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Biology has become a prime area for the deployment of deep learning and artificial intelligence (Al), enabled largely by the massive
data sets that the field can generate. Key to most Al tasks is the availability of a sufficiently large, labeled data set with which to train
Al models. In the context of microscopy, it is easy to generate image data sets containing millions of cells and structures. However,
it is challenging to obtain large-scale high-quality annotations for Al models. Here, we present HALS (Human-Augmenting Labeling
System), a human-in-the-loop data labeling Al, which begins uninitialized and learns annotations from a human, in real-time. Using
a multi-part Al composed of three deep learning models, HALS learns from just a few examples and immediately decreases the
workload of the annotator, while increasing the quality of their annotations. Using a highly repetitive use-case—annotating cell
types—and running experiments with seven pathologists—experts at the microscopic analysis of biological specimens—we
demonstrate a manual work reduction of 90.60%, and an average data-quality boost of 4.34%, measured across four use-cases and

two tissue stain types.
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INTRODUCTION

The microscopic imaging of tissues, cells, and other relevant
biological specimens is key to many areas of biological and
medical research. Highly sophisticated tooling and workflows
have developed around biological imaging. For instance, mole-
cular staining protocols'—chemical stains that selectively high-
light different aspects of tissue (e.g., cell types, structures,
organoids, etc.)—are used from basic research to medical
diagnostics. Furthermore, sample preparation has become highly
standardized in a variety of domains (e.g., slide preparation in
histopathological analysis®), enabling the large-scale digitization
of data®*,

Digitization has fueled the advancement of computational
methods to analyze data using a variety of techniques. The rise of
deep learning methods® in the last decade has spurred progress
across most fields that generate sufficiently abundant amounts of
digital data. Visual biology is a prime area for the deployment of
deep learning-based computer vision (CV) techniques, as
evidenced by a rapidly growing body of work’. At this intersection
of fields, a number of remarkable capabilities have been
developed. CV has demonstrated physician-level diagnostic
performance on tissue slides?, cellular segmentation performance
that far surpasses classical techniques®'®, the ability to virtually
stain raw microscopic images as accurately as chemical stains'’,
and many others.

Supervised learning—in which computational models are
trained using data points (e.g. histopathology image; raw
microscopy image) and data annotations (e.g., “cancerous” vs
“benign”; stained microscopy image)—have been central to the
success of CV in biology. Biologists have the distinct advantage of
being able to generate massive amounts of data—a single
microscopy image can yield a gigabyte of visual data for
algorithms to learn from. A disadvantage, however, is the difficulty

and cost of obtaining complete annotations for datasets. Consider
the ImageNet Large-scale Visual Recognition Challenge (ILSVRC)®,
a benchmark competition for object classification, localization, and
detection in images of normal everyday objects (animals,
furniture, etc.). It offered competitors a data set of ~1 million
images from 1000 object classes, made possible by the use of
crowdsourced annotations from thousands of non-expert indivi-
duals. In contrast, computational biology competitions*'? typically
offer only hundreds to thousands of labeled examples. The key
bottlenecks are that annotators need to have certain levels of
expertise and that annotation takes longer than conventional
domains, making it difficult to obtain annotations at scale.

Practitioners typically rely on a number of computational
advances in deep learning and related disciplines in order to
work with smaller annotated data sets. Techniques like data
augmentation'® can synthetically expand the size of a data set by
creating modified copies of the original data that preserve its
labels (e.g., distortions, rotations, changes in color balance, etc.),
but their key effect is to smooth out data distributions—they
cannot synthesize new parts of the distribution. Generative
Adversarial Networks (GANs)'® have demonstrated remarkable
abilities at creating synthetic data, but rely heavily on sufficiently
large data sets from which to learn most of a data set's
distribution. Transfer learning, in which models are first trained
on large data sets from a different domain (e.g., ImageNet) and
then fine-tuned on small data sets for the task at hand (e.g.,
microscopy data), has become the standard technique across
medical and biological CV use-cases'®. Recently, self-supervised
learning techniques—in which synthetic labels are extracted from
unlabeled data—have started to mature, demonstrating promise
in decreasing the need for abundant labeled data'.

