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A prospective evaluation of AI-augmented epidemiology to
forecast COVID-19 in the USA and Japan
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Nathanael C. Yoder 1, Kris Popendorf2, Arkady Epshteyn1, Johan Euphrosine2, Elli Kanal1, Isaac Jones1, Chun-Liang Li1, Beth Luan2,
Joe Mckenna1, Vikas Menon1, Shashank Singh1, Mimi Sun3, Ashwin Sura Ravi1, Leyou Zhang 1, Dario Sava1, Kane Cunningham1,
Hiroki Kayama2, Thomas Tsai 4, Daisuke Yoneoka 5,6, Shuhei Nomura 5,7, Hiroaki Miyata5,8 and Tomas Pfister1

The COVID-19 pandemic has highlighted the global need for reliable models of disease spread. We propose an AI-augmented
forecast modeling framework that provides daily predictions of the expected number of confirmed COVID-19 deaths, cases, and
hospitalizations during the following 4 weeks. We present an international, prospective evaluation of our models’ performance
across all states and counties in the USA and prefectures in Japan. Nationally, incident mean absolute percentage error (MAPE) for
predicting COVID-19 associated deaths during prospective deployment remained consistently <8% (US) and <29% (Japan), while
cumulative MAPE remained <2% (US) and <10% (Japan). We show that our models perform well even during periods of
considerable change in population behavior, and are robust to demographic differences across different geographic locations. We
further demonstrate that our framework provides meaningful explanatory insights with the models accurately adapting to local and
national policy interventions. Our framework enables counterfactual simulations, which indicate continuing Non-Pharmaceutical
Interventions alongside vaccinations is essential for faster recovery from the pandemic, delaying the application of interventions
has a detrimental effect, and allow exploration of the consequences of different vaccination strategies. The COVID-19 pandemic
remains a global emergency. In the face of substantial challenges ahead, the approach presented here has the potential to inform
critical decisions.
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INTRODUCTION
Predicting the spread of infectious diseases is an essential
component of public health management. Forecasts have
contributed to resource allocation and control measures in past
epi- and pandemics such as influenza1 and Ebola2. Most recently,
such models have shown promise during the COVID-19 pan-
demic3,4 by helping ease the devastating public health and
economic crisis5–9. However, forecasting models must overcome
multiple challenges. Existing datasets contain substantial noise
due to inconsistencies in reporting and the fact that many cases
are asymptomatic or undocumented10,11, and the causal impact of
features within the available data is unknown. The nature of the
data and the fundamental dynamics changes over time as the
progression of the disease influences public policy12 and
individuals’ behaviors13 and vice versa. Beyond overcoming these,
forecasting models must be explainable for decision-makers to be
able to interpret the results in a meaningful way14.
Recent work has demonstrated promising results with retro-

spective evaluations3,4,15–19. On the other hand, to understand the
value of such models and their potential utility to policy decisions,
a prospective evaluation is essential. Further, the utility of the
forecasts needs to be rigorously validated, which is of crucial
importance if such forecasts are to play a role in vaccination
strategies given the wide variation in vaccine distribution,
effectiveness, and uptake20,21.

To address these challenges, we introduced an AI-augmented
epidemiology framework to forecast the expected burden of
COVID-19 4 weeks into the future, along with a rigorous
framework for training and validation22, and made the forecasts
publicly available.
We run a prospective observational cohort study to validate the

framework in the United States of America (USA) and Japan, two
countries with substantial differences in healthcare systems,
demographics, and the policy response to COVID-19. We
demonstrate the efficacy of the framework by deriving new
epidemiological findings, evaluating the predicted effect of
changes in policy and behavior, and exploring settings in which
the framework is being used such as hospital resource allocation
and guiding state-wide social distancing policies.

RESULTS
An AI-augmented approach to epidemiology
Our framework is an extension to the Susceptible-Exposed-
Infectious-Removed (SEIR) model, where a population is assigned
to and may flow between compartments representing disease
states23 (Fig. 1a). Our models are optimized for the prediction of
COVID-19-associated deaths and are trained on static and time-
series data.
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Our framework makes use of a number of key technical
approaches. We use a larger number of static and time-varying
features compared to prior work, powered by a systematic end-to-
end learning approach with robust training mechanisms. We use a
novel sequence-to-sequence modeling approach to minimize
amplified growth of errors into the future due to robustness
issues. Instead of depending on human-engineered functions or
distribution priors to capture the impact of features, we use
learnable time-varying functions to relate features to compart-
mental variables, which are trained in an end-to-end way. We
include hospitalization compartments and demonstrate efficient
training to forecast hospitalization compartments despite data
sparsity. Our framework yields forecasts for a large number of
locations. In our framework, a single model can provide forecasts
for more than 3000 US counties with very distinct dynamics and
characteristics; and indeed benefits from this transferring informa-
tion across locations. Beyond point forecasts, our framework yields
prediction intervals using quantile regression, and we show these
are well-calibrated to capture uncertainty. We also report counter-
factual simulations, and demonstrate that the counterfactual
outcomes capture the relationship between the inputs and
outcomes. Finally, the feature encoders in our framework can
suggest the most important factors driving compartmental
transitions. For additional technical details on the framework
please see “Methods”.

A prospective evaluation of forecasting accuracy
To evaluate our framework, we conducted a prospective observa-
tional study over 8 weeks in the USA and Japan. Predictions were
made daily, each looking 4 weeks into the future (Fig. 2). We
predicted the number of COVID-19 associated deaths and
confirmed cases. For the USA, the available data also allowed us
to predict hospitalizations, intensive care (ICU) admissions, and
admissions requiring mechanical ventilation. We report both
incident and cumulative mean average percentage error (MAPE)
averaged across locations, as well as aggregate average percen-
tage error (AAPE) summed over locations, in the USA and Japan
(for results on absolute error, see Supplementary Discussion).
Incident metrics only consider the cases that occurred during the
28-day prediction window and are helpful in the context of
resource allocation. Cumulative metrics additionally take into
account the total existing number of cases and can provide a
broader view in the context of the pandemic thus far.
During the prospective period, across the USA as a whole, the

framework achieved an AAPE of 1.4% (95% CI [1.1%, 1.6%]) for
cumulative deaths and 7.1% (95% CI [5.8%, 8.5%]) for incident
deaths. The framework predicted cumulative confirmed cases,
incident confirmed cases, hospitalizations, intensive care unit (ICU)
admissions, and admissions requiring mechanical ventilation with
AAPEs of 9.20% (95% CI [8.3%, 10.2%]), 18.6% (95% CI [14.6%,
22.6%]), 59.0% [41.3%, 76.7%], 66.1% [40.2%, 92.0%], and 51.7%
([37.0%, 66.5%]), respectively. For the USA, we also provide

Fig. 1 Proposed framework and timeline for model development and prospective evaluation. a Our proposed AI-augmented
epidemiology framework for COVID-19 forecasting is an extension to the standard Susceptible-Exposed-Infectious-Removed (SEIR) model23,48.
We model compartments for undocumented cases explicitly as they can dominate COVID-19 spread, and introduce compartments for
hospital resource usage as they are crucial to forecasts for COVID-19 healthcare planning. Learnable encoders infer the rates at which
individuals move through different compartments, trained on static and time-varying public data, to model the changing disease dynamics
over time and extract the predictive signals from relevant data. The models are trained daily on all available data up to the day each
prediction is made (see “Methods”). b Public dashboard that shows generated 28-day forecasts at county- and state level for the USA. A
dashboard was similarly created in Japan at the prefecture level. c Predictions for the effective R number and force of infection that come from
the compartmental nature of the model, as well as feature importances for the rates from the variable encoder architectures. d Simulations of
counterfactual scenarios can be used to estimate the potential impact of vaccines or policy measures. e Prospective evaluation of the forecasts
— on each prediction date, 28-day forecasts are released publicly, and the evaluation of the accuracy is performed at the end of the 28-day
horizon.
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state- and county-level predictions. When evaluating at state level
and averaging across all locations, the framework achieves MAPE
for cumulative deaths and confirmed cases of 5.4% [5.1%, 5.6%]
and 9.2% [8.2%, 10.1%], and incident deaths and confirmed cases
of 24.2% [22.9%, 25.6%] and 37.8% [34.4%, 41.2%], respectively.
At county level, MAPE for cumulative deaths and cumulative
confirmed cases were 25.1% [23.1%, 27.0%] and 12.8% [11.5%,
14.1%], respectively. Predictions of cumulative deaths achieved
an average percentage error <10% or average error <100 for 43/
51 states and 2585/3006 counties, and for cumulative confirmed
cases 34/51 states and 1647/3006 counties (Supplementary
Tables 1 and 2).
We compare our framework with alternatives for the US (there

