error
(RMSE) of 21.22 ± 4.14 mg/dL and an average mean average
percent error (MAPE) of 14.33 ± 3.25%. Average accuracy for the
population model over all participants was 85.67%. Using the
initial half of the participant’s data for training, the personalized
model trained and tested on each participant’s data had an
average RMSE of 21.10 ± 4.50 mg/dL and an average MAPE of
13.26 ± 3.94%. Average accuracy for the personalized model
across all participants was 86.74%. Both the personalized model
and the traditional population model outperformed the naïve
models (mean and median). That the population and personalized
models performed comparably may indicate that there are
common factors that are mostly sufficient for modeling.

Exploring feature importance for glucose prediction
In order to determine the contribution of each of the 69 variables
to the interstitial glucose prediction, we calculated impurity-based
importance for each variable in the LOPOCV random forest
regression models with importances averaged across each fold.

The feature importances allow us to examine the extent that each
measurement type contributed to the success of the model and
therefore serve as a mechanism to generate hypotheses of
potential physiologic relationships that can be tested directly
through experimentation. Features were aggregated together into
the following categories: ‘food’, ‘circadian rhythm’, ‘stress’,
‘activity’, ‘temperature’, ‘heart rate’, ‘electrodermal activity’, ‘biolo-
gical sex’, ‘HbA1c’, and ‘personalization’. They were further
categorized by the source of the data: ‘food log’, ‘wearable’, ‘user
input’, and ‘model’. Based on the literature we anticipated that the
most important features would be related to food, activity,
circadian rhythm, and stress34–37,47–73 and found that indeed food
had the highest importance, with an average of 37.0% (percent of
total importance, where total importance sums to 100%), followed
closely by activity (17.0%), circadian rhythm (10.6%), and stress
(8.2%). Of the feature importances, 49.3% were derived from a
wearable, 37.0% were sourced from the food log, 10.8% were user
input (including biological sex and HbA1c), and 2.9% were
personalization features of the model. This supports further
development of multi-modal models using features from both a
noninvasive wearable and a food diary to predict glucose. In terms
of how the features were engineered, 66.8% of feature
importances were domain-driven, 19.5% were data-driven, and
13.7% were neither (demographics data) (Fig. 5).
The fifteen most important features in the model (mean

impurity-based feature importance >0.02), ordered from most to
least important, included measures of circadian rhythm, diet,
demographics, exercise/activity, and stress (Table 3, Supplemen-
tary Fig. 1). The variance among the LOPOCV models is illustrated
in Supplementary Fig. 1 and highlights the variability in the most
important features.
Overall, novel findings from this work included the develop-

ment of personalized definitions of interstitial glucose excursions,
demonstrating robust classification of these personalized inter-
stitial glucose excursions from non-invasive wearables and food
logs data and creating a noninvasive continuous glucose monitor
“proxy” with high accuracy. We developed novel feature
engineering methods that achieve high accuracy in interstitial
glucose classification and regression models. These features
highlight the existence of important relationships between
physiologic measurements from non-invasive wearables and
interstitial glucose fluctuations which serve as a basis for future
experimental studies.

Fig. 3 Personalized glucose excursions. Glucose excursions are classified on a personalized, rolling basis examining the previous 24 h of each
participant’s historical data. a Boxplots of PersNorm, PersHigh, and PersLow for each participant in the dataset. b Histogram of all distributions
over all participants. c PersNorm distribution. d PersHigh distribution. e PerLow distribution. Bin width for each histogram shown is 1mg/dL.
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DISCUSSION
The primary objective of this study was to determine whether we
can use noninvasive wearables with food diaries to detect
personalized interstitial glucose excursions and predict interstitial
glucose values. We integrated data-driven and domain-driven
feature engineering methods to engineer 69 features, and we
developed a personalized, rolling baseline to determine glucose
excursions. We used our engineered features in machine learning
models to classify glucose excursions. Finally, we used our
engineered features to develop and compare population-level
and personalized models for glucose prediction.
Typically, patients with diabetes or other glucose metabolism