In spite of these advances, data annotations continue to be
essential in training artificial intelligence (Al), and supervised

'Salesforce Al Research, 575 High St, Palo Alto, CA 94301, USA. *Stanford University, 450 Serra Mall, Stanford, CA 94305, USA. University of California, San Francisco, 505
Parnassus Ave, San Francisco, CA 94143, USA. “Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam,
Netherlands. *These authors contributed equally: Iny Jhun, Israa Laklouk, Jeff Nirschl, Lara Richer, Rebecca Rojansky, Talent Theparee, Joshua Wheeler.*email: andre.esteva@gmail.com

Published in partnership with Seoul National University Bundang Hospital

NP| nature partner
pJ journals


http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-021-00520-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-021-00520-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-021-00520-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-021-00520-6&domain=pdf
http://orcid.org/0000-0003-2323-1357
http://orcid.org/0000-0003-2323-1357
http://orcid.org/0000-0003-2323-1357
http://orcid.org/0000-0003-2323-1357
http://orcid.org/0000-0003-2323-1357
http://orcid.org/0000-0001-9688-3167
http://orcid.org/0000-0001-9688-3167
http://orcid.org/0000-0001-9688-3167
http://orcid.org/0000-0001-9688-3167
http://orcid.org/0000-0001-9688-3167
http://orcid.org/0000-0001-6857-341X
http://orcid.org/0000-0001-6857-341X
http://orcid.org/0000-0001-6857-341X
http://orcid.org/0000-0001-6857-341X
http://orcid.org/0000-0001-6857-341X
http://orcid.org/0000-0001-5047-9257
http://orcid.org/0000-0001-5047-9257
http://orcid.org/0000-0001-5047-9257
http://orcid.org/0000-0001-5047-9257
http://orcid.org/0000-0001-5047-9257
http://orcid.org/0000-0003-1937-9682
http://orcid.org/0000-0003-1937-9682
http://orcid.org/0000-0003-1937-9682
http://orcid.org/0000-0003-1937-9682
http://orcid.org/0000-0003-1937-9682
https://doi.org/10.1038/s41746-021-00520-6
mailto:andre.esteva@gmail.com
www.nature.com/npjdigitalmed

np)

D. van der Wal et al.

Active Learner
0G0,
0000
000

Next bestpatch

Classifier

Suggested
Annotations

Fig. 1

HALS: human-augmenting Al-based labeling system. As a human annotator labels data, an active learning algorithm shuttles the

annotator around the image by identifying the next best visual features to annotate. Simultaneously, other Als make labeling suggestions
designed to significantly accelerate annotation speed (not pictured—see Fig. 3. System Architecture). Together, they give annotators the
ability to train personalized Al models, enabling them to generate high-quality labeled data sets for otherwise intractably large images. See

Data Availability for image details.

learning continues to be the standard technique. Significant
efforts have been put into developing labeling interfaces that
allow experts to efficiently label medical data'®'®. However,
annotating this data for the purposes of Al development
continues to require substantial computational knowledge, both
in terms of annotating the right data, and training Al models. For
instance, variables such as staining inconsistency, scanned
artifacts, and natural changes in object appearance, combined
with the large amount of data generated in microscopy, can
adversely affect the quality of annotated data, and Als trained
from it. Here, the medical field has only just begun exploring Al-
based enhancement (e.g., in radiology'® and histology'®).

Here, we present a human-augmenting Al-based labeling
system (HALS), in which initially untrained deep learning models
learn from human demonstration, train themselves, and begin to
augment human annotation ability. The effect is to decrease the
user’'s overall workload while preserving annotation quality,
enabling the annotation of data sets that were previously cost-
prohibitive. The system is composed of a set of three different Als
working together and is straightforward to integrate into any
image-based labeling tool.

Using challenging and mundane labeling tasks, we demonstrate
that HALS can significantly improve the speed of annotation,
whereas modestly improving the quality of annotations. Specifi-
cally, we outfit a data annotation interface with three deep
learning models-a segmentation model, a classifier, and an active
learner-which work in synchrony to (1) learn the labels provided
by an annotator (2) provide recommendations to that annotator
designed to increase their speed, and (3) determine the next best
data to label to increase the overall quality of annotations while
minimizing total labeling burden. The models work passively in
the background without the need for human intervention,
essentially enabling a non-computationally savvy biologist to
train their own personalized Al for workflow support, and
downstream Al development.

To establish an approximate lower bound on human augmen-
tation, we experiment with challenging tasks, working with highly
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trained expert annotators. Specifically, we select the task of
cellular annotation on tissue images—a highly repetitive, time-
intensive task, broadly useful across domains of biology-and we
select pathologists as annotators. If this method can augment
trained specialists on challenging tasks, it is likely to generalize
well to less trained annotators on simpler tasks.

We run experiments using four different cellular labeling tasks
on two visually distinct stains—Hematoxylin and Eosin (H&E), and
immunohistochemistry (IHC). Working with seven pathologists
from Stanford and the University of California at San Francisco
(UCSF), we demonstrate that our system can reduce the workload
of annotators by an average of 90.6%, while slightly increasing the
effectiveness of the annotated data by 4.34%. The latter is
determined by computing the AUC of accuracy vs a number of
training samples for an Al-trained on data annotated with HALS,
and comparing it to the AUC of an Al trained without human
augmentation. Our contribution is not a new interface, but an Al
system that can be integrated into labeling interfaces for human
augmentation.

