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Prediction across healthcare settings: a case study in predicting
emergency department disposition
Yuval Barak-Corren 1✉, Pradip Chaudhari 2, Jessica Perniciaro2, Mark Waltzman3,4, Andrew M. Fine3,4,5 and Ben Y. Reis1,3,5

Several approaches exist today for developing predictive models across multiple clinical sites, yet there is a lack of comparative data
on their performance, especially within the context of EHR-based prediction models. We set out to provide a framework for
prediction across healthcare settings. As a case study, we examined an ED disposition prediction model across three geographically
and demographically diverse sites. We conducted a 1-year retrospective study, including all visits in which the outcome was either
discharge-to-home or hospitalization. Four modeling approaches were compared: a ready-made model trained at one site and
validated at other sites, a centralized uniform model incorporating data from all sites, multiple site-specific models, and a hybrid
approach of a ready-made model re-calibrated using site-specific data. Predictions were performed using XGBoost. The study
included 288,962 visits with an overall admission rate of 16.8% (7.9–26.9%). Some risk factors for admission were prominent across
all sites (e.g., high-acuity triage emergency severity index score, high prior admissions rate), while others were prominent at only
some sites (multiple lab tests ordered at the pediatric sites, early use of ECG at the adult site). The XGBoost model achieved its
best performance using the uniform and site-specific approaches (AUC= 0.9–0.93), followed by the calibrated-model approach
(AUC= 0.87–0.92), and the ready-made approach (AUC= 0.62–0.85). Our results show that site-specific customization is a key driver
of predictive model performance.
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INTRODUCTION
Driven by advances in machine learning and large quantities of
data accumulating in healthcare settings worldwide, recent years
have witnessed a dramatic proliferation in the development and
application of predictive models in medicine1,2. These models
predict a range of outcomes, including in-hospital mortality,
cancer, suicide, abuse, and new-onset dementia3–9. A major
challenge in the development of predictive models is cross-site
generalizability. Even when standardized protocols are in place to
enable data and model interoperability (e.g., HL-7, DICOM, or
SMART and FHIR)10,11, there is still no guarantee that an algorithm
developed at one site will work well at another.
Medical settings can vary in numerous ways, including case-

mix12, demographic distributions13, care processes14, coding
practices15, and use of laboratory tests16, among others17.
Diagnostic tests that are routinely used at one site may be
scarce at another18, hence the significance of such tests in a
prediction model is expected to vary between sites. Further-
more, some information may only be available at some sites: for
example, the Children’s Hospital Early Warning Score19 is only
available at some pediatric hospitals. Thus, a model that relies
on this risk score will not be transportable to sites that do not
collect it, and a model built without access to this score may
miss important information if applied at a pediatric site in which
this information is collected. These differences can undermine
model generalizability and transportability across sites, serving
as a major barrier to adoption20.
Four main approaches are commonly used today to address the

challenges of prediction across multiple sites: (1) Training and
testing a model at each site separately in order to build site-specific
models11,21–24; (2) creating a centralized database of data from all

sites in order to build a single uniform model25,26; (3) applying a
Federated Learning (FL) approach in which the model is trained
collaboratively at each site, sharing model parameters but not
medical data across sites27,28; and (4) when customization is not
feasible or when little variation exists between sites, a ready-made
model that was trained at one or a few sites, can be used across all
sites. This last approach is common practice with clinical risk
scores such as the Centor risk score for Group-A Streptococcus
pharyngitis or the PECARN algorithm for managing children with
traumatic brain injury, to name a few29–31. It is also commonly
used in commercial deep-learning models such as the FDA-
approved AiDoc tool for the identification of intracranial bleeding
in computed tomography (CT) scans32. There are also hybrid
approaches that combine elements derived from these different
approaches33.
We sought to compare these different approaches and to

examine their strengths and weaknesses, through a case study of
a hospitalization prediction model, implemented across three
diverse real-world healthcare settings: Boston Children’s Hospital
(BCH), Children’s Hospital Los Angeles (CHLA), and South Shore
Hospital (SSH) Long-term boarding in emergency departments
(ED) contributes to overcrowding, a pervasive problem in the
United States hospitals34,35. In the current model of care, patients
in the ED are managed in a serial fashion, beginning with
registration, followed by triage, diagnosis, and treatment. Only
toward the end of the ED encounter, based on the information
collected during the encounter, a decision is made about whether
the patient should be admitted or discharged. The serial approach
to care leads to inefficiencies in assigning the newly admitted
patient to a specific bed or room in an inpatient department,
which in turn can contribute to prolonged ED boarding times and
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overcrowding. Early prediction of ED patient disposition can assist
in shortening boarding times by facilitating earlier requests of
inpatient beds, or in shortening the overall ED length-of-stay by
informing ED staff about patients likely to be discharged so they
can prioritize treatment36.
To address this issue, we previously developed the prediction of