conditions monitor their glucose by measuring their blood sugar
level periodically throughout the day with a blood glucose meters
or continuous glucose monitors, both of which involve an invasive
needle and are not typically recommended for individuals with
prediabetes. Innovative, practical strategies to improve monitoring
and management of glycemic health are desperately needed. One
way we can improve management of glycemic health is by using
noninvasive wearables and food logging to determine when a
participant is experiencing interstitial glucose excursions (high
glucose or low glucose).
There is a lack of prediabetes-specific thresholds for glucose

deviations, which makes prediabetes monitoring and disease
management challenging. Furthermore, the spectrum of predia-
betes is highly personalized26,43 and personalized thresholds for
glucose excursions do not currently exist, preventing personalized
monitoring. To address this gap, we developed personalized
definitions of interstitial glucose excursions. Defining glucose
excursions on a personalized, rolling basis enables the use of a
participant’s historical data to better understand deviations from a
personalized baseline over a defined window of time. This also
allows accounting for intraday variability in addition to interday
variability.
Here, we developed a multi-class model to detect PersHigh,

PersLow, and PersNorm interstitial glucose events that achieved
84.3% balanced accuracy. Currently, these classification models
could be employed in practice to alert patients with prediabetes
when they may be experiencing a glucose excursion to check their
blood glucose. Overall, optimizing the timing of blood glucose
checks will better inform people about the effect of their
behaviors and lifestyle habits on their blood glucose. For example,

a patient’s own historical data can show them how reducing the
amount and frequency of sugary drinks and snacks would reduce
the likelihood of a glucose excursion. In the future, further
validation of these models may enable their use alone without
additional tools to self-monitor and track blood glucose.
Displaying exact glucose values to users has been shown to

improve logical reasoning and influence their eating and activity
behaviors87, which could be directed toward improved glucose
control. Having specific, numeric, goals have been demonstrated
to increase and maintain motivation88. Here, we demonstrate the
feasibility of predicting glucose from non-invasive data at 5-min
intervals (the same sampling rate as a continuous glucose
monitor) which could further enable patients to understand how
their lifestyle habits are influencing their blood glucose levels and
help them manage their disease. Interestingly, while continuous
glucose monitors are widely used to inform insulin delivery, their
accuracy can vary substantially from a blood glucose meter. For
example, the Dexcom G6 is considered sufficiently accurate if its
measurements fall within ±20mg/dL of a simultaneous blood
glucose meter measurement for meter values <100mg/dL and
±20% for meter values >100 mg/dL89. As such, the accuracy of our
newly proposed noninvasive glucose prediction models is within
the accuracy realm of currently used technologies (RMSE=
21.22 ± 4.14 mg/dL).
The random forest-based glucose prediction models showed

that, of the top features, 49.3% were derived from a wearable,
37.0% were sourced from the food log, 10.8% were from user
inputs (including biological sex and HbA1c), and 2.9% were
resulting from the model itself (personalization). The benefits of
multiple measurement modalities can inform future decisions in
digital biomarker research including data collection and wearable
and mobile health device and application design. Of the 15 most
important features, the overarching categories of circadian
rhythm, demographics, diet, exercise, and stress were all
represented, lending further credence to the usefulness of
domain-driven feature engineering. There is ongoing debate
about using HRV as a proxy measure of stress90 which may impact
interpretation of the key model features. Additionally, the glucose
management indicator (GMI) has been demonstrated to approx-
imate HbA1c using continuous glucose monitoring data91. In
future models, GMI may be able to replace the clinical HbA1c
measurement, avoiding the need for this clinical measurement.

Table 1. Summary metrics of distributions of each personalized glucose definition.

Glucose class Mean (mg/dL) Standard deviation (mg/dL) Range (mg/dL) Skewness Kurtosis

PersNorm 112.4 14.5 66.0 - 164.0 0.12 −0.10

PersHigh 149.9 24.4 93.0 - 260.0 0.75 0.93

PersLow 90.8 11.1 46.0 - 120.0 −0.32 0.17

The categories PersHigh, PersLow, and PersNorm are personalized glucose definitions that correspond to an interstitial glucose measurement that is greater
than, less than, or within one standard deviation of the 24-h personalized mean, respectively.

Table 2. Model evaluation metrics for multi-class models.