are no public prefecture models in Japan to compare to). For
statistical significance, we employ a two-sided Diebold–Mariano
(DM) test (Supplementary Table 15). For cumulative deaths, the
DM statistics on mean AE (MAE) are negative for all comparisons
other than “Karlen-pypm”— our framework has a lower MAE in 32
out of the 33 models—and the difference with “Karlen-pypm” is
statistically insignificant. Our model’s forecasts are statistically
significantly different for 13/33 comparisons, and in all of these
cases, our model’s MAE is lower. Using MAPE of cumulative
deaths, “COVIDhub-ensemble”—a combined forecast that
includes our framework’s predictions—has a negative DM statistic
and a slightly lower MAPE, but this difference is not statistically
significant (Supplementary Table 16). For the MAPE of incident
deaths over the 4 weeks are compared, three comparisons have a
negative DM statistic but none of those differences is statistically
significant (Supplementary Table 17). Our model did, however,
have significantly lower MAPE than five other models for incident
deaths. For hospitalization predictions (Supplementary Tables 21
and 22), our model is the most accurate of the nine models, with a
statistically significant difference for eight out of nine of the
comparisons for MAE. For confirmed cases, the ranking of our

model is lower and more variable. There are no statistically
significant differences for MAE or MAPE for either cumulative or
incident cases. We attribute this to the low data quality for
confirmed cases, which has been widely reported24–30, where
inconsistencies in testing and reporting limit the forecastability of
cases compared to hospitalizations and deaths, which have more
standardized reporting. Because of this lower-quality data, we also
put a lower weight on errors in confirmed cases than deaths in our
multitask learning objective (see “Methods”) compared to deaths.
We note that our framework can be readjusted if the desired use
case places more weight on confirmed cases prediction (see
“Machine-learning methods”). In addition to lower-quality data,
death and hospitalizations are lagging indicators, the prediction of
which may benefit more from our proposed approach than
confirmed cases do.
Beyond predicting point forecasts, we also compare the quality

of prediction intervals using the weighted interval score (WIS)31,32,
which is the discretized version of continuous ranking probability.
Our models are in the top five and often the top model (Fig. 3, as
well as Supplementary Figs. 3–11).
We also validate our model performance in Japan, reporting

AAPEs for cumulative deaths and confirmed cases over the next
4-week period, 9.8% (95% CI [7.4%, 12.2%]) and 9.1% (95% CI
[5.7%, 12.5%], respectively. The corresponding incident deaths
and confirmed cases were 28.8% (95% CI [22.3%, 35.3%]) and
26.7% (95% CI [16.0%, 37.4%]. Data were not available on
hospitalizations, ICU admissions, and admissions requiring
mechanical ventilation.
The number of prefectures with an APE <10% or AE <10 for

cumulative deaths and confirmed cases were 38/47 and 14/47,
respectively (Supplementary Tables 3 and 4). As our models are
well-calibrated, model uncertainty correlates with 28-day forecast
accuracy (Fig. 4 and Supplementary Discussion). Calibrated
uncertainty enables us to further improve the average prediction
accuracy by flagging the uncertain predictions to be improved by
human experts or other decision-making systems. For instance, we
observe a 25% reduction in MAPE for cumulative deaths in Japan
by only considering the most confident 50% of predictions (Fig. 4).
In addition to evaluating our framework prospectively, we also

show retrospective evaluations for dates before the prospective
study began. Retrospective performance was calculated by
training the model using data up to a particular prediction date,
and evaluating 4 weeks after the prediction date. The framework
uses the most recent version that includes any corrections made
to previous data and there is no leakage of data from the future
dates into model training. Our comparison shows that the MAPE
during the prospective period was at most 1.3% above the MAPE
for the retrospective period for both cumulative deaths and
cumulative confirmed cases in both the USA and Japan (Fig. 5).
We chose a 28-day prediction window to balance the timescale

useful for public health decisions to be made and the rapidly
changing responses to the pandemic. It also allows us to make
accurate comparisons with the models at COVID-19 Forecast Hub
(see “Supplementary Discussion”). However, different settings may
benefit from other prediction horizons (see Supplementary Fig. 2).
COVID-19 disproportionately affects certain demographic sub-

populations33–37. We investigate the differences in performance
across locations with greater proportions of key demographic
groups. While statistically significant relationships between MAPE
and several demographic variables were found, only small
correlations remained for most subgroups after accounting for
confounding variables, suggesting that the errors are not
associated with the demographic variables of race, gender,
population density, or income (see the section on fairness analysis
in Supplementary Note 6).

Fig. 2 Prospective forecasts for the US and Japan models. Ground
truth cumulative deaths counts (cyan lines) are shown alongside the
forecasts for each day. Each daily forecast contains a predicted
increase in cases for each day during the prediction window of
4 weeks (shown as colored dots, where shading shifting to yellow
indicates days further from the date of prediction in the forecasting
horizon, up to 4 weeks). Predictions of deaths are shown for (a) the
USA, and (b) Japan.
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Ablation studies
Ablation studies demonstrate the most significant framework
components that contribute to performance. Robust sequential
learning with partial teacher forcing is critical for overall accuracy
(yielding 34.9% ± 9.4% death and 9.6% ± 6.2% improvement in
MAPE for cumulative confirmed cases). We also demonstrate the
benefit of learning static and time-varying features, instead of
using constant rates (yielding 1.6% ± 2.9% death and 2.2% ± 3.7%
confirmed MAPE improvement). Information-sharing across loca-
tions can help generalize dynamics from other locations that have
experienced similar pandemic phases in modeling confirmed
cases (yielding 0.7% ± 0.8% MAPE improvement). Finally, we
model hospitalization compartments, improving death forecasts
(yielding 1.0% ± 1.1% MAPE improvement). See “Supplementary
Discussion” for more detail.

Using the framework to understand the COVID-19 pandemic
Compartment models allow predictions of how connected
compartments change over time, potentially providing infor-
mation on disease dynamics including estimates for the
effective reproductive number (Reff), and the force of infection
(F(u), the rate at which susceptible individuals acquire the

disease). Figure 6 demonstrates this for Texas, USA and Aichi,
Japan, respectively (for all other locations, see Supplementary
Figs. 36–46.
We observe that nonpharmaceutical interventions (NPIs, such as

mask mandates and mobility restrictions38) in both locations were
associated with a change in Reff, yielding low F(u) and confirmed
cases. The relaxation of NPIs in Texas, and their complete removal
in Aichi, were associated with cases and F(u) increasing. The
gradual rise in the average undocumented contact rate (shown via
F(u)), results in the gradual increase in Reff, which yields increasing
case counts. This may also indicate that it could be beneficial to
keep the NPIs in place even after Reff < 1 while additionally
observing F(u).
In addition, the effect of individual features on the transition

rates (modeled by encoders, see “Methods”) provides insights on
the relative contributions of each feature (Table 1). Internet-search
trends, survey results for COVID-like symptoms, and weather
trends were most strongly associated with fitted contact rates. The
encoder weights may also be helpful in comparing NPIs: of the
seven considered for the USA, closing schools rank higher than
others, suggesting its relative contribution to reducing COVID-19
spread may be greater.

Fig. 3 Model rankings for incident death MAPE. Model rankings for incident death MAPE in the prospective evaluation period. The darker
the color, the higher the ranking of the model is for the corresponding prediction date.
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Simulating the effects of interventions
Our framework can be used to predict the effect of interventions
including NPIs and vaccinations. Overriding NPI features provide
forecasts that simulate NPI implementation, and a “vaccinated”
compartment transitioning from “susceptible” allows modeling of
vaccination strategies, including dosing, effectiveness, and avail-
ability. We evaluate counterfactual accuracy by treating past NPIs
as counterfactual outcomes, finding MAPE improvements when
using observed features as counterfactual scenarios in all but one
date tested for cumulative cases and deaths (Supplementary Table
27), as well as evaluating on simulated data (“Counterfactual”
section in Supplementary Discussion). We also show uncertainty
estimates for counterfactual predictions, allowing less confident
estimates to be treated with appropriate caution (Supplementary
Figs. 22–35).
With counterfactual analysis, consistent with the findings from

feature importance, we find that school closures are associated
with the highest reduction in predicted exposed counts among all
NPIs. The joint application of multiple NPIs (based on the Rand
levels39) is observed to be much more effective than each
individually (Supplementary Tables 28, 29, and 37). We also find
that a 7-day delay in applying all NPIs reduced predicted cases by
45% for Japan (Supplementary Table 30). Maintaining NPIs during
vaccination reduces predicted cases and deaths by 9% and 9.3%.
When increasing the vaccination rate to 1% of the population
per day, we observe 65.5% and 16.5% reduction in susceptible

and exposed counts for the US, but only a 0.8% drop in predicted
cases. We do note that the overall benefit of vaccinations is more
visible over longer time horizons, beyond 4 weeks. For reduction
of exposed counts in the short-term, keeping particular NPIs (e.g.,
school closures) in place in tandem with vaccination is beneficial.
The observations are also similar for Japan—keeping the State of
Emergency in tandem with a high vaccination rate seems highly
beneficial (Fig. 7c and Supplementary Table 35). Further results on
applying and evaluating counterfactual analysis are available in
Supplementary.

Use cases and the impact of our framework
Our forecasts are released publicly, and thus are available to a
wide range of organizations to whom the information may aid
decision-making 40. While a robust analysis of the impact our
forecasts have had is outside the scope of this paper, we
conducted a structured survey of those using our forecasts to
better understand how they are being used in practice. We found
the forecasts, when used alongside other sources of information,
were considered helpful across a broad set of areas. Uses included
national resource allocation in healthcare and business settings,
and implementing social distancing measures at a state-wide
level. The full results of this survey, including a series of detailed
case studies, are provided in Supplementary Table 56.