patient placement system36–38, which utilizes routinely collected
clinical and administrative information to accurately predict
patient disposition (AUC= 0.92). We found that these models
were influenced by local care practices. For example, at one site,
order for (or lack of) a blood test for calcium was very predictive of
hospitalization—not because calcium levels by themselves were
predictive of hospitalization, but rather because calcium was taken
as part of a routine set of tests for the more critically ill patients at
that specific institution. At another institution, patients for whom
height was measured were more likely to be admitted. Again, this
was not the result of an association between stature and
likelihood of admission, but rather since at that particular care
setting, height was measured almost exclusively for patients
requiring chemotherapy or patients with a severe eating disorder.
These local practices can challenge the generalizability of such
models and the ability to implement the model in other settings.
In this study, we provide a general framework for developing

prediction models across multiple settings. We implement our
previously developed hospitalization-prediction model at three
diverse clinical sites and use this case study as an opportunity to
compare different cross-site implementation strategies based on
the accepted methods mentioned above.

RESULTS
Setting
During the study period, 197,683 unique patients visited the three
included EDs in 300,504 separate encounters (Supplementary Fig.
1). Of these, 11,542 visits (3.8%) were excluded due to an outcome
other than hospitalization/discharge—for example: left against
medical advice, left without being seen, death, or transfer to
another facility. Overall, 288,962 visits by 191,449 different
patients were included in the analysis. Of the 288,962 included
ED visits, 48,651 (16.8%) were admitted to the hospital and
240,311 (83.2%) were discharged home. The median volume of ED
visits per day was 167 (range: 72–267) at BCH, 239 (67–363) at
CHLA, and 245 (118–312) at SSH. The overall hospitalization rate
was 19.1% at BCH, 7.9% at CHLA, and 26.9% at SSH (Table 1). The
rate did not vary significantly over the course of the study, but
weekday variations were noted with a lower admission rate during
the weekend compared to the middle of the week (p < 0.05,
Supplementary Fig. 2).

Risk factors for admission
As expected, the average age at BCH and CHLA (both pediatric
centers) was much lower than that of the SSH general-population
ED (6.4 and 4.5 vs. 46.3 years). Whenever older patients did visit
the CHLA ED, they were more likely to be hospitalized than the

younger patients (>20% admission rate for patients over the age
of 19 vs. <10% for patients under the age of 15). The reasons for
visits also differed across the sites, with chief complaints such as
fever, abdominal pain and/or vomiting, and cough and/or
breathing difficulties ranking as the most common complaints at
BCH and CHLA, while complaints such as fall, chest pain, shortness
of breath, and abdominal pain ranking as the most common
complaints at SSH. The median length of stay in the ED ranged
from 2.7 h in the pediatric sites (IQR 1.7–4.3) to 5.0 h (IQR 3.0–9.0)
at the general ED (SSH). On average, across all sites, admitted
patients stayed longer in the ED than discharged patients. From
3.2–4.2 h longer at BCH and CHLA to 13.9 h longer at SSH.
At all sites, the ESI acuity score was predictive of hospitaliza-

tions, with a 0–2% admission rate across sites for the least acute
triage levels (ESI 4–5) and 79–93% for patients with the most acute
triage score (ESI 1). In two of the sites (BCH and SSH), a history of
prior admissions was highly predictive of future admission, with a
previous admission rate of >50% of prior ED visits associated with
a 90% likelihood of admission in the index visit. In the pediatric
sites, the number of laboratory tests ordered in the first 60 min
was also predictive of admission, while in the general (adult) ED,
patients who had an electrocardiogram (ECG) within the first hour
were 2.6 times more likely to be admitted than those without an
ECG (50% vs. 19% admission rate). Further description of the risk
factors can be found in Supplementary Tables 1–3 which show the
top features at each site, and in Supplementary Table 4 which
shows the features selected by the multivariate model.
The distance patients traveled to reach the ED was also

predictive of admission (Fig. 1). At BCH, a national referral center,
this effect was most prominent and the rate of admission
increased from 11% for those traveling less than 10 miles to
about 50% for those traveling 100 miles. At CHLA the rate
increased from 6% to about 30% as the traveling distance
increased. At SSH, while some zip-codes were associated with an
admission rate of over 70% and other zip-codes were associated
with an admission rate as low as 1.6%, these were not particularly
related to the distance from the hospital.

