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A systematic review of smartphone-based human activity
recognition methods for health research
Marcin Straczkiewicz 1✉, Peter James2,3 and Jukka-Pekka Onnela1

Smartphones are now nearly ubiquitous; their numerous built-in sensors enable continuous measurement of activities of daily
living, making them especially well-suited for health research. Researchers have proposed various human activity recognition (HAR)
systems aimed at translating measurements from smartphones into various types of physical activity. In this review, we summarized
the existing approaches to smartphone-based HAR. For this purpose, we systematically searched Scopus, PubMed, and Web of
Science for peer-reviewed articles published up to December 2020 on the use of smartphones for HAR. We extracted information
on smartphone body location, sensors, and physical activity types studied and the data transformation techniques and classification
schemes used for activity recognition. Consequently, we identified 108 articles and described the various approaches used for data
acquisition, data preprocessing, feature extraction, and activity classification, identifying the most common practices, and their
alternatives. We conclude that smartphones are well-suited for HAR research in the health sciences. For population-level impact,
future studies should focus on improving the quality of collected data, address missing data, incorporate more diverse participants
and activities, relax requirements about phone placement, provide more complete documentation on study participants, and share
the source code of the implemented methods and algorithms.
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INTRODUCTION
Progress in science has always been driven by data. More than 5
billion mobile devices were in use in 20201, with multiple sensors
(e.g., accelerometer and GPS) that can capture detailed, contin-
uous, and objective measurements on various aspects of our lives,
including physical activity. Such proliferation in worldwide
smartphone adoption presents unprecedented opportunities for
the collection of data to study human behavior and health. Along
with sufficient storage, powerful processors, and wireless trans-
mission, smartphones can collect a tremendous amount of data
on large cohorts of individuals over extended time periods
without additional hardware or instrumentation.
Smartphones are promising data collection instruments for

objective and reproducible quantification of traditional and
emerging risk factors for human populations. Behavioral risk
factors, including but not limited to sedentary behavior, sleep, and
physical activity, can all be monitored by smartphones in free-
living environments, leveraging the personal or lived experiences
of individuals. Importantly, unlike some wearable activity trackers2,
smartphones are not a niche product but instead have become
globally available, increasingly adopted by users of all ages both in
advanced and emerging economies3,4. Their adoption in health
research is further supported by encouraging findings made with
other portable devices, primarily wearable accelerometers, which
have demonstrated robust associations between physical activity
and health outcomes, including obesity, diabetes, various
cardiovascular diseases, mental health, and mortality5–9. However,
there are some important limitations to using wearables for
studying population health: (1) their ownership is much lower
than that of smartphones10; (2) most people stop using their
wearables after 6 months of use11; and (3) raw data are usually not
available from wearable devices. The last point often forces

investigators to rely on proprietary device metrics, which lowers
the already low rate of reproducibility of biomedical research in
general12 and makes uncertainty quantification in the measure-
ments nearly impossible.
Human activity recognition (HAR) is a process aimed at the

classification of human actions in a given period of time based on
discrete measurements (acceleration, rotation speed, geographical
coordinates, etc.) made by personal digital devices. In recent years,
this topic has been proliferating within the machine learning
research community; at the time of writing, over 400 articles had
been published on HAR methods using smartphones. This is a
substantial increase from just a handful of articles published a few
years earlier (Fig. 1). As data collection using smartphones
becomes easier, analysis of the collected data is increasingly
identified as the main bottleneck in health research13–15. To tackle
the analytical challenges of HAR, researchers have proposed
various algorithms that differ substantially in terms of the type of
data they use, how they manipulate the collected data, and the
statistical approaches used for inference and/or classification.
Published studies use existing methods and propose new
methods for the collection, processing, and classification of
activities of daily living. Authors commonly discuss data filtering
and feature selection techniques and compare the accuracy of
various machine learning classifiers either on previously existing
datasets or on datasets they have collected de novo for the
purposes of the specific study. The results are typically summar-
ized using classification accuracy within different groups of
activities, such as ambulation, locomotion, and exercise.
To successfully incorporate developments in HAR into research

in public health and medicine, there is a need to understand the
approaches that have been developed and identify their potential
limitations. Methods need to accommodate physiological (e.g.,
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weight, height, age) and habitual (e.g., posture, gait, walking
speed) differences of smartphone users, as well as differences in
the built environment (e.g., buildings and green spaces) that
provide the physical and social setting for human activities.
Moreover, the data collection and statistical approaches typically
used in HAR may be affected by location (where the user wears
the phone on their body) and orientation of the device16, which
complicates the transformation of collected data into meaningful
and interpretable outputs.
In this paper, we systematically review the emerging literature

on the use of smartphones for HAR for health research in free-
living settings. Given that the main challenge in this field is
shifting from data collection to data analysis, we focus our analysis
on the approaches used for data acquisition, data preprocessing,
feature extraction, and activity classification. We provide insight
into the complexity and multidimensionality of HAR utilizing
smartphones, the types of data collected, and the methods used
to translate digital measurements into human activities. We
discuss the generalizability and reproducibility of approaches, i.e.,
the features that are essential and applicable to large and diverse
cohorts of study participants. Lastly, we identify challenges that
need to be tackled to accelerate the wider utilization of
smartphone-based HAR in public health studies.