RESULTS
System architecture

The labeling workflow of our system is depicted in the illustration
of Fig. 1. Given a large microscopy image (e.g. histopathology
whole slide images (WSI), in the provided example), an annotator
will begin by labeling points within a small region of the WSI. Once
they do, an untrained classifier will begin training itself on these
annotations, learning to distinguish between the various classes
provided. Once the classifier sees sufficient data (i.e., 10 data points
from each class are annotated), it then starts performing two
functions. First, it renders suggestions to the annotator, which the
annotator may accept or change. In practice, we find that as the
classifier's accuracy improves and the suggestions become
indistinguishable from the annotator-provided labels, the speed
of annotation significantly accelerates—annotators can scan over a
set of suggestions and approve/disapprove much faster than they
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Fig. 2 System architecture. a Data pre-processing. Digital images are first pre-processed by passing through a deep learning model
(HoverNet®), which segments and generates bounding boxes for each cell. The image and bounding boxes are then used in real-time via a
labeling interface outfitted with two Al models that serve to augment and accelerate expert labeling (b). Real-time Al augmentation. As
annotators provide cellular labels (bright green/blue boxes denote different classes), they are stored in a data set and iteratively used to

finetune a ResNet classification?

model, pre-trained on the PanNuke cellular data set, but initially untrained on the task at hand. As the

classifier learns the annotations, it renders ever more accurate predictions (pastel green/blue boxes) to the annotator. Simultaneously, it feeds
in high-dimensional feature vector representations of the labeled and unlabeled data set to the active learner, which determines the next best
patch that an annotator should label. Together they increase the speed of annotation and the quality of the labeled data set.

can individually annotate each point. Second, the Cclassifier
converts square image patches that circumscribe the labeled data
points into feature vectors which are fed into an active learning
model. The active learner takes these feature vectors, along with
feature vectors from the circumscribed squares of the remaining
cells in the rest of the image, to determine the next best patch for
annotation. The net effect of these two models is to essentially
guide the annotator around the image, rapidly sampling from a
diverse and representative set of points. Along with the rest of the
system architecture, they form a human-in-the-loop Al system that
learns from demonstration and enhances human performance.

The specific technical steps required to annotate an image break
down into two components: (1) a data pre-processing step to
prepare the image for enhanced annotation, (2) human annotation
through an Al-augmented labeling interface. The structure of this
system is depicted in Fig. 2. The first component (Fig. 2a) uses a
segmentation model (HoverNet®) to segment each cell in the tissue,
and determine the smallest containing bounding box for each. In
our setup, we train a separate segmentation model for each of the
two stains of interest, using the QuPath labeling interface’® to
generate the requisite cellular bounding box segmentation masks.
Given the substantial visual differences between the two stains, we
use multiple segmentation models instead of a single multi-task
model. Once a segmentation model is trained on a particular stain, it
will work for new images that use that particular stain. The positions
of these are then sent to the labeling interface for use in real-time.
Adapting this step to a new stain type simply requires re-training the
segmentation model with an example image.

HALS's system architecture (Fig. 2b) is built through a
microscopy labeling interface outfitted with two deep learning
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algorithms—a classification model, and an active learning model.
We use the SlideRunner open-source labeling interface to build
on?%, a PanNuke dataset?' pre-trained ResNet-1822 as our classifier,
and the Coreset®® method for active learning. Both ResNets and
Coreset are state-of-the-art models in image classification and
active learning, and PanNuke is a data set of 205,343 annotated
cells, effective for pretraining this task. Each of these components
is completely modular and can be easily replaced with equivalent
methods (e.g., a different labeling interface) for new use-cases.
Once an annotator begins labeling data points (green and blue
bounding boxes, Fig. 2b), the system stores these data points
alongside the unlabeled data pool and finetunes the classifier on
these labels. Once sufficiently many points are annotated (around
30, in our case), the classifier begins rendering predictions in the
interface (muted blue and muted green bounding boxes, Fig. 2b)
which the annotator can accept or deny. Further, the classifier
performs a feedforward pass over all the data (labeled and
unlabeled) and feeds their resultant feature vectors—high-
dimensional representations of the cells—into the active learner.
This model then determines, from the unlabeled set U, an
unlabeled subset S, which is maximally diverse, and expected to
most improve the performance and generalizability of a model
trained on L+ S, where L is the labeled data. The subset is sent
back to the labeling interface, which chooses, as the next regional
patch to annotate, the patch that contains the most points of S.