Multivariate model
The top 20 features selected at each of the sites are shown in
Supplementary Table 4. Model performance varied by the
approach used, with the best results achieved using the site-
specific and uniform approaches, followed by the calibrated-model
approach and the ready-made approach (Fig. 2, Table 2). Overall,
the site-specific, uniform, and calibrated model approaches all
achieved relatively good performance with AUCs around 0.90
(0.87–0.93). In contrast, in most cases, the ready-made approach
achieved an AUCs of around 0.6 (0.62–0.65), with the best
performance achieved when the model was built using BCH data
and applied at CHLA (AUC= 0.85). A summary of these findings
can be found in Supplementary Fig. 3.

DISCUSSION
The results of this study show that site-specific customization is a
key driver of predictive model performance. The best performance
was achieved when the models were trained using site-specific
data (AUC of 0.87–0.94) versus when applying a ready-made
model developed using only one site (AUC of 0.62–0.85). The drop
in performance was less pronounced when transferring the model
from one pediatric ED (BCH) to another pediatric ED (CHLA).
The study further showed that certain factors, such as the

history of prior admissions, patient age, triage score, the room in
which a patient was placed in the ED, or the number of lab tests
ordered for the patient, are common risk factors for admission
across all sites, while other features, such as the involvement of
particular team members, zip codes associated with higher rates

Table 1. Comparison of study sites by basic demographics and ED
statistics.

BCH CHLA SSH

Total visits 76,218 124,048 88,696

Total patients 52,075 76,949 62,425

Admission rate 19.1% (n= 14,979) 7.9% (n= 9843) 26.9% (n= 23,829)

Gender (females) 47% (n= 37,319) 46% (n= 57,459) 53% (n= 47,049)

Age in years
(median and IQR)

6.4 (2.1–13.4) 4.5 (1.6–9.4) 46.3 (22.9–67.4)

ED length of stay in hours
(median and IQR)

3.5 (2.0–13.3) 2.4 (1.4–3.8) 5.0 (3.0–9.0)
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of admission, or specific types of laboratory tests ordered are
hospital-specific. Some factors are common to some of the sites
but not to others (e.g., the order of venous blood gases was
predictive of admission at the two pediatric sites and not at SSH).
Studies that evaluate the performance of predictive models at

multiple sites often involve objective tasks that are easy to
replicate, such as image processing or analysis of laboratory
tests25,26,28,39. In this respect, the current study addresses a non-
trivial prediction task: the outcome is subjective and provider-
dependent, the variables include non-objective findings such as
orders given, and the overall admission rate is influenced by the
local patient population. In the present study, the admission rate
ranged from 8% at CHLA to 27% at SSH. Thus, it is not surprising
that models that included site-specific training performed better
than the more generalized models. Studies that involve a more
transferable prediction task, such as image processing of radiology
or pathology images, would most likely work well without site-
specific customization.
The approaches described in this study have various benefits

and drawbacks. The site-specific approach is relatively easy to

implement and is optimized to local site characteristics40.
However, it does not utilize information from all sites and often
requires skilled personnel and data availability at the target site for
feature extraction and model training. The uniform model
approach utilizes all available data, but poses a significant privacy
risk, as data leave the institution into a centralized data repository.
Furthermore, this approach may miss some of the site-specific
nuances during the data aggregation process41. The ready-made
approach has the advantage of the simplicity of implementation.
Also, it is often easier for end-users such as clinicians to
comprehend. Nonetheless, this approach does not benefit from
the large sample size that can be obtained from multiple sites and
it has no site-specific customization, hence its predictive
performance is expected to be poorer than the other approaches
for most prediction tasks. This approach is often used only as a
secondary step after a model has initially been developed in a
multi-site setting using one of the other approaches. The
calibrated model approach, by combining the ready-made and
site-specific approaches, enables both simplicity and customiz-
ability, but only to a limited extent and without taking into

Fig. 2 ROC plots comparing the performance of the different modeling approaches in each study site. Each chart shows four ROC plots:
red for the calibrated model, gray for the ready-made model, blue for the site-specific model, and orange for the uniform model. a Results for
BCH, the hybrid model developed using CHLA data. b Results for CHLA, hybrid model developed using BCH data. c Results for SSH, hybrid
model developed using BCH data.