Model Balanced accuracy Recall Precision F1 Score R2

Multiclass Decision Tree Repeated Stratified K-Fold CV 84.3 ± 0.013% 84.3 ± 0.013% 84.5 ± 0.013% 84.3 ± 0.013% 0.505 ± 0.050

Multiclass Decision Tree 70/30 Train/Test Split 82.0% 82.0% 82.3% 82.1% 0.455

Multiclass Logistic Regression 70/30 Train/Test Split 52.0% 52.0% 52.3% 52.0% 0a

aMethod of calculation for R2 enabled negative values, so the threshold was set to 0.
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Noninvasive glucose monitoring is a complex challenge, and our
findings highlight the necessity of having multi-disciplinary teams
in digital biomarker discovery research to integrate domain
knowledge for domain-specific feature engineering.
In future work, we recommend expanding upon this study to

improve glucose prediction using a personalized modeling
approach with larger datasets and other machine learning
methods. With a larger dataset, the integration of deep learning
with the personalized approach may further increase the efficacy
of non-invasively predicting glucose using wearables. In larger
cohort studies, we recommend exploring age and body mass
index and/or body fat percentage as covariates in the models. We
also recommend the evaluation of this technology following the
V3 (verification, analytical validation, and clinical validation)
framework29. Here, we demonstrate the feasibility of using
noninvasive methods for interstitial glucose classification and
prediction. Follow up studies are needed to clinically evaluate this
technology.
Glycemic health is at an all-time low: in the U.S., one in ten

people have diabetes and one in three people have prediabetes; a
dismal 20% of those with diabetes and 90% of those with
prediabetes are undiagnosed92. In order to manage glucose
fluctuations, it is important for patients to understand how their
behaviors influence their blood glucose levels. There is a critical
need for innovative, practical strategies to improve monitoring
and management of glycemic health. In this study, we demon-
strated the feasibility of using noninvasive and widely accessible
mobile health and machine learning methods to non-invasively
classify glucose excursions and predict glucose values.

METHODS
Dataset recruitment and collection protocol
The study was approved by the Duke University Health System (DUHS)
Institutional Review Board and written informed consent was obtained
from all participants (Pro00101398). All subjects consented to the study
and were compensated a total of $150 for their participation.
Patients (N= 16) were recruited for this prospective study from the Duke

Endocrinology and Lipids Clinic through medical record review that
identified patients between 35–65 years of age with high normal blood
glucose (HbA1c 5.2–5.6) or prediabetes (HbA1c 5.7–6.4) (Supplementary
Table 2). Exclusion criteria included cancer, COPD, cardiovascular disease,
food allergies, or any antidiabetic drug use.
HbA1c was measured in the clinic on Day 0. Upon confirmation of A1C

within range for this study, a continuous glucose monitor (CGM; Dexcom
G6) and a non-invasive wearable smartwatch (Empatica E4) were worn
continuously for 8–10 days (placement of study sensors shown in Fig. 1). A
standardized breakfast meal with a high glycemic index (1.5 cups of

Frosted Flakes and 1 cup Lactaid 2% Milk) was ingested every other
morning during the monitoring period prior to ingesting any other food,
drink, or medication, enabling repeated intraindividual monitoring of
glycemic response. All other meals and snacks during the monitoring
period were recorded through comprehensive written diet logging.

Dataset
The Dexcom G6 records interstitial glucose concentration (mg/dL) every
5min. The Empatica E4 contains four sensors: photoplethysmography
(optical heart rate), electrodermal activity (galvanic skin response, related
to sweat activity), skin temperature, and tri-axial accelerometry. Heart rate
was recorded once per second, (calculated from photoplethysmography
sampled at 64 Hz), electrodermal activity and skin temperature were
recorded at 4 Hz, and accelerometry was recorded at 32 Hz.
In total, for this analysis we utilized over 25,000 interstitial glucose point

measurements and 25,000 5-min epochs of wearable data measured over
8–10 days across 16 participants.