Experiments

To test the impact of HALS on data annotation, we execute two
experiments designed to test for improvements to the workload
of annotation, and the effectiveness of the annotated data.
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Fig. 3 Experimental use-cases. The task of cellular annotation is chosen, specifically owing to its highly repetitive nature, and the difficulty of
complete data annotation (e.g., a section of tissue may contain 900,000 cells). Four use-cases highlight the generalizability of this method
across stain types and cell types. From left to right: tumor-infiltrating lymphocytes (TILs), tumor cells, eosinophils, and Ki-67-stained cells of
arbitrarily sufficient size, as determined by the annotators. Top row shows example cells of the specified type (positive), the bottom row shows
examples of all others (negative). See Data Availability for image details.

Annotation workload. Here, an expert annotator is asked to search,
within the slide, for a tissue patch that contains ~200 nuclei (~30x
magnification), in which they believe the classes are roughly
balanced. Each annotator randomly selects a distinct patch. They
annotate the patch with Al augmentation as described above,
correcting a fraction of the Al's prediction. The fraction corrected
defines their workload. In the limit of workload = 1, this is equivalent
to no Al support, in which all annotations are performed by the
human. In the limit of workload =0, this is equivalent to no
annotations performed by the annotator.

Annotation effectiveness. In this experiment, an expert annotator
begins by labeling 20 cells of each class, to initialize the classifier.
They then begin labeling cells, following (and possibly correcting)
the suggestions of the classifier, while being guided around the
slide by the active learner. As a control, they repeat this
experiment on the same interface but with all deep learning
models deactivated.

For each of the experiments, we test seven pathologists (from
Stanford and UCSF) on four different binary use-cases (see Fig. 3):

1. Tumor-infiltrating lymphocytes (TIL) [H&E]: the presence
of sufficiently dense TILs can provide prognostic information
and aid in measuring the response to treatments?*

2. Tumor cells [H&E]: quantifying the fraction of tumor cells in
a tissue sample is a challenging task that suffers from
pathologist variability, and is of value to therapeutic
decision making as well as diagnostics*

3. Eosinophils [H&E]: eosinophilic esophagitis is a chronic
immune system disease. Quantitating eosinophils is neces-
sary for diagnosis®S.

4. Ki-67 [IHC]: the Ki-67 stain is a marker of cellular
proliferation. The ratio of positive to negative tumor cells
can have prognostic significance?”

In each use-case, the annotator labels two classes of cells: (1)
the cell type of interest (2) all other cells in the tissue. All four use-
cases are real tasks with diagnostic value. The first three are
stained with H&E, while the fourth—stained with IHC—is
selectively chosen to demonstrate generalizability across
stain types.

The results of these experiments are summarized in the table of
Fig. 4a. The workload reduction across the pathologists, when
using HALS, ranges from 66% to 100%, as measured by their
corrected fraction. The average workload reduction is 90.6%.
Intuitively, the workload reduction is greater on tasks with greater
visual differences between the two classes. Eosinophils (83.1%
reduction) are a type of white blood cell with multi-lobulated
nuclei and granular eosinophilic cytoplasm, easily confused with
red blood cells. In contrast, tumor cells (94.9%), TILs (91.3%), and
Ki-67 cells (93.3%) all tend to stand out amongst their respective
backgrounds. Individual workloads across the use-cases are shown
in Fig. 4b. Some variability can be observed within each use-case.
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Behaviorally, individual annotators interact differently with the Al,
gaining or losing trust in model predictions as a function of model
accuracy.

The effectiveness boost across pathologists, when using HALS,
ranges from 1.38% to 6.43%, averaging 4.34%. The effectiveness of
an annotated data set is defined as the area under the curve (AUC)
of validation accuracy versus N, the number of training samples,
with N <200, for a model trained with this dataset. The AUC of
such a curve yields an intuitive measure of how quickly the data
set becomes of sufficient quality to learn the task at hand. The
higher the AUC, the faster a model converges, the fewer data
points are needed to learn the proper distribution. The exact
impact of this value on the accuracy improvement of a model
trained on the annotated data set is a function of the individual
shapes of the AUC curves. See Online Methods for full details on
experimental parameters. The effectiveness improvement in one
annotated data set over another is then the AUC ratio between
them. See Fig. 5 for an example comparison plot of a dataset
annotated with HALS versus one annotated without. Here, the
AUC ratio is 5.3%, and a model trained with 50, 75, and 100
training examples from HALS benefits from an 11%, 11%, and 5%
boost in model validation accuracy, respectively. Given the
relatively small data set size, this performance boost is subject
to noise. As such, this result serves to show that this method
modestly improves data annotation quality while substantially
improving annotation workload.