METHODS
Our systematic review was conducted by searching for articles
published up to December 31, 2020, on PubMed, Scopus, and
Web of Science databases. The databases were screened for titles,
abstracts, and keywords containing phrases “activity” AND
(“recognition” OR “estimation” OR “classification”) AND (“smart-
phone” OR “cell phone” OR “mobile phone”). The search was
limited to full-length journal articles written in English. After
removing duplicates, we read the titles and abstracts of the
remaining publications. Studies that did not investigate HAR
approaches were excluded from further screening. We then
filtered out studies that employed auxiliary equipment, like
wearable or ambient devices, and studies that required carrying
multiple smartphones. Only studies that made use of commer-
cially available consumer-grade smartphones (either personal or

loaner) were read in full. We excluded studies that used the
smartphone microphone or video camera for activity classification
as they might record information about an individual’s surround-
ings, including information about unconsented individuals, and
thus hinder the large-scale application of the approach due to
privacy concerns. To focus on studies that mimicked free-living
settings, we excluded studies that utilized devices strapped or
glued to the body in a fixed position.

RESULTS
Our search resulted in 1901 hits for the specified search criteria
(Fig. 2). After removal of articles that did not discuss HAR
algorithms (n= 793), employed additional hardware (n= 150), or
utilized microphones, cameras, or body-affixed smartphones (n=
149), there were 108 references included in this review.
Most HAR approaches consist of four stages: data acquisition,

data preprocessing, feature extraction, and activity classification
(Fig. 3). Here, we provide an overview of these steps and briefly
point to significant methodological differences among the
reviewed studies for each step. Figure 4 summarizes specific
aspects of each study. Of note, we decomposed data acquisition
processes into sensor type, experimental environment, investi-
gated activities, and smartphone location; we indicated which
studies preprocessed collected measurements using signal
correction methods, noise filtering techniques, and sensor
orientation-invariant transformations; we marked investigations
based on the types of signal features they extracted, as well as the
feature selection approaches used; we indicated the adopted
activity classification principles, utilized classifiers, and practices
for accuracy reporting; and finally, we highlighted efforts
supporting reproducibility and generalizability of the research.
Before diving into these technical considerations, we first provide
a brief description of study populations.

Study populations
We use the term study population to refer to the group of
individuals investigated in any given study. In the reviewed
studies, data were usually collected from fewer than 30
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Fig. 1 Cumulative number of peer-reviewed articles on human
activity recognition (HAR) using smartphones. Articles were
published between January 2008 and December 2020, based on a
search of PubMed, Scopus, and Web of Science databases (for
details, see “Methods”).
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Fig. 2 PRISMA diagram of the literature search process. The
search was conducted in PubMed, Scopus, and Web of Science
databases and included full-length peer-reviewed articles written in
English. The search was carried out on January 2, 2021.
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Fig. 3 Human activity recognition (HAR) concepts at a glance. The map displays common aspects of HAR systems together with their
operational definitions. The methodological differences between the reviewed studies are highlighted in Figure 4.
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individuals, although one larger study analyzed data from 440
healthy individuals17. Studies often included healthy adults in their
20s and 30s, with only a handful of studies involving older
individuals. Most studies did not report the full distribution of
ages, only the mean age or the age range of participants (Fig. 5).
To get a sense of the distribution of participant ages, we
attempted to reconstruct an overall approximate age distribution
by assuming that the participants in each study are evenly
distributed in age between the minimum and maximum ages,
which may not be the case. A comparison of the reconstructed
age distribution of study participants with nationwide age
distributions clearly demonstrates that future HAR research in
health settings needs to broaden the age spectrum of the
participants. Less effort was devoted in the studies to investigat-
ing populations with different demographic and disease char-
acteristics, such as elders18–20 and individuals with Parkinson’s
disease21.