Feature engineering
Features were engineered on data collected from the Empatica E4 wrist-
worn wearable and the food diary. In total, 69 data-driven, domain-driven,
and demographic historical features were used in developing the models,
including features linked to diet, stress, exercise, circadian rhythm, and
behavioral habits: all features known to contribute to blood glucose
fluctuations (Supplementary Table 1). These features were computed every
5min on a rolling basis (when appropriate, as described below). All
features used in modeling were historical (5 min to 24 h prior to the
measurement being predicted). Thus, the models were only given
historical data to make predictions from.
Two of the 69 features were demographic data that incorporate user

input into the model: biological sex and HbA1c. Another feature, the
‘personalization’ feature, differentiates each participant with a unique
number so that models can learn relationships that may be individualistic.
Data-driven features for each of the 5-min intervals of smart watch data

include 7 summary statistics for each sensor: mean, standard deviation,
minimum, maximum, first quartile, third quartile, and skew. These
summary statistics are computed for heart rate, accelerometry (vector
magnitude of the three axes), electrodermal activity, and skin temperature.
For the domain-driven feature engineering, we focused on 4 factors that

have demonstrated effects on blood glucose: stress, exercise (short term
and long-term effects), circadian rhythm, and diet (including timing of
meals, frequency of meals, and the short, medium, and long- term effects
of protein, sugar, carbohydrates, and calories). We will break each of these
down and explain the metrics calculated below:
The effects of stress have been measured physiologically for decades in

psychology research, and we borrow some of their methods to quantify
stress here93–97. Using the electrodermal activity data, we detected peaks
and determined their prominences using the SciPy library in Python98. We
required a distance between peaks of 1 second (4 data points) and a
prominence of 0.3 micro-siemens to be considered a ‘unique peak’. We
determined the number of peaks in each 5-min interval. This data was then

PersNorm PersLow PersHigh

PersNorm 689 102 57

PersLow 103 672 44

PersHigh 110 52 771

True

Predicted

Fig. 4 Confusion matrix: multiclass model. Confusion Matrix for multiclass decision tree model validated with a 70/30 train/test split. In this
model, the class-accuracy for PersHigh glucose is 82.6%, the class accuracy for PersNorm is 81.3%, and the class accuracy of PersLow is 82.1%.
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aggregated using a rolling window approach: for the previous 2 h, on a
rolling window, we determined the total number of peaks and the average
number of peaks in each 5-min interval.
Heart rate variability (HRV) has also been demonstrated to fluctuate

relating to both acute and chronic stress90. We utilized the inter-beat-
interval data derived from the PPG and calculated 8 HRV metrics over each
5-min interval of data. Calculated metrics include mean HRV, median HRV,
maximum HRV, minimum HRV, the standard deviation of intervals (SDNN),
the root mean square of successive differences in the intervals (RMSSD),
the number of successive intervals that differ by more than 50ms (NN50),
and the proportion of NN50 divided by the total number of intervals
(pNN50). To calculate these metrics, we utilized open source code available
in the Digital Biomarker Discovery Pipeline32 that has been validated
against the state-of-the-art Kubios ECG software.
There have been shown to be both short-term and long-term effects of

exercise on blood glucose levels58,59, which we wanted to examine using
both accelerometry and heart rate data. While it is difficult to quantify
“exercise” without user-input, we can determine when participants are
being more active. Thus, we developed a calculation for “activity bouts”, or
bouts of activity.
To calculate an “activity bout”, we took the mean accelerometry vector

magnitude and the mean heart rate over the 5-min interval and compared
it to the average of the prior historical data from the individual. If both the
mean accelerometry and mean heart rate values for the 5-min interval
were above the previous average, that interval is said to be an “activity
bout”. In order to account for the short- and longer- term effects of activity
on the glucose metabolism, we used a rolling window to compute the total
activity bouts in the last hour and the average activity bouts in the
previous 24 h. Additionally, we found the mean and maximum accel-
erometry vector magnitude over the previous two hours using a rolling
window approach.
Circadian rhythm is a confounding variable in most physiology and it is

important to take this into account as a feature, especially because there is
a known connection between circadian rhythm and blood glucose37. We
calculated the ‘minutes from midnight’ and the ‘hours from midnight’ as
features indicative of circadian rhythm.