Note that the ResNet classifier used in these experiments is pre-
trained on the PanNuke data set—a data set of H&E-stained cells
—and observes performance on Ki-67 that is on par with the other
use-cases, pointing to the generalizability of this method.
Adapting HALS to new use-cases is an iterative process involving
testing the system as-is, then potentially replacing the classifica-
tion and/or the segmentation models with ones trained on the
stain at hand. The active learner is generic, operating on feature
vectors as opposed to raw input data.

DISCUSSION

Here we present HALS, designed to learn from human data
annotators in real-time, augmenting their abilities and boosting
both their annotation speed and annotation effectiveness. It is
modularly designed and straightforward to integrate into
standard image-labeling interfaces.

Using four highly repetitive binary use-cases across two stain
types, and working with expert pathologist annotators, we
demonstrate a 90.6% average labeling workload reduction and a
434% average improvement in labeling effectiveness. An
annotator’s efficiency can be defined as their workload per unit
time. In practice, the choice of labeling interface can affect both
efficiency and effectiveness. Note that the repetitive work
involved in annotation (mouse clicks, the position of Ul elements,
system lag, etc) can positively or negatively influence annotator

Published in partnership with Seoul National University Bundang Hospital
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Fig. 4 Experimental results. a The average workload reduction and effectiveness increase for the four use-cases considered (TILs, tumor cells,
eosinophils, and Ki-67 cells), altogether averaging a workload reduction of 90.6% and a 4.34% effectiveness improvement. Workload fraction is
measured by the fraction of Al predictions changed by the annotator (0 is perfect model annotation, 1 is without an Al). Workload reduction is
the inverse (1-workload fraction). Effectiveness is measured as the area under the accuracy vs number of samples (N) plot, bounded by N < 200,
for an Al model trained on the resultant annotated data set (see example in Fig. 5). b Workload results on the seven tested annotators-top
histopathology trainees from Stanford and the University of California, San Francisco. ¢ Effectiveness results on the same set of trainees.
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Fig. 5 Effectiveness metric. We consider a data set, D, to be more
effective than another, E, if a model trained on D has a higher
validation accuracy than a model trained on E, and both D and E cost
the same to annotate (i.e., both have the same number of data points
and annotations). To this end, we use the AUC of a model’s validation
accuracy vs number of training samples as a measure of effective-
ness, with a higher AUC indicating higher effectiveness and the ratio
in AUC between two curves allowing a comparison between two
models. In the example above (use-case: tumor-infiltrating lympho-
cytes), the data set generated with Al augmentation has an absolute
validation accuracy improvement of 0.11, 0.11, and 0.05, over a data
set generated without Al augmentation, for 50, 75, and 100 training
samples, respectively. The AUC ratio of the two curves is 5.3%.

efficiency owing to their influence on time. Here, we selectively
avoid the challenges implicit in controlling for interface effects by
using a time-agnostic metric, the workload, defined as the data
fraction corrected. Future work could explore the variation in
human enhancement as a function of the chosen labeling
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interface, tracking the direct impact on time yielded by our
method in combination with a given labeling interface. Here, we
restrict this work to using the SlideRunner®® interface (see
Methods), owing to the ease of incorporating modern deep
learning frameworks.

Although these experiments focused on binary use-cases, there
is no restriction on the number of classes learnable using this
method, and future work could explore the effects that increasing
the number of classes may have on annotation workload and
effectiveness. Further, the classifier in this system can be replaced
with a detection or segmentation model, to expand the task type
beyond classification. A key limitation to this approach is its
dependence on learning accurate object classification in real-time,
which requires that slides contain sufficiently many examples of
the objects of interest. For large or rare image artifacts, such as
entire tumors, additional techniques leveraging few-shot learning
may need to be integrated into the system. Further, this technique
operates on image regions, and will not help with slide-level
annotations.

Decreasing the time and cost of data annotation has the
potential to enable the development of previously inaccessible Al
models across a range of valuable domains. HALS can serve
biologists in data analysis by allowing them to collect quality
datasets on their specific use-cases, with minimal computational
knowledge, for the training of Al models.

Future work in this direction will involve expanding the
capabilities of the system across tasks and image types. This
could be achieved by working with more complex biological
targets, different stain types, or three-dimensional images (e.g.,
z-stacks of microscopy cross-sections). Efforts could involve
training models that can effectively transfer-learn across similar
tasks - for instance, using a single classifier for all cellular
annotation tasks, possibly via meta-learning?®. Eventually, compu-
tational layers could be added on top of HALS, which build it into
a distributed auto-ML?° style platform, which can auto-detect the
task at hand, select the best pre-trained model and model type,
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and concurrently learn from a number of annotators. As this type
of technology matures in the research community, decreasing the
time and cost of data annotation, more areas of biology will begin
to benefit from the high value-add of Al data analysis.