Data acquisition
We use the term data acquisition to refer to a process of collecting
and storing raw sub-second-level smartphone measurements for
the purpose of HAR. The data are typically collected from
individuals by an application that runs on the device and samples
data from built-in smartphone sensors according to a predefined
schedule. We carefully examined the selected literature for details
on the investigated population, measurement environment,
performed activities, and smartphone settings.
In the reviewed studies, data acquisition typically took place in a

research facility and/or nearby outdoor surroundings. In such
environments, study participants were asked to perform a series of
activities along predefined routes and to interact with predefined
objects. The duration and order of performed activities were
usually determined by the study protocol and the participant was
supervised by a research team member. A less common approach
involved observation conducted in free-living environments,
where individuals performed activities without specific instruc-
tions. Such studies were likely to provide more insight into diverse
activity patterns due to individual habits and unpredictable real-
life conditions. Compared to a single laboratory visit, studies

conducted in free-living environments also allowed investigators
to monitor behavioral patterns over many weeks22 or months23.
Activity selection is one of the key aspects of HAR. The studies

in our review tended to focus on a small set of activities, including
sitting, standing, walking, running, and stair climbing. Less
common activities involved various types of mobility, locomotion,
fitness, and household routines, e.g., slow, normal, and brisk
walking24, multiple transportation modes, such as by car, bus,
tram, train, metro, and ferry25, sharp body-turns26, and household
activities, like sweeping a floor or walking with a shopping bag27.
More recent studies concentrated solely on walking recogni-
tion28,29. As shown in Fig. 4, the various measured activities in the
reviewed studies can be grouped into classes: “posture” refers to
lying, sitting, standing, or any pair of these activities; “mobility”
refers to walking, stair climbing, body-turns, riding an elevator or
escalator, running, cycling, or any pair of these activities;
“locomotion” refers to motorized activities; and “other” refers to
various household and fitness activities or singular actions beyond
the described groups.
The spectrum of investigated activities determines the choice of

sensors used for data acquisition. At the time of writing, a
standard smartphone is equipped with a number of built-in
hardware sensors and protocols that can be used for activity
monitoring, including an accelerometer, gyroscope, magnet-
ometer, GPS, proximity sensor, and light sensor, as well as to
collect information on ambient pressure, humidity, and tempera-
ture (Fig. 6). Accurate estimation of commonly available sensors
over time is challenging given a large number of smartphone
manufacturers and models, as well as the variation in their
adoption in different countries. Based on global statistics on
smartphone market shares30 and specifications of flagship
models31, it appears that accelerometer, gyroscope, magnet-
ometer, GPS, and proximity and light sensors were fairly
commonly available by 2010. Other smartphone sensors were
introduced a couple of years later; for example, the barometer was
included in Samsung Galaxy S III released in 2012, and
thermometer and hygrometer were included in Samsung Galaxy
S4 released in 2013.
Our literature review revealed that the most commonly used

sensors for HAR are the accelerometer, gyroscope, and
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Fig. 5 Age of populations examined in the reviewed studies in contrast with the nationwide age distribution of selected countries. Panel
a displays age of the population corresponding to individual studies, typically described by its range (lines) or mean (dots). Panel b displays
the reconstructed age distribution in the reviewed studies (see the text). Nationwide age distributions displayed in panel c of three countries
offer a stark contrast with the reconstructed distribution of study participant ages.
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magnetometer, which capture data about acceleration, angular
velocity, and phone orientation, respectively, and provide
temporally dense, high-resolution measurements for distinguish-
ing among activity classes (Fig. 7). Inertial sensors were often used
synchronously to provide more insight into the dynamic state of

the device. Some studies showed that the use of a single sensor
can yield similar accuracy of activity recognition as using multiple
sensors in combination32. To alleviate the impact of sensor
position, some researchers collected data using the built-in
barometer and GPS sensors to monitor changes in altitude and

-

-

Accelerometer
• Measures rate of change of velocity along three

orthogonal axes of smartphone
• Output: gravitational units (g) or meters per

seconds squared (m/s2); positive or negative
depending on the orientation of smartphone

Gyroscope
• Measures angular velocity around three

orthogonal axes of smartphone
• Output: radians per second (rad/s); 

positive or negative depending on the
direction of rotation

Magnetometer
• Measures strength of Earth’s magnetic field relative

to three orthogonal axes of smartphone
• Output: microtesla (μT); positive or negative

depending on the orientation of smartphone

Barometer
• Measures atmospheric pressure
• Output: hectopascal (hPa) or millibar (mbar)

GPS
• Measures geolocation of smartphone as latitude,

longitude, and altitude coordinates on Earth
• Output: decimal degrees (˚)

Light sensor
• Measures ambient light level (illuminance) in 

front of the sensor (screen)
• Output: lux (lx)

Proximity sensor
• Measures distance between the sensor

(screen) and the closest visible object
• Output: centimeters (cm)+

+

-

+

-z

+z

+y

-y

+x

-x

Thermometer
• Measures ambient air temperature
• Output: Celsius (C)

Hygrometer
• Measures ambient relative humidity
• Output: percent (%)