The time when an individual wakes can affect their circadian rhythm99.
Heart rate and accelerometry have been used previously to determine
waking versus sleep states32. For each participant and for each day, we
examined when the accelerometry and heart rate mean and standard
deviation were less than the average for that day. When two of the four
measures were less than the average for the day, we assigned that interval
a ‘0’. All other intervals were assigned a ‘1’. This data was then averaged
over 3 h using a rolling window approach. We assigned the ‘Wake Time’ to
when the slope of this data sharply changed and remained consistently
higher 25 and 75min after the wake time.
Diet is known to have strong effects on glucose metabolism. Here, we

determined features explaining the short-, medium-, and long-term effects
of food on glucose. We used a rolling window to sum the number of
calories, grams of protein, grams of carbohydrates, and grams of sugar
over three windows: 2 h, 8 h, and 24 h.
Each time a participant consumed a unique meal, snack, or caloric

beverage, we assigned that interval a binary ‘1’. This allows us to determine
timing of meals and how that, in conjunction with the circadian rhythm
features, may affect the glucose metabolism. We then took a rolling sum of
how many times an individual consumed over 2 h, 8 h, and 24 h. We also
looked at the average amount of times an individual consumed over the 2-
h, 8-h, and 24-h rolling windows.

Developing personalized definitions of interstitial glucose
excursions for detecting intraindividual excursions
The traditional definitions of glucose values that are ‘too high/low’, or
hyperglycemia and hypoglycemia, have been defined from populations of
people with diabetes13,19–24. These previous thresholds are insufficient and
require personalization26. Thus, we wanted to re-define this and create
personalized “high” and “low” glucose thresholds for each participant at
each point in time. All outliers in the dataset were examined in exploratory
data analysis relative to the food logs and other features, in addition to
surrounding glucose values to ensure they were within reasonable bounds.
We found no outliers in our dataset that were not explained by other
features. We defined personalized glucose excursions as “PersHigh” and
“PersLow”. We used a rolling window approach: for a glucose value to be

Food (37.0%)

Circadian 
Rhythm (10.6%)

Skin Temperature (5.0%)

Ac�vity (17.0%)

Heart Rate (3.2%)

Electrodermal 
Ac�vity (5.4%)

Clinical Metrics (6.2%)

Biological Sex (4.7%)

Stress (8.3%)

Personaliza�on (2.9%)

Wrist-worn wearable 
(49.3%)

Food Logs 
(37.0%)

User Defined 
(10.8%)

Model (2.9%)

Fig. 5 Importance of 69 domain-driven and data-driven features in glucose predictions. Importance was determined from a random forest
feature selection model using impurity-based features. The outer circle shows relative percent of importance for the categories food, circadian
rhythm, activity, stress, gender, clinical metrics, personalization, electrodermal activity, heart rate, and skin temperature. The inner circle shows
relative importance by source of features, including food logs, the wrist-worn wearable, user-defined features, and features defined for/by
the model.
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classified as PersHigh, it had to exceed one standard deviation above the
mean for the last 24 h. To be considered PersLow, the value had to be
below one standard deviation below the mean for the last 24 h. The third
category, “PersNorm” had to fall within one standard deviation above or
below the mean for the last 24 h. We tested the extent to which the
distributions of these categories are normal using the Kolmogorov-
Smirnov Test to test between our distribution and a normal distribution.

Classification of glucose excursions
We balanced our classes of PersNorm, PersHigh, and PersLow for a total N
= 8666 because the entire dataset (N= ~25,000) was highly imbalanced
with the majority of data points being in the PersNorm category. Our
model was implemented in a repeated stratified k-fold cross validation
schema with 10 splits and 3 repeats. Within each fold, we implemented
recursive feature selection to select the 20 most important features, which
were used to train the model. We iterated through several estimator
methods to determine the optimal method for the recursive feature
elimination, including logistic regression, perceptron, decision tree,
random forest, and gradient boosting classifier. We utilized the estimator
that resulted in the highest accuracy for our final model, the decision tree
estimator. Finally, for each fold, using the features selected with the
recursive feature elimination, we trained a decision tree classifier.
In addition to the primary, cross-validated model, we developed a 70/30

train/test split decision tree classifier model and a logistic
regression model.
We evaluated our model using balanced accuracy, weighted precision,

weighted recall, and weighted f1 score, from the python package scikit-
learn100 at each fold in the cross validation and report the mean and
standard deviation of each metric. We also examined the amount of
variance explained by the model by reporting R2.