DISCUSSION
We present and evaluate prospectively an AI-augmented calibra-
tion procedure for compartmental models in epidemiology that
forecasts at a state-, county-, and prefecture level, and provide
insights relevant to current and future public health decisions.
Coupled with the ability to forecast at a local level (state or county
in the USA, prefecture in Japan), our framework creates the
opportunity for forecasts to play a greater role in public health.
The forecasts are publicly available40, and have been adopted

alongside other information by a number of public and private
organizations, alongside playing an educational role as a public
reminder of the risks of COVID-19. Early case studies are positive,
finding that both public and private organizations found the
forecasts beneficial to a diverse range of decisions including
implementing state-wide social distancing policy measures and
national business decisions and healthcare resource allocation.
Predictions were used alongside other available information; the
forecasts are not intended to be used alone for decision-making.
Despite these encouraging anecdotal reports, future quantitative
studies are needed to investigate the impact of the forecasts to
outcomes. Our framework also provides insight into testing
resources. As our compartmental model yields the counts for
undocumented and documented infected cases separately, it can
suggest locations where undocumented infections are rapidly
increasing, and where increasing testing may be beneficial.
Our framework provides insight into the potential conse-

quences of public health decisions around NPIs and vaccination
with counterfactual analysis. Via modifications to the proposed
compartmental models, it is possible to simulate the efficacy for
different vaccine regimens as new vaccines and strategies
become available, helping the framework remain relevant as the
pandemic evolves. This is important as our understanding of the
real-world effectiveness of COVID-19 vaccines and the properties
of COVID-19 variants are growing with time. The counterfactual
results reinforce the risk of prematurely relaxing NPIs, the
importance of prioritizing vaccinations in larger geographies,
and to exercise caution even when Reff is 1, until the force of
infection is also reduced.
The survey conducted on organizations using the framework

included academic and government organizations that had
actively used this counterfactual analysis capability in their
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Fig. 4 Model uncertainty. a Model disagreement due to model
uncertainty, measured as average prediction variance across the top
k= 5 models, versus the MAE performance, both plotted in log
space. From this, we see that higher model disagreement correlates
with worse metric performance. For the best fit line, R2= 0.539,
4.39x+ 3.37. b A rejection diagram showing the percentage of dates
on which a prediction is made, after thresholding on model
disagreement due to model uncertainty, versus the MAPE perfor-
mance on those dates. From this, we can see that better average
metric performance (on the days for which a forecast is released)
can be achieved by withholding forecasts on days with higher
model disagreement. Thus, we find the reliability of the forecasting
system can be improved through model uncertainty thresholding.
For the best fit line, R2= 0.941, f(x)= 2.18x+ 9.50.
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Fig. 5 Retrospective and prospective 28-day MAPE over time. Performance over time is shown for the (a) state-level US models using
4-week incidental predictions (b) state-level US models using cumulative predictions (c) prefecture-level Japan model using cumulative
predictions. Japan’s 4-week incidental deaths and cases were too low to meaningfully report. Metrics shown are the “mean absolute
percentage error” for predicted deaths and predicted confirmed cases compared to ground truth. Retrospective performance during model
development periods for confirmed cases (orange) and deaths (light blue) are shown alongside performance reported during the prospective
study for cases (dark blue) and deaths (green).
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decision-making. Though feedback was positive, we note the
uncertainty in counterfactual outcomes (which was communi-
cated with these users) is high, and that the model outputs were
used alongside other sources of information.
While the performance of the models was overall good,

important variations were seen between the USA and Japan,
and between different geographic locations. There are several
reasons this may be the case. First, cases in Japan are skewed
towards a small number of prefectures: 77.7% of Japan prefectures
during prospective window had fewer than 30 deaths over the
28-day period, compared to only 0.4% for the USA. This means the
model training is dominated by a small number of locations, and
that evaluation using MAPE, and incident MAPE in particular, is
more strongly influenced by locations with very few cases or
deaths when averaging across all of Japans prefectures.
Second, there was less data to learn from due to fewer COVID-

19 cases, and Japan ICU and hospitalization data were unavailable
for modeling. Data quality, especially for confirmed cases, was not
always consistent, including errors such as reporting delays and
incorrect data24–30. We partially account for this with our
preprocessing mechanisms (see “Methods”) and by placing higher
weight on confirmed deaths, which are considered to be more
accurate than confirmed case counts 10,11. However underreport-
ing still presents challenges, as is suggested by an analysis of
model Reff (Supplementary Figs. 36–46).

For some states, there is a lag between peaks of Reff and peaks
of daily new confirmed cases, which may reflect increased testing
following periods of more rapid but under-reported disease
spreading. Finally, our models were optimized for predicting
COVID-19-associated cumulative deaths. It is possible that
performance for case prediction could be improved if the models
were instead optimized for cases instead.
One potential solution to differences in performance is thresh-

olding based on model uncertainty. Because our framework
produces well-calibrated predictions, by withholding predictions
when the model is uncertain, we can improve the accuracy of the
remaining predictions. As each prediction provides an estimate for
4 weeks ahead, any negative impacts of withholding predictions
may be relatively small.
While this publication focuses on COVID-19, our approach has

value beyond the current pandemic. The underlying principles are
not specific to one condition, and evidence of this is seen by the
fact that performance did not substantially change during early
January 2021 when new variants of SARS-CoV-2 began to emerge
in both the USA and Japan. Considering future pandemics our
counterfactual analysis supports existing literature on the
importance of early interventions41, and may also be useful in
forward planning. Post-COVID counterfactual analyses may help
better understand the relative values of different NPIs, which can
be extended to novel and existing epi- and pandemics. Our results
also underline the importance of making high-quality data openly

Fig. 6 Model outputs. New daily confirmed cases, number of NPIs, F(u) and Reff for Texas, USA (a) and Aichi, Japan (b), chosen to represent a
location with high and low COVID-19 associated deaths, respectively. Seven-day moving average of the daily confirmed case counts and
number of Non-Pharmaceutical Interventions (NPIs) are plotted on the left y axis, and the 7-day moving average of F(u) (see Eq. (11)) and the
28-day moving average of Reff (see Eq. (13)) are plotted on the right y axis. For Reff < 1 (shaded gray regions below the horizontal dotted line),
dynamics are tending toward the Disease-Free Equilibrium (DFE)118. These areas often overlap with the dates when multiple NPIs are imposed.
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available42. For future planning, there must be coordinated efforts
to make data available before it is needed.
Our work builds on a body of work in epidemiology43–47,

compartmental models23,48–54, and machine learning55–59. Recent
work has modeled the impact of NPIs such as travel restrictions60

in the US61 and Europe62 with judiciously designed functional
forms. By modeling static and time-varying features in compart-
mental modeling, learning their associations from data in an end-
to-end way, our model improves performance while bringing
explainable insights22. Conversely, several recent publications
have attempted direct modeling from features63–65. In the
absence of high-quality and large-scale historical data, such
black-box methods underperform. The inductive bias coming from
compartmental modeling has an epidemiological basis and helps
the model to fit the data better. Our work differentiates from
these, providing a systematic framework to ingest static and time-
varying features into compartmental modeling for multi-horizon
forecasting with mechanisms to inject scientific priors into the
aspects that make the most sense. Our framework’s performance
compares favorably with alternatives (Supplementary Tables 15–
22, Fig. 3, and Supplementary Figs. 10 and 11) while also providing
explainability through feature encoders and counterfactual
analysis, and is generalizable to higher geographic granularity
and other countries. The ablation studies reported in the
Supplements suggest the largest contributing factors to model
performance are partial teacher forcing and the integration of
learning static and time-varying features.
Our framework has several limitations. It does not differentiate

between groups with different levels of risk. For vaccine modeling,
differentiating the risk to priority groups (healthcare workers or
the elderly population) could aid planning, but the available data
do not allow this. Our models treat all locations (i.e. US states/
counties and Japan prefectures) in the same way. If an application
favors higher accuracy for particular locations rather than the
entire country, the loss function can be tailored to overweight
particular terms.
It is difficult to evaluate the accuracy of hypothetical counter-

factual simulations due to the lack of ground truth. Our approach
of evaluating past events and simulated data constitute only
partial solutions (see “Counterfactual” section of Supplementary

Discussion) as prospective evaluations of counterfactual outcomes
present feasibility challenges. Rigorous experimental testing
would be required to draw stronger conclusions about counter-
factual accuracy. In addition to data quality, the granularity of data
sources may also influence performance. One example is mobility
data, where to preserve privacy only aggregated data are
available. More detailed data including times of day, greater
geographic granularity, or demographic factors that may influence
the spread of disease could improve performance. Though we find
that performance differences across locations reflect variation in
case counts rather than systemic biases, the data granularity
prevented evaluating subgroup performance at an individual level
and biases may still be present. In addition, the uncertainty in
counterfactual outcomes is high—the 95% confidence intervals
for baseline and counterfactual outcomes often overlap (see
Supplementary Discussion). This suggests that although the
statistical significance on the directionality of the change would
be high, the statistical significance on the exact amount of change
would not be as high. Thus, it is important to stress that if used,
the forecasts should be used alongside other information and with
the support of epidemiology experts.
The COVID-19 pandemic created substantial challenges for

governments, businesses, and individuals. In such an event, it is
critical to inform decisions with the most accurate, up-to-date
information available. We show that a generalizable, explain-
able AI-augmented epidemiological approach can provide
accurate forecasts of the number of confirmed COVID-19 cases,
deaths, and hospitalizations during the following 4 weeks, and
evidence of its performance in the USA and Japan. Through our
approach, we demonstrate that accurate future forecasts of
case count are not only possible but are an essential and
growing part of public health.