Fig. 6 Overview of standard smartphone sensors. Inertial sensors (accelerometer, gyroscope, and magnetometer) provide measurements
with respect to the three orthogonal axes (x, y, z) of the body of the phone; the remaining sensors are orientation-invariant.
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geographic location33–35. Certain studies benefited from using the
broader set of capabilities of smartphones; for example, some
researchers additionally exploited the proximity sensor and light
sensor to allow recognition of a measurement’s context, e.g., the
distance between a smartphone and the individual’s body, and
changes between in-pocket and out-of-pocket locations based on
changes in illumination36,37. The selection of sensors was also
affected by secondary research goals, such as simplicity of
classification and minimization of battery drain. In these studies,
data acquisition was carried out using a single sensor (e.g.,
accelerometer22), a small group of sensors (e.g., accelerometer and
GPS38), or a purposely modified sampling frequency or sampling
scheme (e.g., alternating between data collection and non-
collection cycles) to reduce the volume of data collected and
processed39. Supplementing GPS data with other sensor data was
motivated by the limited indoor reception of GPS; satellite signals
may be absorbed or attenuated by walls and ceilings17 up to 60%
of the time inside buildings and up to 70% of the time in
underground trains23.
Sampling frequency specifies how many observations are

collected by a sensor within a 1-s time interval. The selection of
sampling frequency is usually performed as a trade-off between
measurement accuracy and battery drain. Sampling frequency in
the reviewed studies typically ranged between 20 and 30 Hz for
inertial sensors and 1 and 10 Hz for the barometer and GPS. The
most significant variations were seen in studies where limited
energy consumption was a priority (e.g., accelerometer sampled at
1 Hz40) or if investigators used advanced signal processing
methods, such as time-frequency decomposition methods, or
activity templates that required higher sampling frequency (e.g.,
accelerometer sampled at 100 Hz41). Some studies stated that
inertial sensors sampled at 20 Hz provided enough information to
distinguish between various types of transportation42, while 10 Hz
sampling rate was sufficient to distinguish between various types
of mobility43. One study demonstrated that reducing the sampling
rate from 100 Hz to 12.5 Hz increased the duration of data
collection by a factor of three on a single battery charge44.
A crucial parameter in the data acquisition process is the

smartphone’s location on the body. This is important mainly
because of the nonstationary nature of real-life conditions and
the strong effect it has on the smartphone’s inertial sensors. The
main challenge in HAR in free-living conditions is that data
recorded by the accelerometer, gyroscope, and magnetometer
sensors differ between the upper and lower body as the device is
not affixed to any specific location or orientation45. Therefore, it is
essential that studies collect data from as many body locations as
possible to ensure the generalizability of results. In the reviewed
literature, study participants were often instructed to carry the
device in a pants pocket (either front or back), although a number
of studies also considered other placements, such as jacket
pocket46, bag or backpack47,48, and holding the smartphone in
the hand49 or in a cupholder50.
To establish the ground truth for physical activity in HAR

studies, data were usually annotated manually by trained research
personnel or by the study participants themselves51,52. However,
we also noted several approaches that automated this process
both in controlled and free-living conditions, e.g., through a
designated smartphone application22 or built-in step counter
combined paired with GPS data53., used a built-in step counter
and GPS data to produce “weak” labels. The annotation was also
done using the built-in microphone54, video camera18,20, or an
additional body-worn sensor29.
Finally, the data acquisition process in the reviewed studies was

carried out on purposely designed applications that captured
data. In studies with online activity classification, the collected data
did not leave the device, but instead, the entire HAR pipeline was
implemented on the smartphone; in contrast, studies using offline

classification transmitted data to an external (remote) server for
processing using a cellular, Wi-Fi, Bluetooth, or wired connection.

Data preprocessing
We use the term data preprocessing to refer to a collection of
procedures aimed at repairing, cleaning, and transforming
measurements recorded for HAR. The need for such step is
threefold: (1) measurement systems embedded in smartphones
are often less stable than research-grade data acquisition units,
and the data might therefore be sampled unevenly or there might
be missingness or sudden spikes that are unrelated to an
individual’s actual behavior; (2) the spatial orientation (how the
phone is situated in a person’s pocket, say) of the device
influences tri-axial measurements of inertial sensors, thus poten-
tially degrading the performance of the HAR system; and (3)
despite careful planning and execution of the data acquisition
stage, data quality may be compromised due to other unpredict-
able factors, e.g., lack of compliance by the study participants,
unequal duration of activities in the measurement (i.e., dataset
imbalance), or technological issues.
In our literature review, the first group of obstacles was typically

addressed using signal processing techniques (in Fig. 4, see
“standardization”). For instance, to alleviate the mismatch
between requested and effective sampling frequency, researchers
proposed the use of linear interpolation55 or spline interpolation56