Fig. 1 Admission rate by zip-code and miles traveled. In both BCH and CHLA patients that come from farther away were more likely to be
admitted. In contrast, no such correlation was found for SSH. The maps were generated using Tableau software (https://www.tableau.com)
and using ©OpenStreetMap data. a Results for BCH; b results for CHLA; c results for SSH.
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account site-specific features. Nonetheless, we found that the
performance of this calibrated model was comparable to the
performance of the other top-performing models (i.e., site-specific
and uniform models). The performance would likely further
improve if the feature-selection process would be done using
multiple sites and not just one (i.e., training on three sites and
calibrating on the fourth). While not implemented in the present
study, the federated learning approach also holds great potential. It
provides the benefits of the site-specific and uniform approaches in
terms of customization, sample size, and generalizability, but
without the inherent privacy risks of these approaches. However, it
is a complex method that requires skilled staff at all sites, more
computational resources, and it is more difficult to infer clinical
insights from these models as the clinical data are not shared.
Beyond these inherent limitations of federated learning, in the
current study, we chose not to apply this method as its added
value is limited in cases where there are relatively few variables,
few sites, and many observations at each site.
Based on these considerations, we provide a framework for

future development and implementation of prediction models
across multiple sites. This framework is especially relevant for
predictions that involve subjective outcomes and outcomes
dependent on custom care practices. We recommend the
following steps: Starting with the site-specific approach, one
can measure the top benchmark for model performance as well
learn the similarities and differences in risk factors across sites.
Using the ready-made approach, the minimally viable solution
can be obtained and the lowest bar for model performance can
be delineated. The calibrated and uniform approaches are often
more usable and easier to implement as they require fewer
features to extract (in the former) and less site-specific
development (in the latter), thus it is useful to estimate this
tradeoff in overall performance for these approaches as well.
Comparing the performance of all approaches and for all sites
can help estimate how the model will perform in future sites as
well. In order to apply this framework, all sites must collect a

similar set of variables in machine-readable form. To determine
the ‘must-have’ variables, the model should first be trained at
one of the sites, and the most important types of variables may
be identified. We believe that the results of our analysis, together
with the strengths and weaknesses that we highlight for each
method, will be of interest to researchers embarking upon a
multi-site prediction project, even when the implementation of
the full framework is not possible.
This study has several limitations. First, all models required pre-

processing of the data which may be challenging for some
healthcare providers. Features such as the count of the number of
heart-rate measurements, the distance between the patient’s
home address and the hospital, or the ratio of prior admissions to
visits may not be readily available in other sites and thus require
some manual processing. However, as this challenge is not unique
to the current scenario, perhaps SMART applications will one day
allow automatic pre-processing of the data. Second, the matching
of equivalent variables between sites was also time-consuming for
this project and may not be applicable in other predictive tasks or
with more sites involved. Nonetheless, this task is already being
addressed by platforms such as FHIR and I2B210,42. In addition, by
applying feature selection we can limit the extent of this matching
process. Of note, while our model supports FHIR and was
originally implemented at BCH with FHIR since FHIR was not
supported at the other two sites, it was not used in the current
study. Lastly, this study does not provide an exhaustive review of
all possible multi-site implementation strategies. Furthermore, we
only studied one type of modeling technique (XGBoost), and our
results may not be applicable to types of models. We highlight the
main elements of such strategies and the importance of site-
specific customization, but further studies will be needed to
explore other approaches as well.
In conclusion, in this study, we provide a framework for

evaluating the use of predictive algorithms across multiple sites.
We demonstrate the strengths and weaknesses of different
approaches for implementation and the insights that can be

Table 2. Predictive performance for all model types and all sites.

Site Model type Specificity (%) Sensitivity (%) PPV (%) NPV (%) AUC

BCH Site-specific 90 68 61 93 0.9

Uniform 90 68 62 92 0.9

Ready-made (CHLA) 90 10 19 81 0.62

Ready-made (SSH) 90 33 43 85 0.64

Calibrated (CHLA) 90 61 59 91 0.87

Calibrated (SSH) 90 64 60 91 0.88

CHLA Site-specific 90 76 39 98 0.93

Uniform 90 77 40 98 0.93

Ready-made (BCH) 90 53 31 96 0.85

Ready-made (SSH) 90 29 20 94 0.62

Calibrated (BCH) 90 72 38 97 0.92

Calibrated (SSH) 90 72 38 97 0.92

SSH Site-specific 90 80 74 93 0.93

Uniform 90 78 74 92 0.93

Ready-made (BCH) 90 30 52 79 0.74

Ready-made (CHLA) 90 32 53 79 0.65

Calibrated (BCH) 90 72 72 90 0.91

Calibrated (CHLA) 90 73 72 90 0.91

The site-specific model was trained and validated on data from each site. The hybrid model used features selected at BCH and then trained with data from
each site. The uniform mode’ was built and trained using BCH’s data and then applied on the other sites’ data “as is” and without adjustment of the model’s
coefficients.
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gained on a model’s generalizability. The proposed framework
could serve as a guide for multi-site prediction scenarios,
supporting the widespread implementation of predictive models
in medicine.