METHODS
Study design
We conduct a nationwide prospective observational study across the USA
and Japan. The USA models were trained from January 22 to November 13,
2020, and the Japan model from January 15 to November 13, 2020. The
study concluded on January 9, 2021 in both countries. Each daily forecast

Table 1. Model feature importance.

USA model Japan model

Time-series features Median rank Time-series features Median rank

NPI schools 1 Mobility changes: residences 1

NPI bar/restaurants 2 Std error of % of survey responders reporting CLI (unweighted) 2

Snowfall (mm) 3 Estimated Reff 3

Mobility index 4 Confirmed cases 4

Cases/total tests 5 Cases mean-to-sum ratio 5

NPI non-essential business 6 State of emergency 6

Mobility samples 7 Mobility changes: transit 7

Average temperature (°C) 8 Std error of % of survey responders reporting CLI (weighted) 8

Confirmed deaths 9 % of survey responders reporting CLI (weighted) 9

Cases mean-to-sum ratio 10 Mobility changes: workplaces 10

Static features Median rank Static features Median rank

Ratio of the population over 60 1 Average BMI of males 1

Per capita income 2 Number of H1N1 cases in 2010 2

Mean air quality index 3 Number of new ICU beds 3

Population density 4 Number of clinic beds/100 k population 4

Number of households 5 Number of doctors/100 k population 5

Top ten time-series and top five static feature importance ranks for the average undocumented contact rate in the USA and Japan models.
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in this period was evaluated after 4 weeks had passed. Models were
retrained daily prior to each daily forecast. All counties in the USA and all
prefectures in Japan were included in the study. The entire populations of
both countries were reflected in the public data; US territories were
excluded. The study ran for 8 weeks, providing 56 daily forecasts to

evaluate. This number was chosen based on a sample size of 43 forecasts
being required to detect a 10% difference between predictions of
confirmed cases and the observed values at 90% power. Of the 56
forecasts, 7 and 12 were unavailable for the USA and Japan respectively
due to errors with the data sources or software bugs preventing a forecast
from being produced.

Data sources and preprocessing: USA model
In this section, we describe the datasets used for our proposed framework
in the US. The next section discusses Japan. The preprocessing techniques
are largely the same for both countries, while the data sources are
country-specific.
The ground truth data for the compartments supervise the forecasting

model via training objective functions. We also use “static” (i.e. those with
values that do not vary with time) and “time-varying” (i.e. those with values
that vary with time) variables as inputs, to extract information from.
The progression of COVID-19 is influenced by a multitude of static

variables, including relevant properties of the population, health, environ-
mental, hospital resources, demographics, and socioeconomic indicators.
Time-varying variables such as population mobility, hospital resource
usage, and public policy decisions can also be important. While variables
with predictive signals would be beneficial for more accurate forecasting,
indiscriminately incorporating irrelevant variables may hurt performance
as it may cause overfitting, if the model fits the relationships to spurious
patterns that do not generalize to the future. Therefore, from multiple
datasets, we choose variables that may have high predictive signals
for the particular transitions in the proposed compartmental model. Those
variables are used as feature inputs to the encoders which determine the
transition rates. Below, we describe which features we particularly use for
the USA and Japan models (also shown in Table 2).

Ground truth for compartments. For confirmed and death cases, JHU66 is
used in our work, similar to other models45. They obtain the raw data from
the state and county health departments. Because of the rapid progression
of the pandemic, past data have often been restated, or the data collection
protocols have been changed. We always use the latest version of the data

Fig. 7 Counterfactual analysis on the count of predicted exposed
individuals for different vaccination rates in tandem with NPIs, for
the prediction date of March 1, 2021. a As shown for the three US
states, when vaccination rates (low: 0.2 % population/day, medium:
0.5% population/day, high: 1.0% population/day) are increased
compared to the expected baseline, which is obtained from the past
4 weeks’ trend, there is around 1% extra reduction in the predicted
exposed. Here, the predicted baseline exposed individual counts are
69,700, 67,600, and 63,700 for Texas, Washington, and South
Carolina, respectively. b For these US states, when NPI levels are
increased while keeping the vaccination rate 0.5% population/day,
we observe a significant reduction in the number of predicted
exposed, >17% across the three states. The majority of the benefit is
coming from the low-level NPI, due to the school closures being the
NPI with the largest impact according to the fitted model. c In Japan,
we show counterfactual analysis assuming a very high vaccination
rate (2% population/day), and considering the cases of applying or
removing the State of Emergency. Here, the baseline exposed
individual counts are 5800, 3800, and 3300 for Osaka, Okinawa, and
Hokkaido, respectively. Applying the state of emergency is observed
to be effective in reducing the predicted exposed cases. When the
State of Emergency is removed in Osaka, despite the high
vaccination rate, the predicted exposed cases are observed to go
up significantly. Note that in all cases, because of the uncertainty in
counterfactual outcome is high—the 95% confidence intervals for
baseline and counterfactual outcomes often overlap (see Supple-
mentary Discussion). This suggests that although the statistical
significance on the directionality of the change would be high, the
statistical significance on the exact amount of change would not be
as high. Thus, it is important to stress that if used, the forecasts
should be used alongside other information and with the support of
epidemiology experts. The percentage change of the exposed
individual counts on March 29, 2021 against the forecasted features
baseline is shown in both cases.
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available prior to training or evaluation time. Ground truth data for the
hospitalization compartments, including the number of people who are in
ICUs or on ventilators are obtained from the COVID Tracking Project67.

Mobility. Human mobility within a region, for work and personal reasons,
may have an effect on the average contact rates68. We use time-varying
mobility indices provided by Descartes labs at both state- and county-level
resolutions69. Descartes labs aggregate the movement data of individual
cellphone users within a region over a 24-h period. The index is equal to
the ratio of the median of the distribution of distance traveled is divided by
the “normal” value of the median of the distribution during the period
from February 17 to March 7, 2020. These time-series features are encoded
to reflect the average contact rates (β(d), β(u)), at both the state- and county
level of geographic resolution.

Nonpharmaceutical interventions. Public policy decisions restricting cer-
tain classes of population movement or interaction can have a beneficial
effect on restricting the progression of the disease61, at the state level of
geographic resolution. The interventions are presented in six binary-valued
time series, indicating when an intervention has been activated in one of
six categories–school closures, restrictions on bars and restaurants,
movement restrictions, mass gathering restrictions, essential businesses
declaration, and emergency declaration70. This time-series feature is
encoded into the average contact rates (β(d), β(u)).

Demographics. The age of the individual may have a significant outcome
on the severity of the disease and the mortality. The Kaiser Family
Foundation reports the number of individuals over the age of 60 in US
counties (c19hcc-info-ext-data:c19hcc_info_public.Kaiser_Health_demo-
graphics_by_Counties_States). We encode the effect of this static feature
into the average contact rate (β(d), β(u)), the diagnosis (γ), re-infected (η),
recovery (ρ(I, d), ρ(I, u), ρ(H), ρ(C), ρ(V)) and death rates (κ(I, d), κH, κC, κV), at both
the state- and county level of geographic resolution.

Historical air quality. Historical ambient air quality in a region can have an
effect on the disease spread71. We use the BigQuery public dataset that
comes from the US Environmental Protection Agency (EPA) that
documents historical air quality indices at the county level (bigquery-
public-data:epa_historical_air_quality.pm10_daily_summary). This static
feature is encoded into the recovery rates (η), recovery (ρ(I, d), ρ(I, u), ρ(H),
ρ(C), ρ(V)) and death rates (κ(I, d), κH, κC, κV), at both the state- and county
level of geographic resolution.

Socioeconomic indicators. An individual’s economic status, as well as the
proximity to other individuals in a region, may have an effect on the rates of
infection, hospitalization, and recovery. The proximity can be due to high
population density in urban areas, or due to economic compulsions. The
USA census—available from census.gov and on BigQuery Public Data-
sets72—reports state- and county-level static data on population, popula-
tion density, per capita income, poverty levels, households on public
assistance (bigquery-public-data:census_bureau_acs.county_2018_5yr and
bigquery-public-data:census_bureau_acs.county_2018_1yr). All of these
measures affect transitions into the exposed and infected compartments
(β(d), β(u)), as well as the recovery rates (ρ(I, d), ρ(I, u), ρ(H), ρ(C), ρ(V)) and death
rates (κ(I, d), κH, κC, κV), at both the state- and county level of geographic
resolution. In addition, for the state-level model, it also influences the
hospitalization rate h, ICU rate c, and ventilator rate v.

Hospital resource availability. When an epidemic like COVID-19 strikes a
community with such rapid progression, local hospital resources can
quickly become overwhelmed73. To model the impact, we use the
BigQuery public dataset that comes from the Center for Medicare and
Medicaid Services, a federal agency within the United States Department
of Health and Human Services (bigquery-public-data:cms_medicare.
hospital_general_info). These static features are encoded into the
diagnosis rate (γ), recovery rates (ρ(I, d), ρ(I, u), ρ(H), ρ(C), ρ(V)), re-infected
rate (η) and death rate (κ(I, d), κH, κC, κV), at both the state- and county level
of geographic resolution.