(Fig. 8). Such procedures were imposed on a range of affected
sensors, typically the accelerometer, gyroscope, magnetometer,
and barometer. Further time-domain preprocessing considered
data trimming, carried out to remove unwanted data components.
For this purpose, the beginning and end of each activity bout, a
short period of activity of a specified kind, were clipped as
nonrepresentative for the given activity46. During this stage, the
researchers also dealt with dataset imbalance, which occurs when
there are different numbers of observations for different activity
classes in the training dataset. Such a situation makes the classifier
susceptible to overfitting in favor of the larger class; in the
reviewed studies, this issue was resolved using up-sampling or
down-sampling of data17,57–59. In addition, the measurements
were processed for high-frequency noise cancellation (i.e.,
“denoising”). The literature review identified several methods
suitable for this task, including the use of low-pass finite impulse
response filters (with a cutoff frequency typically equal to 10 Hz
for inertial sensors and 0.1 Hz for barometers)60,61, which remove
the portion of the signal that is unlikely to result from the activities
of interest; weighted moving average55; moving median45,62; and
singular-value decomposition63. GPS data were sometimes de-
noised based on the maximum allowed positional accuracy64.
Another element of data preprocessing considers device

orientation (in Fig. 4, see “transformation”). Smartphone measure-
ments are sensitive to device orientation, which may be due to
clothing, body shape, and movement during dynamic activities57.
One of the popular solutions reported in the literature was to
transform the three-dimensional signal into a univariate vector
magnitude that is invariant to rotations and more robust to
translations. This procedure was often applied to accelerometer,
gyroscope, and magnetometer data. Accelerometer data were
also subjected to digital filtering by separating the signal into
linear (related to body motions) and gravitational (related to
device spatial orientation) acceleration65. This separation was
typically performed using a high-pass Butterworth filter of low
order (e.g., order 3) with a cutoff frequency below 1 Hz. Other
approaches transformed tri-axial into bi-axial measurement with
horizontal and vertical axes49, or projected the data from the
device coordinate system into a fixed coordinate system (e.g., the
coordinate system of a smartphone that lies flat on the ground)
using a rotation matrix (Euler angle-based66 or quaternion47,67).
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Feature extraction
We use the term feature extraction to refer to a process of
selecting and computing meaningful summaries of smartphone
data for the goal of activity classification. A typical extraction
scheme includes data visualization, data segmentation, feature
selection, and feature calculation. A careful feature extraction step
allows investigators not only to understand the physical nature of
activities and their manifestation in digital measurements, but
also, and more importantly, to help uncover hidden structures and
patterns in the data. The identified differences are later quantified
through various statistical measures to distinguish between
activities. In an alternative approach, the process of feature
extraction is automated using deep learning, which handles
feature selection using simple signal processing units, called
neurons, that have been arranged in a network structure that is
multiple layers deep59,68–70. As with many applications of deep
learning, the results may not be easily interpretable.
The conventional approach to feature extraction begins with

data exploration. For this purpose, researchers in our reviewed
studies employed various graphical data exploration techniques
like scatter plots, lag plots, autocorrelation plots, histograms, and
power spectra71. The choice of tools was often dictated by the
study objectives and methods. For example, research on inertial
sensors typically presented raw three-dimensional data from
accelerometers, gyroscopes, and magnetometers plotted for the

corresponding activities of standing, walking, and stair climb-
ing50,72,73. Acceleration data were often inspected in the
frequency domain, particularly to observe periodic motions of
walking, running, and cycling45, and the impact of the external
environment, like natural vibration frequencies of a bus or a
subway74. Locomotion and mobility were investigated using
estimates of speed derived from GPS. In such settings, investiga-
tors calculated the average speed of the device and associated it
with either the group of motorized (car, bus, train, etc.) or non-
motorized (walking, cycling, etc.) modes of transportation.
In the next step, measurements are divided into smaller

fragments (also, segments or epochs) and signal features are
calculated for each fragment (Fig. 9). In the reviewed studies, this
segmentation was typically conducted using a windowing
technique that allows consecutive windows to overlap. The
window size usually had a fixed length that varied from 1 to 5 s,
while the overlap of consecutive windows was often set to 50%.
Several studies that investigated the optimal window size
supported this common finding: short windows (1–2 s) were
sufficient for recognizing posture and mobility, whereas some-
what longer windows (4–5 s) had better classification perfor-
mance75–77. Even longer windows (10 s or more) were
recommended for recognizing locomotion modes or for HAR
systems employing frequency-domain features calculated with the
Fourier transform (resolution of the resulting frequency spectrum
is inversely proportional to window length)42. In principle, this

updated labels
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removed samples

standing
standingwalk ing
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a b

linear
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removed components

c d

inserted samples

Fig. 8 Common data preprocessing steps include standardization and transformation. Standardization includes relabeling (a), when labels
are reassigned to better match transitions between activities; trimming (b), when part of the signal is removed to balance the dataset for
system training; interpolation (c), when missing data are filled in based on adjacent observations; and denoising (d), when the signal is filtered
from redundant components. The transformation includes normalization (e), when the signal is normalized to unidimensional vector
magnitude; rotation (f), when the signal is rotated to a different coordinate system; and separation (g), when the signal is separated into linear
and gravitational components. Raw accelerometer data are shown in gray, and preprocessed data are shown using different colors.
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calibration aims to closely match the window size with the
duration of a single instance of the activity (e.g., one step). Similar
motivation led researchers to seek more adaptive segmentation
methods. One idea was to segment data based on specific time-
domain events, like zero-cross points (when the signal changes
value from positive to negative or vice versa), peak points (local
maxima), or valley points (local minima), which represent the start
and endpoints of a particular activity bout55,57. This allowed for
segments to have different lengths corresponding to a single
fundamental period of the activity in question. Such an approach
was typically used to recognize quasiperiodic activities like
walking, running, and stair climbing63.
The literature described a large variety of signal features used