METHODS
Study design
We conducted a retrospective cross-sectional analysis of all ED visits at
three medical centers: Boston Children’s Hospital (BCH), Children’s Hospital
Los Angeles (CHLA), and South Shore Hospital in Weymouth, MA (SSH).
Boston Children’s Hospital is a 415-bed tertiary care children’s hospital with
an annual ED volume of approximately 60,000 visits. Children’s Hospital
Los Angeles is a 495-bed tertiary care children’s hospital with an annual ED
volume of approximately 94,000 visits. South Shore Hospital is a 396-bed
community general hospital with an annual ED volume of approximately
100,000 adult and pediatric visits. We chose the three hospitals to provide
some elements of diversity in terms of geography, age, and community vs.
academic centers.
One year of data was analyzed from each site: Data from BCH and CHLA

were available from January 2017 through December 2017, while data
from SSH were available from July 2017 through July 2018. Analyses
included all visits with an outcome of “discharge to home” or “admission to
inpatient service.” All visits resulting in other dispositions were excluded.
The study was approved by the Institutional Review Boards of all three
participating hospitals.

Data collection
For each visit, we collected information on patient demographics, triage
emergency severity index (ESI) score43, mode of arrival, distance traveled
vital signs, anthropometrics (height, weight, body mass index), medica-
tions ordered, laboratory tests ordered, radiology tests ordered, pain
scores, risk scores such as the pediatric early warning score44,45, problem
lists in the EHR previously documented by clinicians, and history of prior
visits and admissions. Only structured variables were used. We obtained
data from the EHRs in use at each institution. CHLA and BCH use Cerner
EHR, and SSH uses EPIC EHR. In sites where information on the distance

patients traveled was not available, we calculated this distance by using
a database of distances between ZIP codes downloaded from the
National Bureau of Economic Research website46. This study only
included data that are routinely collected and that were available
within the first 60 min of the ED encounter. Missing variables were used
as features (e.g., lack of available blood tests in an encounter was an
indication that no blood tests were taken within the first hour of the
encounter).

Model development
Four approaches were used for the development of the
admission–prediction model at the different sites (Fig. 3): (1) In the site-
specific approach, separate prediction models were developed and
validated at each of the three participating sites. Each site’s encounters
were randomly divided into two subsets, 70% used for model develop-
ment (training) and 30% used for model validation (testing). Specific
features and specific coefficients were identified for each of the sites. (2) In
the uniform model approach, data from all sites were incorporated into a
single large centralized dataset. This dataset was then randomly divided
into 70% training and 30% testing sets that were used for model derivation
and validation as in the site-specific approach, but only a single model was
derived for all sites. (3) In the ready-made approach, the model was
developed at one site and then applied and validated “as-is” at the other
two sites (each time choosing a different site for model development). (4)
In the calibrated model approach, we combined elements of the above
approaches into a single approach similar to federated learning: the model
was developed at one “training” site in order to select the top-20 features.
These features were then passed to the two other validation sites where
new coefficients were calculated using the site-specific training data. The
resulting model was validated on each site’s testing set. As in the federated
learning approach, no clinical data were shared between the sites—only
the list of selected features. However, unlike federated learning, the
weights of the model were not shared between sites.
All models were developed using the XGBoost package of the R

statistical platform47,48. XGBoost was chosen based on our prior
experience with similar prediction tasks, where XGBoost was found to
be superior and more efficient than Random Forest, Naive Bayes, SVM,
and Decision Trees. The full model configuration, and the R code used to

Fig. 3 Summary of the four multi-site prediction strategies. a Site-specific model: three different models were generated using the same R
code where each model was trained and validated using site-specific data. b Uniform model: one model was generated using the data from all
sites combined. c Ready-made model: a model was trained at one site and then applied and validated at the other sites. d Calibrated model:
one site was used for feature selection and the two remaining sites were used to create a customized model based on these features.
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build the model, can be found in the Supplementary material
(Supplementary Note 1). Feature selection was conducted to pare down
thousands of available features. This was accomplished by 5-fold repeat
random sampling of a small portion of the training set containing 1000
observations, building an XGBoost model using this small sample, and
then identifying the top 20 features selected by these sub-models. An
XGBoost model was then built using the entire training set incorporating
the 20-features identified in the feature-selection process. This model was
validated on the validation set and a receiver operating characteristic
curve was derived.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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