Symptoms search. Google provides aggregated search data related to
specific disease symptoms74 for USA states. From these symptoms, we
select seven75 as features—cough, chills, anosmia, infection, chest pain,
fever, and shortness of breath. They are encoded into the diagnosis rate (γ)
and the hospitalization rate h.

Table 2. Features used by the USA and Japan models.

Feature Transition rates the feature is
used for

USA model

Per capita income β(d), β(u), η, γ, ρ(I, d), ρ(I, u), ρ(H), ρ(C),
ρ(V), h, c, v, κ(I, d), κH, κC, κV

Population density β(d), β(u), η, γ, ρ(I, d)

Households on food stamps η, ρ(I, d), ρ(I, u), ρ(H), ρ(C), ρ(V), h, c, v,
κ(I, d), κH, κC, κV

Population All

Number of households β(d), β(u), η, γ, ρ(I, d), ρ(I, u), ρ(H), ρ(C),
ρ(V), h, c, v, κ(I, d), κH, κC, κV

Population ratio above age 60 β(d), β(u), η, γ, ρ(I, d), ρ(I, u), ρ(H), ρ(C),
ρ(V), h, c, v, κ(I, d), κH, κC, κV

Hospital rating scale η, γ, ρ(I, d), ρ(I, u), ρ(H), ρ(C), ρ(V), h, c,
v, κ(I, d), κH, κC, κV

Available types of hospitals η, ρ(I, d), ρ(I, u), ρ(H), ρ(C), ρ(V), h, c, v,
κ(I, d), κH, κC, κV

Hospital patient experience rating η, ρ(I, d), ρ(I, u), ρ(H), ρ(C), ρ(V), h, c, v,
κ(I, d), κH, κC, κV

Air quality measures β(d), β(u), η, κ(I, d); also for state
only: h, c, v, κH, κC, κV and for
county only: γ, ρ(I, d), ρ(I, u)

Mobility indices β(d), β(u)

Weather (state only) β(d), β(u), γ, h, ρ(I, d), ρ(I, u)

Google symptoms search
(state only)

γ, h

Nonpharmaceutical interventions
(state only)

β(d), β(u)

Total tests (state only) γ, h

Antigen/antibody tests (state only) β(d), β(u), γ, h, ρ(I, d), ρ(I, u)

Day of the week β(d), β(u), γ, h

Confirmed per total tests β(d), β(u), γ, h

Lagged confirmed cases β(d), β(u), γ, h

Lagged deaths β(d), β(u), γ, h

Japan model

Per capita GDP β(d), β(u), γ, ρ(I, d), ρ(I, u), ρ(H), h, κ(I,
d), κH

Population density β(d), β(u), γ, ρ(I, d), ρ(I, u), ρ(H), h, κ(I,
d), κH

Age distribution β(d), β(u), γ, ρ(I, d), ρ(I, u), ρ(H), h, κ(I,
d), κH

Population All

Healthcare resources (doctors,
hospital beds, clinic beds, ICU beds)

γ, ρ(I, d), ρ(I, u), ρ(H), h, κ(I, d), κH

Wellness (past H1N1 infection, BMI,
smokers, alcohol consumption)

β(d), β(u), η, ρ(I, d), ρ(I, u), ρ(H), h, κ(I,
d), κH

Google mobility indices β(d), β(u)

State of emergency β(d), β(u)

Total tests γ

Symptoms survey results β(d), β(u), γ, ρ(I, d), ρ(I, u)

Day of week γ, ρ(I, d), ρ(H), h, κ(I, d), κH

Confirmed mean-to-sum ratio β(d), β(u), γ, η, ρ(I, d), ρ(I, u), ρ(H), h,
κ(I, d), κH

Deaths mean-to-sum ratio β(d), β(u), γ, η, ρ(I, d), ρ(I, u), ρ(H), h,
κ(I, d), κH

Discharges ρ(H), h, κH

Lagged confirmed cases β(d), β(u), γ, h

Lagged deaths β(d), β(u), γ, h
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Weather. The Open Covid Dataset42 provides weather features for USA
states and counties and Japanese prefectures. These include daily average
temperature, rainfall, and snowfall. These are encoded into the contact
rates (β(d), β(u)), the diagnosis rate (γ), the hospitalization rate h, and
selected recovery rates (ρ(I, d), ρ(I, u)).

Antigen and antibody test counts. Counts for antigen and antibody tests
(both positive and negative outcomes) come from the Covid Tracking
Project67. These time-series features are encoded into the contact rates
(β(d), β(u)), the diagnosis rate (γ), the hospitalization rate h, and selected
recovery rates (ρ(I, d), ρ(I, u)).

Day of week. The day of the week feature accounts for the cadence of
data updates during the week. This feature is used for the average contact
rates (β(d), β(u)), the diagnosis rate (γ), and the hospitalization rate h.

Confirmed cases and deaths. Past confirmed case counts and deaths can
have an effect on the current values of these quantities. We include these
as time-series features. These are encoded into the average contact rates
(β(d), β(u)), the diagnosis rate (γ), and the hospitalization rate h.

Data sources and preprocessing: Japan model
Ground truth for compartments. We obtain the ground truth for
confirmed cases, deaths, and discharges for Japanese prefectures from
the Open Covid Dataset42.

Mobility. We use six publicly available Google Mobility Reports76,77 time
series, corresponding to retail and recreation, groceries and pharmacies,
parks, transit stations, workplaces, and residential. Each time series is an
index reference to a baseline value of 100 from before the pandemic. The
number of unique visitors per day to places in each of the six categories is
the raw measure. The raw measure is anonymized by adding Laplace
noise. For each of the six measures, the reference is constructed by
computing the median of the measure for each day of the week in the
5-week range from January 3, 2020 through February 6, 2020. The ratio
between the raw measure and the reference is expressed as a percentage
and provided as the Google mobility time series. Negative values indicate a
decrease in that category of mobility and vice versa. These are encoded
into the contact rates (β(d), β(u)).

State of emergency. The state of emergency is a set of Covid-related
restrictions78 that are applied by the Japanese Government on a per-
prefecture basis. Local- and prefecture-level authorities in Japan have wide
leeway in the interpretation of the NPI79. We manually map the NPI to a
binary-valued time series. This is encoded into the contact rates (β(d), β(u)).

Symptoms survey. The Facebook Symptoms Survey dataset80 is a dataset
of survey responses regarding Covid-like illness, which could have
predictive power for the COVID-19 spread and impact. We incorporate
features from this dataset encoding them into the contact rates (β(d), β(u)),
diagnosis rate γ, and selected recovery rates (ρ(I, d), ρ(I, u)).

Demographics. We use various prefecture-level demographic features
including population, population density81, and age distributions82 from
the 2005 census. These are encoded as continuous variables into the
contact rates (β(d), β(u)), diagnosis rate γ, recovery rates (ρ(I, d), ρ(I, u), ρ(H)),
hospitalization rate h, and selected death rates (κ(I, d), κH).

Socioeconomic indicators. We use prefecture-level per capita GDP from
200083 as an socioeconomic feature. It is encoded into the contact rates
(β(d), β(u)), diagnosis rate γ, recovery rates (ρ(I, d), ρ(I, u), ρ(H)), hospitalization
rate h, and selected death rates (κ(I, d), κH).

Healthcare resources. We incorporate healthcare resource features like the
number of doctors, hospital, ICU84, and clinic beds85, both as raw and as
per capita values. These features are encoded into the diagnosis rate γ,
recovery rates (ρ(I, d), ρ(I, u), ρ(H)), hospitalization rate h, and selected death
rates (κ(I, d), κH).

Wellness. General health-related features measured before the pandemic,
like BMI86, alcohol consumption87, past H1N1 illness88, and smoking
habits89. These features are encoded into the contact rates (β(d), β(u)),
reinfection rate η, recovery rates (ρ(I, d), ρ(I, u), ρ(H)), hospitalization rate h,
and selected death rates (κ(I, d), κH).

Day of week. The day of the week feature accounts for the cadence of
data updates during the week. It is encoded into the diagnosis rate γ,
selected recovery rates (ρ(I, d), ρ(H)), the hospitalization rate h, and selected
death rates (κ(I, d), κH).

Confirmed cases and deaths. As for the USA model, the past confirmed
cases and deaths can have an effect on their current values. So we include
them and their derivative features (mean-to-sum ratios) into both rates.

Data sources and preprocessing: missing data
For both USA and Japan models, the data sources were provided in real
time and were at risk of missing data. To address this for time-varying
features, we first apply forward-filling for the future values, and then
backward-filling wherever applicable. For static features, we apply median
imputation. After imputation, categorical features are mapped to integer
labels, and then all features are normalized to be in [0, 1], considering
statistics across all locations and timesteps since the beginning of training,
January 22, 2020.

Proposed compartmental model
We adapt the standard SEIR model with some major changes, as shown in
Supplementary Fig. 1.

● Undocumented infected and recovered compartments: Recent studies
suggest that the majority of the infected people are not detected and
they dominate disease progression15,16,51 (as the documented ones
are either self-isolated or hospitalized). An undocumented infected
individual is modeled as being able to spread the disease, until being
documented or recovered without being undocumented.