for HAR, which can be divided into several categories based on
the initial signal processing procedure. This enables one to
distinguish between activity templates (i.e., raw signal), deep
features (i.e., hidden features calculated within layers of deep
neural networks), time-domain features (i.e., statistical measures of
time-series data), and frequency-domain features (i.e., statistical
measures of frequency representation of time-series data). The
most popular features in the reviewed papers were calculated
from time-domain signals as descriptive statistics, such as local
mean, variance, minimum and maximum, interquartile range,
signal energy (defined as the area under the squared magnitude
of the considered continuous signal), and higher-order statistics.
Other time-domain features included mean absolute deviation,
mean (or zero) crossing rate, regression coefficients, and
autocorrelation. Some studies described novel and customized
time-domain features, like histograms of gradients78, and the
number of local maxima and minima, their amplitude, and the
temporal distance between them39. Time-domain features were
typically calculated over each axis of the three-dimensional
measurement or orientation-invariant vector magnitude. Studies
that used GPS also calculated average speed64,79,80, while studies
that used the barometer analyzed the pressure derivative81.
Signals transformed to the frequency domain were less

exploited in the literature. A commonly performed signal
decomposition used the fast Fourier transform (FFT)82,83, an
algorithm that converts a temporal sequence of samples to a
sequence of frequencies present in that sample. The essential
advantage of frequency-domain features over time-domain
features is their ability to identify and isolate certain periodic
components of performed activities. This enabled researchers to
estimate (kinetic) energy within particular frequency bands
associated with human activities, like gait and running51, as well
as with different modes of locomotion74. Other frequency-domain
features included spectral entropy and parameters of the
dominant peak, e.g., its frequency and amplitude.
Activity templates function essentially as blueprints for different

types of physical activity. In the HAR systems, we reviewed, these
templates were compared to patterns of observed raw measure-
ments using various distance metrics38,84, such as the Euclidean or
Manhattan distance. Given the heterogeneous nature of human
activities, activity templates were often enhanced using techniques
similar to dynamic time warping29,57, which measures the similarity
of two temporal sequences that may vary in speed. As an alternative
to raw measurements, some studies used signal symbolic approx-
imation, which translates a segmented time-series signal into
sequences of symbols based on a predefined mapping rule (e.g.,
amplitude between −1 and −0.5 g represents symbol “a”, amplitude
between −0.5 and 0 g represents symbol “b”, and so on)85–87.
More recent studies utilized deep features. In these approaches,

smartphone data were either fed to deep neural networks as raw
univariate or multivariate time series35,48,60 or preprocessed into
handcrafted time- and frequency-domain feature vectors82,83.
Within the network layers, the input data were then transformed
(e.g., using convolution) to produce two-dimensional activation
maps that revealed hidden spatial relations between axes and

sensors specific to a given activity. To improve the resolution of
input data, one study proposed to split the integer and decimal
values of accelerometer measurements41.
In the reviewed articles, the number of extracted features

typically varied from a few to a dozen. However, some studies
purposely calculated too many features (sometimes hundreds)
and let the analytical method perform variable selection, i.e.,
identify those features that were most informative for HAR88.
Support vector machines81,89, gain ratio43, recursive feature
elimination38, correlation-based feature selection51, and principal
component analysis90 were among the popular feature selection/
dimension reduction methods used.

Activity classification
We use the term activity classification to refer to a process of
associating extracted features with particular activity classes based
on the adopted classification principle. The classification is
typically performed by a supervised learning algorithm that has
been trained to recognize patterns between features and labeled
physical activities in the training dataset. The fitted model is then
validated on separate observations, using a validation dataset,
usually data obtained from the same group of study participants.
The comparison between predictions made by the model and the
known true labels allows one to assess the accuracy of the
approach. This section summarizes the methods used in
classification and validation, and also provides some insights into
reporting on HAR performance.
The choice of classifier aims to identify a method that has the