Glucose prediction
Using the same features derived above in our feature engineering, we
developed predictive models for predicting actual interstitial glucose
values from noninvasive wearables and food diary data. We developed
both a population model with LOPOCV and a personalized model trained
and tested on each participant’s own data. We utilized a dataset of over
25,000 glucose measurements and 25,000 5-min intervals of smart watch
data measured over 8–10 days across 16 participants. There were an
average of 1500 glucose measurements per participant.
We developed a regression gradient boosting decision-tree-based

regression model using the XGBoost101 algorithm and used tuned
hyperparameters for all models (maximum depth=6, number of estima-
tors=100, learning rate = 0.1). The prediction target of our models was

interstitial glucose at every 5-min interval. The model was trained using the
69 engineered features and feature selection (cutoff= 0.005) was
performed with a random forest regression model (1000 trees) using
impurity-based feature importances for each fold of our LOPOCV. Feature
importance was taken at each fold in our LOPOCV model and averaged to
determine the most important features in predicting glucose.
For the population, LOPOCV model, we iterated over each participant

(fold), using all other participants as the ‘training set’ and using each
participant as the ‘test set’. For the personalized model, we trained on the
first contiguous half (50%) of the participant’s data and tested on the
remaining half of the participant’s data.
Models were evaluated using root mean squared error (RMSE), mean

average percent error (MAPE), and accuracy (100-MAPE) for each fold of
our LOPOCV models. We report the mean and standard deviation over the
population of these evaluation metrics.

Analysis of features
In order to determine important features for predicting glucose, we trained
a random forest regression model (1000 trees) with LOPOCV and averaged
impurity-based feature importances for each fold of our LOPOCV to
determine the most important features across participants.
Features were aggregated together into the following categories: ‘food’,

‘circadian rhythm’, ‘stress’, ‘activity’, ‘temperature’, ‘heart rate’, ‘electro-
dermal activity’, ‘biological sex’, ‘HbA1c’, and ‘personalization’. They were
further categorized by the source of the data: ‘food log’, ‘wearable’, ‘user
input’, and ‘model’. We also divided the features into categories based on
how the feature engineering was performed: ‘data-driven’, ‘domain-driven’,
and ‘other’. Feature importances across these categories were aggregated
by averaging the importance across each fold in our LOPOCV random
forest regression model. We determined the percent importance of each of
these feature categories out of the total feature importance; thus, we
report importance as a percent when evaluating the features.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data sets generated during and/or analyzed during the current study will be
submitted one year from the publication date to the Digital Health Data Repository in
the Digital Biomarker Discovery Pipeline.

Table 3. Exploring feature importance for glucose prediction: the 15 most important features in the random forest model.

Feature Feature category Impurity-based feature importance
(mean ± standard deviation)

Minutes from midnight Circadian rhythm 0.069 ± 0.004

Sugar intake (previous 24 h) Food 0.067 ± 0.038

Hemoglobin A1c (HbA1c) Clinical/Demographics 0.062 ± 0.018

Carbohydrates (previous 2 h) Food 0.047 ± 0.016

Biological sex Demographics 0.047 ± 0.033

Activity (previous 24 h) Activity/Exercise 0.042 ± 0.005

Sugar intake (previous 2 h) Food 0.038 ± 0.022

Sugar intake (previous 8 h) Food 0.031 ± 0.004

Accelerometry (mean previous 2 h) Activity/Exercise 0.030 ± 0.002

Wake time Circadian rhythm 0.029 ± 0.005

ID Personalization 0.029 ± 0.016

Accelerometry (max previous 2 h) Activity/Exercise 0.026 ± 0.002

Protein (previous 24 h) Food 0.025 ± 0.002

Peak electrodermal activity (mean previous 2 h) Stress 0.024 ± 0.009

Carbohydrates (previous 24 h) Food 0.024 ± 0.003
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The code generated for this study are available open-access in the Digital Biomarker
Discovery Pipeline (dbdp.org).
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