● Hospitalized, ICU, and ventilator compartments: We introduce
compartments for the people who are hospitalized, in the ICU, or on
a ventilator, due to the practical utility to model these73 and there are
partially available observed data to be used for supervision.

● Partial immunity: To date, there is no scientific consensus on what
fraction of recovered cases demonstrates immunity to future infection.
Due to reports of reinfection90, we model the rate of reinfection from
recovered compartments (though our model infers low reinfection rates).

● No undocumented deaths: We assume the published COVID-19 death
counts are coming from documented cases, not undocumented.

● Population invariance: We assume that the entire population is invariant,

Table 3. Modeled compartments.

Compartment Description Compartment Description

S Susceptible R(u) Recovered undocumented

E Exposed H Hospitalized

I(d) Infected documented C In intensive care unit (ICU)

I(u) Infected undocumented V On ventilator

R(d) Recovered documented D Death

Z(1) First-dose vaccinated Z(1) Second-dose vaccinated

Y Immune with vaccination L Re-susceptible after vaccination
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i.e. births and non-COVID-19 deaths are negligible in comparison to the
entire population.

● Vaccination: To consider the expected consequences of vaccination
strategies, following91, we introduce a new “Vaccinated” compartment,
which has a transition from the “Susceptible”. Approved COVID-19
vaccines have partial effectiveness92. In other words, only a subset of the
“Vaccinated” people would actually transition into the “Immune”
compartment, while some portion would become susceptible again
because of the limited immunity. The two key variables for vaccination
strategy—vaccine effectiveness and the number of vaccinated per day—
can be adjusted for each location separately. Note that approved vaccines
may be injected in one or two doses92, and we consider multidose
regimes as the number of vaccinated individuals is provided for both first
and second doses, and because our framework models the partial
immunity between the first and second doses.

The modeled compartments are shown in Table 3. For a compartment
X, Xi[t] denotes the number of individuals in that compartment at
location i and time t. We assume a fixed sampling interval of 1 day. N[t]
denotes the total population. Figure 1 describes transition rate variables
used to relate the compartments, via the equations (we omit the index i
for concision):

S½t� � S½t � 1� ¼ � ðβðdÞIðdÞ½t � 1� þ βðuÞIðuÞ½t � 1�Þ S½t � 1�
N½t � 1�

þ ηðRðdÞ½t � 1� þ RðuÞ½t � 1�Þ � Y½t � 1�;
(1)

E½t� � E½t � 1� ¼ ðβðdÞIðdÞ½t � 1� þ βðuÞIðuÞ½t � 1�Þ S½t � 1�
N½t � 1� � αE½t � 1�;

(2)

IðuÞ½t� � IðuÞ½t � 1� ¼ αE½t � 1� � ðρðI;uÞ þ γÞIðuÞ½t � 1�; (3)

IðdÞ½t� � IðdÞ½t � 1� ¼ γIðuÞ½t � 1� � ðρðI;dÞ þ κðI;dÞ þ hÞIðdÞ½t � 1�; (4)

RðuÞ½t� � RðuÞ½t � 1� ¼ ρðI;uÞIðuÞ½t � 1� � ηRðuÞ½t � 1�; (5)

RðdÞ½t� � RðdÞ½t � 1� ¼ ρðI;dÞIðdÞ½t � 1� þ ρðHÞðH½t � 1� � C½t � 1�Þ
�ηRðdÞ½t � 1�; (6)

H½t� � H½t � 1� ¼ hIðdÞ½t � 1� � ðκðHÞ þ ρðHÞÞðH½t � 1� � C½t � 1�Þ
�κðCÞðC½t � 1� � V½t � 1�Þ � κðVÞV ½t � 1�;

(7)

C½t� � C½t � 1� ¼ cðH½t � 1� � C½t � 1�Þ � ðκðCÞ þ ρðCÞ þ vÞ
ðC½t � 1� � V ½t � 1�Þ � κðVÞV½t � 1�; (8)

V½t� � V½t � 1� ¼ vðC½t � 1� � V½t � 1�Þ � ðκðVÞ þ ρðVÞÞV½t � 1�;
(9)

D½t� � D½t � 1� ¼ κðVÞV½t � 1� þ κðCÞðC½t � 1� � V½t � 1�Þ
þκðHÞ ðH½t � 1� � C½t � 1�Þ þ κðI;dÞIðdÞ½t � 1�; (10)

The transition rate variables that define the relationship between the
compartments are obtained with machine-learning models that input the
corresponding features, as explained in the section “Machine-learning
methods”.

Force of infection. The force of infection is defined as the measure of the
rate at which susceptible individuals become infected93—for undocumen-
ted infected, formulated as:

FðuÞ ¼ βðuÞ � IðuÞ=N; (11)

and documented infected, formulated as:

FðdÞ ¼ βðdÞ � IðdÞ=N: (12)

Effective reproductive number. Using the Next-Generation Matrix
method94 on the proposed compartmental model, the effective repro-
ductive number can be derived as22:

Reff ¼ βðdÞγ þ βðuÞðρðI;dÞ þ κðI;dÞ þ hÞ
ðγ þ ρðI;uÞÞ � ðρðI;dÞ þ κðI;dÞ þ hÞ : (13)

Integration of vaccination. We consider two-dose vaccination strategy95

and define the first-dose effectiveness function as:

πð1Þ½τ� ¼ minðπð1Þmax ; π
ð1Þ
max � τ=T ð1Þπ Þ; (14)

and the second-dose effectiveness function as:

πð2Þ½τ� ¼ minðπð2Þmax ; π
ð1Þ
max þ ðπð2Þmax � πð1ÞmaxÞ � τ=T ð2Þπ Þ; (15)

where πð1Þmax and π
ð2Þ
max are the maximum effectiveness values of the first and

second vaccines, and T ð1Þπ and T ð2Þπ are the time periods defined for
effectiveness ramp-up. We use π

ð1Þ
max ¼ 0:921, πð2Þmax ¼ 0:945, T ð1Þπ ¼ T ð2Þπ ¼

14 days95. Given the cumulative counts for first-dose-vaccinated Z(1) (also
including the s econd-dose-vaccinated) and second-dose-vaccinated Z(2),
we obtain the count for immune with vaccination as:

Y½t� ¼ PT ð1Þπ �1

τ¼0
ðπð1Þ½τ� � ðZð1Þ½t � τ� � Zð1Þ½t � τ � 1�Þ þ π

ð1Þ
max � Zð1Þ½t � T ð1Þπ �:

þ PT ð2Þπ �1

τ¼0
ððπð2Þ½τ� � π

ð1Þ
maxÞ � ðZð2Þ½t � τ� � Zð2Þ½t � τ � 1�Þ

þðπð2Þ � π
ð1Þ
maxÞ � Zð2Þ½t � T ð2Þπ � � L½t � 1�;

(16)

where L[t] is re-susceptible after vaccination due to the lost immunity and
obtained as:

L½t� ¼ L½t � 1� þ Y½t�=TL; (17)

where TL denotes the timescale for losing immunity. We use TL=
180 days95. Note that the impact of L[t] is often negligible as the
forecasting horizon of our framework is much shorter.

Machine-learning methods
Time-varying modeling of variables. Instead of using static rate variables
across time to model compartment transitions, there should be time-
varying functions that map them from known observations. For example, if
mobility decreases over time, the S→ E transition should reflect that.
Consequently, we propose replacing all static rate variables with learnable
functions that output their value from the related static and time-varying
features at each location and timestep. We note that the learnable
encoding of variables still preserves the inductive bias of the compart-
mental modeling framework while increasing the model capacity via
learnable encoders.

Interpretable encoder architecture. In addition to making accurate
forecasts, it is valuable to understand how each feature affects the model.
Such explanations greatly help users from the healthcare and public sector
to understand the disease dynamics better, and also help model
developers to ensure the model is learning appropriate dynamics via
sanity checks with known scientific studies. To this end, we adopt a
generalized additive model96 for each variable vi from Table 2 based on
features X(vi, t) at different time t. The features we consider include (i) the
set of static features S, such as population density, and (ii)
ff ½t � j�gf2Fi ;j¼1;¼ ;k the set of time-varying features Fi with the
observation from t− 1 to t− k, such as mobility. Omitting individual
feature interactions and applying additive aggregation, we obtain

vi ½t� ¼ vi;L þ ðvi;U � vi;LÞ � σ c þ bi þw> X ðvi ; tÞ
� �

; (18)

where vi,L and vi,U are the lower and upper bounds of vi for all t, c is the
global bias, bi is the location-dependent bias. w is the trainable parameter,
and σ() is the sigmoid function to limit the range to [vi,L, vi,U], which is
important to stabilize training and avoid overfitting. We use vi,L= 0 for all
variables, vi,U= 1 for β, 0.2 for α, 0.001 for η, and 0.1 for others. We note
that although Eq. (18) denotes a linear decomposition for vi[t] at each
timestep, the overall behavior is still highly nonlinear due to the
relationships between compartments.