highest classification accuracy for the collected datasets and for
the given data processing environment (e.g., online vs. offline).
The reviewed literature included a broad range of classifiers, from
simple decision trees18, k-nearest neighbors65, support vector
machines91–93, logistic regression21, naïve Bayes94, and fuzzy
logic64 to ensemble classifiers such as random forest76, XGBoost95,
AdaBoost45,96, bagging24, and deep neural networks48,60,82,97–99.
Simple classifiers were frequently compared to find the best
solution in the given measurement scenario43,53,100–102. A similar
type of analysis was implemented for ensemble classifiers79.
Incremental learning techniques were proposed to adapt the
classification model to new data streams and unseen
activities103–105. Other semi-supervised approaches were pro-
posed to utilize unlabeled data to improve the personalization
of HAR systems106 and data annotation53,70. To increase the
effectiveness of HAR, some studies used a hierarchical approach,
where the classification was performed in separate stages and
each stage could use a different classifier. The multi-stage
technique was used for gradual decomposition of activities
(coarse-grained first, then fine-grained)22,37,52,60 and to handle
the predicament of changing sensor location (body location first,
then activity)91. Multi-instance multi-label approaches were
adapted for the classification of complex activities (i.e., activities
that consist of several basic activities)62,107 as well as for
recognition of basic activities paired with different sensor
locations108.
Classification accuracy could also be improved by using post-

processing, which relies on modifying the initially assigned label
using the rules of logic and probability. The correction was typically
performed based on activity duration74, activity sequence25, and
activity transition probability and classification confidence80,109.
The selected method is typically cross-validated, which splits

the collected dataset into two or more parts—training and
testing—and only uses the part of the data for testing that was
not used for training. The literature mentions a few cross-
validation procedures, with k-fold and leave-one-out cross-
validation being the most common110. Popular train-test propor-
tions were 90–10, 70–30, and 60–40. A validation is especially
valuable if it is performed using studies with different
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demographics and smartphone use habits. Such an approach
allows one to understand the generalizability of the HAR system to
real-life conditions and populations. We found a few studies that
followed this validation approach18,21,71.
Activity classification is the last stage of HAR. In our review, we

found that analysis results were typically reported in terms of
classification accuracy using various standard metrics like precision,
recall, and F-score. Overall, the investigated studies reported very
high classification accuracies, typically above 95%. Several compar-
isons revealed that ensemble classifiers tended to outperform
individual or single classifiers27,77, and deep-learning classifiers
tended to outperform both individual and ensemble classifiers48.
More nuanced summaries used the confusion matrix, which allows
one to examine which activities are more likely to be classified
incorrectly. This approach was particularly useful for visualizing
classification differences between similar activities, such as normal
and fast walking or bus and train riding. Additional statistics were
usually provided in the context of HAR systems designed to operate
on the device. In this case, activity classification needed to be
balanced among acceptable classifier performance, processing time,
and battery drain44. The desired performance optimum was obtained
by making use of dataset remodeling (e.g., by replacing the oldest
observations with the newest ones), low-cost classification algo-
rithms, limited preprocessing, and conscientious feature selec-
tion45,86. Computation time was sometimes reported for complex
methods, such as deep neural networks20,82,111 and extreme learning
machine112, as well as for symbolic representation85,86 and in
comparative analyses46. A comprehensive comparison of results was
difficult or impossible, as discussed below.

DISCUSSION
Over the past decade, many studies have investigated HAR using
smartphones. The reviewed literature provides detailed descrip-
tions of essential aspects of data acquisition, data preprocessing,
feature extraction, and activity classification. Studies were
conducted with one or more objectives, e.g., to limit technological
imperfections (e.g., no GPS signal reception indoors), to minimize
computational requirements (e.g., for online processing of data
directly on the device), and to maximize classification accuracy (all
studies). Our review summarizes the most frequently used
methods and offers available alternatives.
As expected, no single activity recognition procedure was found

to work in all settings, which underlines the importance of
designing methods and algorithms that address specific research
questions in health while keeping the specifics of the study cohort
in mind (e.g., age distribution, the extent of device use, and nature
of disability). While datasets were usually collected in laboratory
settings, there was little evidence that algorithms trained using
data collected in these controlled settings could be generalized to
free-living conditions113,114. In free-living settings, duration,
frequency, and specific ways of performing any activity are
subject to context and individual ability, and these degrees of
freedom need to be considered in the development of HAR
systems. Validation of these data in free-living settings is essential,
as the true value of HAR systems for public health will come
through transportable and scalable applications in large, long-
term observational studies or real-world interventions.
Some studies were conducted with a small number of able-

bodied volunteers. This makes the process of data handling and
classification easier but also limits the generalizability of the
approach to more diverse populations. The latter point was well
demonstrated in two of the investigated studies. In the first study,
the authors observed that the performance of a classifier trained on
a young cohort significantly decreases if validated on an older
cohort18. Similar conclusions can be drawn from the second study,
where the observations on healthy individuals did not replicate in
individuals with Parkinson’s disease21. These facts highlight the role

of algorithmic fairness (or fairness of machine learning), the notion
that the performance of an algorithm should not depend on
variables considered sensitive, such as race, ethnicity, sexual
orientation, age, and disability. A highly visible example of this
was the decision of some large companies, including IBM, to stop
providing facial recognition technology to police departments for
mass surveillance115, and the European Commission has considered
a ban on the use of facial recognition in public spaces116. These
decisions followed findings demonstrating the poor performance of
facial recognition algorithms when applied to individuals with dark-
skin tones.
The majority of the studies we reviewed utilized stationary