METHODS

This work was reviewed and approved by the Salesforce Research Ethics
Team, which offered guidelines for the study procedures. All physician
participants consented to be a part of the study.

Labeling platforms

SlideRunner?® is an open-source tool to annotate objects in whole slide
images written in Python. The tool supports annotating objects of any size,
using point, bounding box, or polygon annotations. It supports plugins
that can interact with the data and potentially deploy Al techniques. A
version of SlideRunner, augmented with the various Al modules described
in Fig. 2, was used for all experiments.

QuPath is an extensive bioimage analysis program written in Java. It
contains many built-in workflows for tasks such as cell segmentation and
classification. In addition, it is able to process slides in parallel and the
program can be extended by writing scripts. QuPath was used to obtain
segmentations (i.e.,, bounding boxes) for the Ki-67 experiments, using the
watershed cell detection plugin.

Segmentation model

Here we use a HoverNet model® for the H&E-stained use-cases, as it
achieves state-of-the-art performance against other models (e.g., Unet'®) at
segmentation tasks in tissue. For the IHC-stained use-case (Ki-67), we
finetune HoverNet using the segmentation data obtained from QuPath
(see above).

Classification model

Before we can use the ResNet-18 model with a small data set, it needs to
be pre-trained. For pretraining, the PanNuke?' data set is used, which is
composed of 256 x 256 pixel images, containing just over 200,000 nuclei.
The images originate from 19 different kinds of tissue and contain 5
different classes of nuclei. All nuclei in the patches have been labeled. We
calculated the centroid of every nucleus, and extracted a 40 x 40 patch
around the centroid, omitting nuclei at the edges of the images when the
window did not fully fit within the image. These small patches are used to
train the model, using PanNuke fold 1 and fold 2 for training and fold 3 for
testing. Fold 1 and 2 have been combined to calculate the mean and
standard deviation in the pixel values. All patches have been normalized
by subtracting the mean and dividing by the standard deviation.

To finetune the model, we freeze all layers and replace the final layer
with two untrained fully connected layers containing 32 nodes each, with a
final output layer containing two nodes corresponding to the binary
classification cases used in the experiments.

As the user starts labeling, data are obtained that are used to finetune
the ResNet in real-time. The data labeled by the expert is split into a
training and validation set. 75% of this data is used for training and the
other 25% validation. When the classes are not balanced, the less-common
classes are oversampled, in order to present the model with a balanced
data set.

The model is optimized using Stochastic Gradient Descent (SGD), with a
learning rate of 0.00001 and momentum 0.9. The model is trained for 100
epochs, but is early stopped if the validation score does not improve for 10
epochs.

During system usage, the classification model finetunes itself for every
five newly labeled data points (using all labeled data). The cells in the
current image patch are predicted and rendered to the user as
suggestions. The feature representation for all data (labeled and unlabeled)
are then extracted from the second to last layer in the ResNet, and passed
to the active learning model to select the next best points to annotate.

Active learning model

In order to create the best combination of labeled nuclei, we use the active
learning method Coreset?* to suggest which patch the expert should label
next. Active learning methods operate by considering a labeled data pool
and an unlabeled data pool, and determining the next best data points
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from the unlabeled pool to label next. They are optimized to find data
points that are highly diverse and will increase both the accuracy and
generalizability of the resultant model. Coreset is considered state-of-the-
art for image data.

Workload experiments

At the start of a workload experiment, the annotator is asked to find and
annotate 20 objects of each class, to begin the training of the classifier.
At this point, the classifier continues to retrain itself for every five
additional annotated objects. Once initialized, we ask the annotator to
find a patch in the slide that contains ~200 objects that are equally
distributed over the classes that are to be labeled and begin annotating
the patch. The counts for each annotator and use-case are given in
Supplementary Figure 1. During annotation, the system renders
predictions to the annotator, which they can confirm or deny until all
cells have been annotated to their satisfaction. Once completed, the
fraction of annotations corrected is calculated. The fraction corrected
defines the workload of the annotator.

Effectiveness experiments

At the start of an effectiveness experiment, the annotator is asked to find
and annotate 20 objects of each class, to begin the training of the classifier,
and initialize the active learner’s next-patch suggestion. The annotators
then follow the guidance of the active learner until they have annotated
200 total cells. As a control, the experiment is repeated, but with the
models disabled.