Feature forecasting. The challenge of using Eq. (18) for future forecasting
is that some time-varying features are not available for the entire
forecasting horizon. Assume we have the observations of features and
compartments until T, and we want to forecast from T+ 1 to T+ τ. To
forecast vi[T+ τ], we need the time-varying features f[T+ τ− k: T+ τ− 1]
for f 2 Fi , but some of them are not observed when τ > k. To solve this
issue, we propose to forecast f[T+ τ− k: T+ τ− 1] based on their own past
observations until T, which is a standard one-dimensional time-series
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forecasting for a given feature f at a given location. To this end, we employ
a forecasting model based on XGBoost97 classification or regression (based
on the number of categories for the feature) with time-series input
features, including the lagged features of the past 7 days plus the 2 weeks
ago, and mean/max in the windows of sizes of 3, 5, 7, 14, and 21 days. We
note that treating feature forecasting as a univariate time-series modeling
problem in this way, has limitations. There are indeed codependencies
between different features (e.g., current school closure intervention affects
the future value of the mobility), and also the values for the compartments
(e.g., increase in the number of deaths would affect the future value of the
mobility). Utilizing these has the potential to capture more information,
however, given the small amount of past data, overfitting is a concern, and
this way of limiting the feature forecasting model capacity and relying on
implicit modeling of such dependencies, can prevent overfitting to
spurious patterns from other features, and generalize better. For most
features, our proposed XGBoost-based forecasting model seems to yield
highly accurate forecasts, and also the impact of more accurate feature
forecasting on compartmental forecasts becomes marginal beyond
some point.

Information-sharing across locations. Some aspects of the disease
dynamics are location-dependent while others are not. In addition, data
availability varies across all L locations—there may be limited observations
to learn the impact of a feature. A model able to learn both location-
dependent and independent dynamics is desirable. Our encoders in Eq.
(18) partially capture location-shared dynamics via shared w and the global
bias c. To allow the model to capture remaining location-dependent
dynamics, we introduce the local bias bi. A challenge is that the model
could ignore the features by encoding all information into bi during
training. This could hurt generalization as there would not be any
information-sharing on how static features affect the outputs across
locations. Thus, we introduce a regularization term Lls= λls∑i∣bi∣2 to
encourage the model to leverage features and c for information-sharing
instead of relying on bi. Without Lls, we observe that the model would use
the local bias more than the encoded features, and suffers from poorer
generalization.

Learning from partially available observations. Fitting would have been
easy with observations for all compartments, however, we only have
access to some. For instance, I(d) is not given in the ground truth of USA
data but we instead have, Q, the total number of confirmed cases, that we
use to supervise I(d)+ R(d)+ H+D. Note that R(ud), I(ud), S, E are not given as
well. Formally, we assume the availability of the observations Y[Ts: T], for
Y∈ {Q, H, C, V, D, R(d)}, and consider forecasting the next τ days,
Ŷ½T þ 1 : T þ τ�. Note that we use the notation Si[Ts: T] to denote all
timesteps between Ts (inclusive) and T (inclusive).

Fitting objective. There is no direct supervision for training encoders,
while they should be learned in an end-to-end way via the aforementioned
partially available observations. We propose the following objective for
range [Ts, Te]:

Lfit½Ts : Te� ¼
P

Y2fQ;H;C;V;D;RðdÞg
λY

PTe�τ

t¼Ts

Pτ

i¼1

IðY½t þ i�ÞP
j
IðY½j�Þ

�Y½j� � qðt þ i � Ts; zÞ � LðY½t þ i�; Ŷ½t þ i�Þ:
(19)

Ið�Þ 2 f0; 1g indicates the availability of the Y to allow the training to focus
only on available observations. L(, ) is the loss between the ground truth
and the predicted values (e.g., ℓ2 or quantile loss), and λY are the important
weights to balance compartments due to its robustness (e.g., D is much
more robust than others). Lastly, qðt; zÞ ¼ expðt � zÞ is a time-weighting
function (when z= 0, there is no time weighting) to allow the fitting to
favor more recent observations and z is a hyperparameter. During training,
we randomly sample Te from [Ts, T− τ− 1] and for fine-tuning, we set
Te as T.

Constraints and regularization. Given the limited dataset size, overfitting
is a concern for training high-capacity encoders. In addition to limiting the
model capacity with the epidemiological inductive bias, we further apply
regularization to improve generalization to unseen future data. An
effective regularization is constraining the effective reproduction number
Reff (see Eq. (13)). There is rich literature in epidemiology on Reff to give us
good priors on the range of the number should be. For a reproduction

number Reff[t] at time t, we consider the regularization

LReff ½Ts : T � ¼
XT

t¼Ts
exp ðReff ½t� � RÞþ

� �
;

where R is a prespecified soft upper bound. The regularization favors the
model with Reff in a reasonable range in addition to good absolute
forecasting numbers. In our experiments, we use R= 5. Without this
regularization term, we have observed epidemiologically unreasonable Reff
values (mostly in the form of sharp peaks), especially in the early days of
the pandemic when the amount of training data is small. We have
empirically observed that this regularization term helps smoothing such
peaks, makes the training behavior a bit more robust, and eventually yields
slight improvements in forecasting accuracy. Also, we integrate the prior
knowledge of disease dynamics via directional penalty regularization: (1) if
the mobility increases, the average contact rates (β(d), β(ud)) will increase, (2)
as the NPIs or state of emergency (SoE) introduced, the average contact
rates (β(d), β(ud)) will decrease. The directional penalty regularization is
denoted as

Ldir ¼
X

i2Mobility maxð�wi ; 0Þ þ
X

j2NPIs or SoE maxðwj ; 0Þ;
Last, ignoring the perturbation of a small local window, the trend of the
forecast should be usually smooth. One commonly used smoothness
constraint is penalizing the first-order difference, velocity, which is defined
as vY[t]= (Y[t]− Y[t− k])/k. The first-order constraint encourages vY[t] ≈
vY[t− 1], which causes linear forecasting, and cannot capture the rapidly
growing cases. Instead, we relax the smoothness to be on the second-
order difference, acceleration, which is defined as aY[t]= vY[t]− vY[t− 1].
The regularization is

Lacc½Ts : T � ¼
X

Y2fQ;Dg

XT

t¼Tsþ1

ðaY ½t� � aY ½t � 1�Þ2:

The final objective function is

LðTs; TÞ ¼ Lfit½Ts : T � þ λls � Lls þ λReff � LReff ½Ts : T �
þ λdir � Ldir þ λacc � Lacc½Ts : T �;

(20)

where Lls= ∑i∣bi∣2.

Partial teacher forcing. The compartmental model generates the future
propagated values from the current timestep. During training, we have
access to the observed values for Y ∈ {Q, H, C, V, D, R(d)} at every timestep,
which we could condition the propagated values on, commonly known as
teacher forcing59 to mitigate error propagation. At inference time,
however, ground truth beyond the current timestep t is unavailable,
hence the predictions should be conditioned on the future estimates.
Using solely ground truth to condition propagation would create a train-
test mismatch. In the same vein of past research to mix the ground truth
and predicted data to condition the projections on98, we propose partial
teacher forcing, simply conditioning ð1� νIfY½t�gÞY½t� þ νIfY½t�g) Ŷ½t�,
where IfY½t�g 2 f0; 1g indicates whether the ground truth Y[t] exists and
ν∈ [0, 1]. In the first stage of training, we use teacher forcing with ν∈ [0, 1],
which is a hyperparameter. For fine-tuning, we use ν= 1 to unroll the last τ
steps to mimic the real forecasting scenario.

Model fitting and selection. The training pseudocode is presented in
Algorithm 1. We split the observed data into training and validation, where
the validation size is τ. τ should be smaller or equal to the forecasting horizon
at inference. Although having it equal minimizes the train-test mismatch, it
uses more recent samples for model selection instead of training, thus, as the
optimal value, we choose it to be half of the forecasting horizon. We use the
training data for optimization of the trainable degrees of freedom, collectively
represented as θ, while the validation data is used for early stopping and
model selection. Once the model is selected, we fix the hyperparameters and
run fine-tuning on joint training and validation data, to not waste valuable
recent information by using it only for model selection. For optimization, we
use RMSProp as it is empirically observed to yield lower losses compared to
other algorithms and providing the best generalization performance. We
implement Algorithm 1 in TensorFlow at state- and county levels, using ℓ2 loss
for point forecasts. We employ99 for hyperparameter tuning (including all the
loss coefficients, learning rate, and initial conditions) with the objective of
optimizing for the best validation loss, with 400 trials and we use F= 100 fine-
tuning iterations. We choose the compartment weights λD= λQ= 0.1, λH=
0.01 and λR

ðdÞ ¼ λC ¼ λV ¼ 0:001. We observe our results to be not highly
sensitive to these hyperparameters. At county granularity, we do not have
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published data for C and V, so, we remove them along with their connected
variables.

Quantile regression. Besides point forecasts, prediction intervals could be
helpful for healthcare and public policy planners, to consider a range of
possible scenarios. To obtain prediction intervals, we adapt the quantile
regression method, following the state-of-the-art multi-horizon forecasting
approaches for well-calibrated uncertainity58,100. Our framework allows the
capability of modeling prediction interval forecasts, for which we replacing
the L2 loss with weighted interval loss (WIS)31 in Eq. (19) and mapping the
scalar propagated values to the vector of quantile estimates. For this
mapping, we use the features Y½t�=Ŷ½t� and IfY½t�g for T− τ ≤ t ≤ T− 1. We
obtain the quantiles applying a linear kernel on these features, followed by

ReLU and cumulative summation (to guarantee monotonicity of quantiles)
and lastly normalization (to match the median to the input scalar point
forecast from the proposed framework). In our framework, we output the
α-quantile Qα[t] at time t, where α∈ [0.01, 0.05, 0.1,…, 0.95, 0.99]. WIS loss
is a discretization of continuous ranking probability score31.

