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Guidelines and quality criteria for artificial intelligence-based
prediction models in healthcare: a scoping review
Anne A. H. de Hond1,2,3,8✉, Artuur M. Leeuwenberg 4,8✉, Lotty Hooft4,5, Ilse M. J. Kant1,2,3, Steven W. J. Nijman 4,
Hendrikus J. A. van Os2,6, Jiska J. Aardoom 6,7, Thomas P. A. Debray 4, Ewoud Schuit 4, Maarten van Smeden4,
Johannes B. Reitsma4, Ewout W. Steyerberg2,3, Niels H. Chavannes6,7 and Karel G. M. Moons4

While the opportunities of ML and AI in healthcare are promising, the growth of complex data-driven prediction models requires
careful quality and applicability assessment before they are applied and disseminated in daily practice. This scoping review aimed
to identify actionable guidance for those closely involved in AI-based prediction model (AIPM) development, evaluation and
implementation including software engineers, data scientists, and healthcare professionals and to identify potential gaps in this
guidance. We performed a scoping review of the relevant literature providing guidance or quality criteria regarding the
development, evaluation, and implementation of AIPMs using a comprehensive multi-stage screening strategy. PubMed, Web of
Science, and the ACM Digital Library were searched, and AI experts were consulted. Topics were extracted from the identified
literature and summarized across the six phases at the core of this review: (1) data preparation, (2) AIPM development, (3) AIPM
validation, (4) software development, (5) AIPM impact assessment, and (6) AIPM implementation into daily healthcare practice.
From 2683 unique hits, 72 relevant guidance documents were identified. Substantial guidance was found for data preparation,
AIPM development and AIPM validation (phases 1–3), while later phases clearly have received less attention (software
development, impact assessment and implementation) in the scientific literature. The six phases of the AIPM development,
evaluation and implementation cycle provide a framework for responsible introduction of AI-based prediction models in
healthcare. Additional domain and technology specific research may be necessary and more practical experience with
implementing AIPMs is needed to support further guidance.
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INTRODUCTION
Prediction models have a prominent role in healthcare research
and practice. Diagnostic prediction models make predictions
about the current health status of a patient, whereas prognostic
prediction models estimate the probability of a health outcome
in the future1,2. Methods from the machine-learning (ML) domain
and its broader field of Artificial Intelligence (AI) have seen a rapid
increase in popularity for prediction modeling. While the
opportunities of ML and AI in healthcare are promising, the
growth of complex data-driven prediction models requires
careful quality and applicability assessment to guarantee their
performance, safety and usability before they are used and
disseminated in practice.
A framework for structured quality assessment across the

entire AI-based prediction model (AIPM) development, evaluation
and implementation cycle is still missing. Such a framework is
needed to ensure safe and responsible application of AIPMs in
healthcare. For example, it can provide guidance on the
appropriate validation steps needed before implementation to
prevent faulty decision making based on overfitted models. The
absence of such a framework may have contributed to relatively
few models having been implemented to date3. We define the
term AI-based prediction model (AIPM) as follows: a data-driven
model that provides probabilistic patient-level predictions of the
current presence or future occurrence of a certain outcome (e.g.,

a certain patient condition), given certain input (e.g., certain
patient characteristics, genetic markers, medical images, or other
types of features).
We aimed to identify existing guidelines and quality criteria

regarding six predefined phases of the AI-based prediction
model development, evaluation and implementation cycle. The
six AIPM development phases range from preparation and data
collection to implementation in daily healthcare practice (see
Box 1) and form the core structure and driver for this review.
These phases are based on the predominant phases in clinical
prediction model research4,5. We performed a scoping review to
outline the most important aspects to consider in each phase,
while providing pointers to relevant guidelines and quality
criteria in the recent literature, focusing on actionable guidance
for those closely involved in the AIPM development, evaluation
and implementation cycle (e.g., software engineers, data
scientists, but also health professionals). We also aimed to
identify gaps in the existing guidance.