smartphones at a single-body position (i.e., a specific pants
pocket), sometimes even with a fixed orientation. However, such
scenarios are rarely observed in real-life settings, and these types
of studies should be considered more as proofs of concept.
Indeed, as demonstrated in several studies, inertial sensor data
might not share similar features across body locations49,117, and
smartphone orientation introduces additional artifacts to each axis
of measurement which make any distribution-based features (e.g.,
mean, range, skewness) difficult to use without appropriate data
preprocessing. Many studies provided only incomplete descrip-
tions of the experimental setup and study protocol and provided
few details on demographics, environmental context, and the
details of the performed activities. Such information should be
reported as fully and accurately as possible.
Only a few studies considered classification in a context that

involves activities outside the set of activities the system was trained
on; for example, if the system was trained to recognize walking and
running, these were the only two activities that the system was later
tested on. However, real-life activities are not limited to a prescribed
set of behaviors, i.e., we do not just sit still, stand still, walk, and climb
stairs. These classifiers, when applied to free-living conditions, will
naturally miss the activities they were not trained on but will also
likely overestimate those activities they were trained on. An
improved scheme could assume that the observed activities are a
sample from a broader spectrum of possible behaviors, including
periods when the smartphone is not on a person, or assess the
uncertainty associated with the classification of each type of
activity84. This could also provide for an adaptive approach that
would enable observation/interventions suited to a broad range of
activities relevant for health, including decreasing sedentary
behavior, increasing active transport (i.e., walking, bicycling, or public
transit), and improving circadian patterns/sleep.
The use of personal digital devices, in particular smartphones,

makes it possible to follow large numbers of individuals over long
periods of time, but invariably investigators need to consider
approaches to missing sensor data, which is a common problem.
The importance of this problem is illustrated in a recent paper that
introduced a resampling approach to imputing missing smartphone
GPS data; the authors found that relative to linear interpolation—the
naïve approach to missing spatial data—imputation resulted in a
tenfold reduction in the error averaged across all daily mobility
features118. On the flip side of missing data is the need to propagate
uncertainty, in a statistically principled way, from the gaps in the raw
data to the inferences that investigators wish to draw from the data.
It is a common observation that different people use their phones
differently, and some may barely use their phones at all; the net
result is not that the data collected from these individuals are not
useful, but instead the data are less informative about the behavior
of this individual than they ideally might be. Dealing with missing
data and accounting for the resulting uncertainty is important
because it means that one does not have to exclude participants
from a study because their data fail meet some arbitrary threshold of
completeness; instead, everyone counts, and every bit of data from
each individual counts.
The collection of behavioral data using smartphones under-

standably raises concerns about privacy; however, investigators in
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health research are well-positioned to understand and address these
concerns given that health data are generally considered personal
and private in nature. Consequently, there are established practices
and common regulations on human subjects’ research, where
informed consent of the individual to participate is one of the key
foundations of any ethically conducted study. Federated learning is
a machine learning technique that can be used to train an algorithm
across decentralized devices, here smartphones, using only local
data (data from the individual) and without the need to exchange
data with other devices. This approach appears at first to provide a
powerful solution to the privacy problem: the personal data never
leave the person’s phone and only the outputs of the learning
process, generally parameter estimates, are shared with others. This
is where the tension between privacy and the need for reproducible
research arises, however. The reason for data collection is to produce
generalizable knowledge, but according to an often-cited study,
65% of medical studies were inconsistent when retested and only
6% were completely reproducible12. In the studies reviewed here,
only 4 out of 108 made the source code or the methods used in the
study publicly available. For a given scientific question, studies that
are not replicable require the collection of more private and
personal data; this highlights the importance of reproducibility of
studies, especially in health, where there are both financial and
ethical considerations when conducting research. If federated
learning provides no possibility to confirm data analyses, to re-
analyze data using different methods, or to pool data across studies,
it by itself cannot be the solution to the privacy problem.
Nevertheless, the technique may act as inspiration for developing
privacy-preserving methods that also enable future replication of
studies. One possibility is to use publicly available datasets (Table 1).
If sharing of source code were more common, HAR methods could
be tested on these publicly available datasets, perhaps in a similar
way as datasets of handwritten digits are used to test classification
methods in machine learning research. Although some efforts have
been made in this area42,119–121, the recommended course of action
assumes collecting and analyzing data from a large spectrum of
sensors on diverse and understudied populations and validating
classifiers against widely accepted gold standards.
When accurate, reproducible, and transportable methods

coalesce to recognize a range of relevant activity patterns,
smartphone-based HAR approaches will provide a fundamental
tool for public health researchers and practitioners alike. We
hope that this paper has provided to the reader some insights
into how smartphones may be used to quantify human
behavior in health research and the complexities that are
involved in the collection and analysis of such data in this
challenging but important field.
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