Counterfactual analysis
Counterfactual analysis into the forecasting horizon involves replacing the
forecasted values for selected NPIs, mobility features or vaccination rates
with their counterfactual counterparts. Replacement or overriding happens
in the forecasting horizon. For a detailed exposition, see Supplementary
Discussion.

Algorithm 1 Detailed pseudocode for model training
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Evaluations
Metrics. We use two kinds of metrics: the first computes metrics per
geographic region (county, state, prefecture) then aggregates via
averaging. The second aggregates predictions across geography then
compute metrics at a country level. These two metrics allow quantification
of accuracy at the location granularity of interest, as well as detection of
any machine-learning biases, such as systematic underprediction or
overprediction. We define per location absolute error metric as AEiðT ; τÞ ¼
jD̂i ½T þ τ� � Di ½T þ τ�j and absolute percentage error metric a
APEiðT ; τÞ ¼ 100 � IfDi ½T þ τ�>0gðjD̂i ½T þ τ�=Di ½T þ τ�j � 1Þ, where D̂i ½t�
denote the predicted variable at time t for location i, and Di[t] is the
corresponding ground truth. I{} is an indicator function that we use to
eliminate 0 counts from division (this occurs for a small subset of Japanese
prefectures and US counties in earlier days for the deaths). As the average
absolute error metrics across all locations, we consider the average
of per location error metrics: MAEðT ; τÞ ¼ 1

L

PL
i¼1 AEiðT ; τÞ and

MAPEðT ; τÞ ¼
PL

i¼1
APEiðT ;τÞPL

i¼1
IfDi ½Tþτ�>0g

. At the country level, we first aggregate

counts and predictions and define aggregated absolute errors as
AAEðT ; τÞ ¼ jPL

i¼1 D̂i ½T þ τ� �PL
i¼1 Di ½T þ τ�j and

AAPEðT ; τÞ ¼ jPL
i¼1 D̂i ½T þ τ�=PL

i¼1 Di ½T þ τ� � 1j.

Data versions for evaluations. There are significant restatements of the
past observed counts in the data. For prospective evaluations, we use the
data at the end of the τ day forecasting horizon. To mimic the prospective
evaluations as much as possible with the retrospective evaluations, we use
the reported numbers on the prediction date for training (although later
we know the restated past ground truth), and the reported numbers τ days
after prediction date for evaluation.

Performance comparisons. To account for the correlations between
timesteps when considering the accuracy of fitting to a time series, the
two-sided DM test101 is used to compare our models’ forecasts to those of
other models from “covid19-forecast-hub” (https://covid19forecasthub.org/).
The 4-week-ahead forecasts are compared using MAE and MAPE after they
had been averaged across all the locations for the dates when both of the
models produced forecasts. This is reported for cumulative and incident
deaths, cumulative and incident cases, and the number of people admitted
to the hospital. The P values from the tests are adjusted using the
Holm–Bonferroni method102 to account for the multiple comparisons and
KPSS tests103 are run on the differences to examine stationarity over time.

Subgroup analysis. To account for potential confounders and biases, a
subset of demographic variables are chosen for further investigation. Age,
sex, income, population density, and ethnicity are investigated for both the
USA and Japanese models. These variables are chosen based on known
biases in how COVID-19 has affected different demographics104–108, as well
as how they may affect healthcare access109. To investigate these
relationships differences changes in the MAPE of the forecasts were
compared to the demographics from each geographical region (counties
for the USA and prefectures for Japan). An initial assessment is done by
grouping the counties into quartiles of the demographic variable of
interest and calculating the MAPE across the groups. Kendall’s Tau110 is
used to quantify the relationship between the variable of interest and the
MAPE for each geographical region. Because of the presence of
confounding variables and potential multicollinearity between the
variables of interest, partial correlation is performed using all of the other
variables as features.

Uncertainty analysis. For model reliability when used by human experts,
we also investigate using epistemic model uncertainty as a confidence
metric of forecasts. Well-calibrated estimates of uncertainty are important
for being able to make more reliable predictions111–115. To this extent, we
investigate the relationship between epistemic model uncertainty and the
accuracy of forecasts by simulating the scenario of deciding whether or not
to withhold each day’s 28-day forecast based on model disagreement, with
the goal of demonstrating an optional feature that could allow the system
to identify and withhold the predictions that are likely to be the most
erroneous.
For each day in the retrospective period, we train an ensemble of k= 5

models and use their disagreement as a metric of uncertainty111.
Producing 28-day forecasts from each model, we consider two values for
each location: (1) the metric performance of the single best model over the

28-day forecast (in MAE or MAPE for cumulative values), and (2) the
variance in predictions across the kmodels for each day, averaged over the
28-day period. In Fig. 4, we plot the average prediction variance versus the
MAE metric performance on predicted confirmed cases, for all release
dates and all prefectures in Japan. We can see that higher model
disagreement correlates with worse metric performance.
For each location, we then collect the set of average predicted variances

for all release dates and compute ten quantiles at the [10%, 20%,…, 90%,
100%] levels. We then decide on which forecast dates to withhold
predictions by thresholding the average predicted variance based on the
value at each quantile, yielding ten groups of release dates per location.
We average the metric performance across the dates in each group and
average over locations. This yields average performance at ten quantiles of
uncertainty values, which we visualize in the form of a rejection
diagram116,117 in Fig. 4.
From this, we can see that withholding forecasts on days with higher

average prediction variance can lead to better average metric performance
over the remaining forecasts.
Overall, we find that on average, the reliability of our framework could

be improved through the proposed method of model uncertainty
quantification by allowing the system to identify and withhold predictions
that are likely to be the most erroneous at prediction time without access
to ground truth labels (additional discussion in Supplementary Note:
Uncertainty Analysis). Importantly, this is an optional feature, with
prediction withholding being just one example of an action that the
system could take upon identifying an unreliable prediction. Other actions
could include bringing an expert human into the loop to further analyze
the predictions for that day or simply adding a note to the released
predictions to indicate that they may be less reliable.

Uncertainty in counterfactual predictions. As with the forecast uncertainty,
the prediction of counterfactuals is subject to disagreement between
independently trained models. We describe the process to obtain the
uncertainty in the counterfactuals and some observations in the
Supplementary Discussion.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data used for the training, validation, and test sets are publicly available. All data were
collected entirely from openly available sources. The dashboard showing our forecasts
can be accessed from https://g.co/covidforecast. The following websites can be used to
access the time-series data used in this study for the US model: https://github.com/
CSSEGISandData/COVID-19 (state and county confirmed cases, deaths); https://github.
com/descarteslabs/DL-COVID-19 (state and county mobility, mobility index and mobility
samples); https://covidtracking.com/ (state hospitalized currently, state hospitalized
cumulative counts, state hospitalized increase, state in ICU currently, state in ICU
cumulative, state on ventilator currently, state total test results); https://coronadatascraper.
com/#home (county hospitalized cumulative counts); http://goo.gle/
covid19symptomdataset (state and county symptoms search tracker); https://dsd.
c19hcc.org/ (state NPI information). The static data for the US can be found at https://
data.cms.gov/provider-data/dataset/xubh-q36u (state and county hospital resources);
https://www.census.gov/programs-surveys/acs (state and county population and demo-
graphics data); https://www.epa.gov/ (state and county air quality data). For the Japan
model time-series data, the following datasets were used: https://cloud.google.com/blog/
products/data-analytics/publicly-available-covid-19-data-for-analytics (confirmed cases
and deaths); https://covidmap.umd.edu/api.html (symptoms data); https://github.com/
google-research/open-covid-19-data/blob/master/data/exports/google_mobility_reports/
Regions/2020_JP_Region_Mobility_Report.csv (mobility data); https://crisis.ecmonet.jp/
(ventilator use); https://github.com/graphy-covidjp/graphy-covidjp.github.io (vaccine
data). The static data for Japan can be found at https://stats-japan.com/t/kiji/13400
(demographics); https://www.mhlw.go.jp/english/database/db-hh/2-2.html (healthcare
resources and wellness data); https://www.mhlw.go.jp/toukei/list/20-21.html (living
conditions); https://stats.oecd.org/ (socioeconomic indicators); http://idsc.nih.go.jp/idwr/
sokuho/index.html (H1N1 data); https://www.mhlw.go.jp/bunya/kenkou/eiyou/h24-
houkoku.html (nutrition data); https://japan.kantei.go.jp/ongoingtopics/index.html (state
of emergency data).
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CODE AVAILABILITY
We make use of several open-source libraries to conduct our experiments, namely
the machine-learning framework TensorFlow (https://github.com/tensorflow/
tensorflow). While the entire system relies on proprietary libraries and we are unable
to publicly release the entire codebase, we make available code for key pieces of the
model details, training, and evaluation at https://github.com/google-research/
google-research/tree/master/covid_epidemiology.
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