Owing to the lack of ground truth labels for WSI's used in the
experiments, labeled data across annotators is used as ground truth for
evaluation for an experiment. That is, separate classification models
(ResNet-18) are trained on a single annotator’s data set, and evaluated on
all other annotators’ control data sets. More precisely, if there are N
annotators, each with two runs (with and without Al augmentation), then
the evaluation of a single run from a single annotator is achieved by
training a model on that run’s data and testing it on the N-1 control runs
completed by all other annotators. This ensures that the evaluation set is
the same for both experiments performed by a single annotator, allowing
us to fairly compare model improvements with and without Al-augmented
data annotation. The restriction of the evaluation data set to the data used
in the control experiment (without Al augmentation) is to eliminate
potential biases that may be introduced by an Al, which begins
uninitialized and learns as the experiment progresses.

The order in which samples are labeled is preserved during experiments
and utilized in generating effectiveness curves (e.g., Figure 5). In such
curves, if N training samples are used to plot a classifier's accuracy, those
are the first N samples to be annotated by the user. We sweep N from 0 to
200 in all curves. In all, 200 is chosen empirically as classifier performance
plateaus around this number, in these use-cases. To account for
performance fluctuations (particularly for low values of N), all models are
trained 10 times and the average value is reported.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

For the TILs and tumor cell use-cases, we used slide TCGA-XF-AAN8-01Z-00-DX1 from
The Cancer Genome Atlas®® (TCGA). For the Eosinophil use-case, we used slide TCGA-
XP-A8T7-01Z-00-DX1 from TCGA. For the Ki-67 use-case we use a slide provided by
the University of California at Davis. Not all slides are scanned at the same resolution.
Extracting patches around cells of a predefined size in pixels will result in cells
appearing scaled. To mitigate this, the patch dimensions are changed such that the
rescaled patch always covers the same area.

CODE AVAILABILITY

The code built through this study will be open-sourced and made publicly available
through Github. Please contact the authors for further information.

Published in partnership with Seoul National University Bundang Hospital


http://quip1.bmi.stonybrook.edu/camicroscope/osdCamicroscope.php?tissueId=TCGA-XF-AAN8-01Z-00-DX1
https://portal.gdc.cancer.gov/image-viewer?filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.case_id%22%2C%22value%22%3A%5B%2259dd907e-c674-46c2-bce7-63517d5ae7a7%22%5D%7D%7D%5D%7D&selectedId=3dcaee06-a9ee-410e-b409-b3e1cbae90cd
https://portal.gdc.cancer.gov/image-viewer?filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.case_id%22%2C%22value%22%3A%5B%2259dd907e-c674-46c2-bce7-63517d5ae7a7%22%5D%7D%7D%5D%7D&selectedId=3dcaee06-a9ee-410e-b409-b3e1cbae90cd

Received: 28 April 2021; Accepted: 13 September 2021;
Published online: 07 October 2021

REFERENCES

1. Beveridge, T. J., Lawrence, J. R. & Murray, R. G. E. Sampling and Staining for Light
Microscopy. In Methods for General and Molecular Microbiology 19-33 (2007).

2. Slaoui, M. & Fiette, L. Histopathology procedures: from tissue sampling to his-
topathological evaluation. Methods Mol. Biol. 691, 69-82 (2011).

3. Veta, M. et al. Predicting breast tumor proliferation from whole-slide images: the
TUPAC16 challenge. Med. Image Anal. 54, 111-121 (2019).

4. Litjens, G. et al. 1399 H&E-stained sentinel lymph node sections of breast cancer
patients: the CAMELYON dataset. Gigascience 7, giy065 (2018).

5. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015).

6. Russakovsky, O. et al. ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115, 211-252 (2015).

7. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A. & Ciompi, F. A survey on deep
learning in medical image analysis. Med. Image Anal. 42, 60-88 (2017).

8. Nagpal, K. et al. Development and validation of a deep learning algorithm for
improving Gleason scoring of prostate cancer. NPJ Digit. Med. 2, 48 (2019).

9. Graham, S. et al. Hover-Net: Simultaneous segmentation and classification of
nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019).

10. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Bio-
medical Image Segmentation. in Medical Image Computing and Computer-Assisted
Intervention — MICCAI 2015 234-241 (Springer International Publishing, 2015).

11. Christiansen, E. M. et al. In Silico Labeling: Predicting Fluorescent Labels in
Unlabeled Images. Cell 173, 792-803.e19 (2018).

12. Verma, R. et al. Multi-organ Nuclei Segmentation and Classification Challenge
2020. https://doi.org/10.13140/RG.2.2.12290.02244/1 (2020).

13. Goodfellow, I. et al. Generative Adversarial Nets. in Advances in Neural Information
Processing Systems (eds. Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. &
Weinberger, K. Q.) vol. 27, 2672-2680 (Curran Associates, Inc., 2014).

14. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural
networks. Nature 542, 115-118 (2017).

15. Jing, L. & Tian, Y. Self-supervised visual feature learning with deep neural net-
works: a survey. IEEE Trans. Pattern Anal. Mach. Intell. PP (2020).

16. Bankhead, P. et al. QuPath: open source software for digital pathology image
analysis. Sci. Rep. 7, 16878 (2017).

17. McQuin, C. et al. CellProfiler 3.0: Next-generation image processing for biology.
PLoS Biol. 16, €2005970 (2018).

18. Nalisnik, M. et al. Interactive phenotyping of large-scale histology imaging data
with HistomicsML. Sci. Rep. 7, 14588 (2017).

19. Smit, A. et al. MedSelect: selective labeling for medical image classification
combining meta-learning with deep reinforcement learning. arXiv https://arxiv.
org/abs/2103.14339 (2021).

20. Aubreville, M., Bertram, C., Klopfleisch, R. & Maier, A. SlideRunner. In Bildver-
arbeitung fiir die Medizin 309-314 (Springer, 2018).

21. Gamper, J,, Koohbanani, N. A, Benet, K., Khuram, A. & Rajpoot, N. PanNuke: An Open
Pan-Cancer Histology Dataset for Nuclei Instance Segmentation and Classification.
Digital Pathology 11-19 https://doi.org/10.1007/978-3-030-23937-4_2 (2019).

22. He, K, Zhang, X, Ren, S. & Sun, J. Deep Residual Learning for Image Recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) https://
doi.org/10.1109/cvpr.2016.90 (2016).

23. Sener, O. & Savarese, S. Active Learning for Convolutional Neural Networks: A
Core-Set Approach. in International Conference on Learning Representations
https://arxiv.org/abs/1708.00489 (2018).

24. Hendry, S. et al. Assessing tumor-infiltrating lymphocytes in solid tumors: a
practical review for pathologists and proposal for a standardized method from
the international immunooncology biomarkers working group: part 1: assessing
the host immune response, tils in invasive breast carcinoma and ductal

Published in partnership with Seoul National University Bundang Hospital

D. van der Wal et al.

np)

carcinoma in situ, metastatic tumor deposits and areas for further research. Adv.
Anat. Pathol. 24, 235-251 (2017).

25. Smits, A. J. J. et al. The estimation of tumor cell percentage for molecular testing
by pathologists is not accurate. Mod. Pathol. 27, 168-174 (2014).

26. Dellon, E. S. Eosinophilic esophagitis: diagnostic tests and criteria. Curr. Opin.
Gastroenterol. 28, 382-388 (2012).

27. Ellis, M. J. et al. Ki67 proliferation index as a tool for chemotherapy decisions
during and after neoadjuvant aromatase inhibitor treatment of breast cancer:
results from the american college of surgeons oncology group Z1031 Trial
(Alliance). J. Clin. Oncol. 35, 1061-1069 (2017).

28. Vanschoren, J. Meta-learning: a survey. arXiv https://arxiv.org/abs/1810.03548
(2018).

29. He, X, Zhao, K. & Chu, X. AutoML: A Survey of the State-of-the-Art. arXiv https://
arxiv.org/abs/1908.00709 (2020).

30. Weinstein, J. N. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat.
Genet. 45, 1113-1120 (2013).

AUTHOR CONTRIBUTIONS

D.W. built the labeling interface, trained the requisite models, and tested the
pathologists. I.J., I.L, KN., LR, RR., T.T. and J.W. served as expert pathologists for the
annotation experiments. J.S. supervised the project. F.F. and O.M. provided clinical
guidance. R.S. contributed ideas related to the inception of the platform and broad
vision. A.E. supervised the project, designed the experiments, recruited the team, and
tested pathologists.

COMPETING INTERESTS

A.E, D.W, SS. and RS. are or were employees of Salesforce.com, Inc., and may own
CRM stock. The remaining authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41746-021-00520-6.

Correspondence and requests for materials should be addressed to Andre Esteva.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

npj Digital Medicine (2021) 145


https://doi.org/10.13140/RG.2.2.12290.02244/1
https://arxiv.org/abs/2103.14339
https://arxiv.org/abs/2103.14339
https://doi.org/10.1007/978-3-030-23937-4_2
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/cvpr.2016.90
https://arxiv.org/abs/1708.00489
https://arxiv.org/abs/1810.03548
https://arxiv.org/abs/1908.00709
https://arxiv.org/abs/1908.00709
https://doi.org/10.1038/s41746-021-00520-6
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Biological data annotation via a human-augmenting AI-based labeling system
	Introduction
	Results
	System architecture
	Experiments
	Annotation workload
	Annotation effectiveness


	Discussion
	Methods
	Labeling platforms
	Segmentation model
	Classification model
	Active learning model
	Workload experiments
	Effectiveness experiments
	Reporting summary

	DATA AVAILABILITY
	References
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