METHODS
A multi-stage screening strategy was used for this scoping review
driven by the six AIPM development phases (Fig. 1). We searched
for relevant academic literature published from January 2000 up
to January 2021 in three online databases containing a variety of
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medical, technical, ethical, and social science literature: PubMed,
Web of Science, and ACM Digital Library. The search strings
consisted of a combination of search terms related to: (i)
guidelines, quality criteria, best practices and reporting standards
(ii) artificial intelligence, including machine-learning and predic-
tion modeling in general and (iii) topics relating to one of the six
phases of AIPM development (see Box 1), such as ‘data cleaning’
for phase 1 and ‘impact assessment’ for phase 5. For the complete
search strings, and a filled PRISMA reporting checklist for scoping
reviews, see Supplementary Tables 1 and 2, respectively.
We used the following inclusion criteria for our review process:

(i) documents (e.g., reports, articles, or guidelines) primarily aimed
at the individuals directly involved with the development,
evaluation, and implementation of AIPMs (excluding institution
or organization wide guidance) and (ii) documents with actionable
guidance (e.g., clearly defined recommendations on how to
develop AIPMs and implement them into practice). The following
exclusion criteria were used: (i) guidance limited to one medical
domain (e.g., cardiology) without generalizing to other domains,
(ii) guidance limited to one AI technique (e.g., reinforcement
learning) without generalizing to other techniques, (iii) guidance
aimed at governing institutions, (iv) documents published before
2000, (v) guidance limited to the prerequisites to develop, validate
and implement an AIPM (e.g., documents focusing on the
development of data infrastructures or legal and governance
frameworks), and vi) documents not written in English.
Two reviewers (AdH and AL) performed title and abstract

screening of the documents produced by the online database
search. Additional literature was added through manually
scrutinizing (snowballing) the reference lists of the identified
documents. We also asked a convenience sample of 14 AI experts
from academia and industry to provide potentially relevant
sources (see Supplementary Table 3). These additional search
strategies were specifically aimed at identifying gray literature
consisting of government, institutional or industry documents
and websites. The two reviewers performed a full-text screening
on all retained literature (including gray literature). Conflicts
regarding the eligibility of documents during the screening
process were resolved by consensus in regular sessions between
the two reviewers.
For the data extraction, two reviewers (AdH and AL) indepen-

dently identified keywords from each included document which
represented the area on which guidance was provided (e.g.,
development, parameter tuning). Each keyword was mapped to
more central topics pertaining directly to the AIPM development
phases (e.g., development and parameter tuning were mapped to
AIPM training). When applicable to more than one phase, the

keyword was placed in a phase-overarching topic (e.g., algorithmic
bias). The mapping was adjusted and fine-tuned repeatedly over
the course of data extraction and validated based on the input
from three co-authors (IK, SN, and MvS). During a second full-text
screening round, all identified guidance was extracted according
to the topics, summarized, and placed in the review section
corresponding to that phase-specific or phase-overarching topic.

RESULTS
After removing duplicates, the search resulted in 2683 documents.
The title and abstract screening reduced this number to 89
documents. Snowballing added 51 documents. A total of 27
papers from online databases, 23 from manual inclusion and 22
from expert consultation, were retained after full-text screening.
This led to a total of 72 documents included in the review (Fig. 1).
Data extraction resulted in 138 keywords, which were mapped to
27 phase-specific topics and 6 phase-overarching topics (see
Supplementary Table 4). In the next sections, the summarized
guidance is structured per phase. The phase-overarching topics
are summarized in Box 2 and further integrated in the phase-
specific summaries (as shown in Supplementary Table 5).
Supplementary Table 6 can be used as a lookup table structuring
the hyperlinks to the identified guidance per phase and
supplementary Table 7 provides the affiliations (industry, acade-
mia, governing), geographical region and type of source (literature
search, snowballing, expert consultation).

Phase 1. Preparation, collection, and checking of the data
Medical problem and context. One of the very first aspects of
developing and validating an AIPM as recommended in literature
is to clearly specify the medical problem and context that the
AIPM will address, and to identify the healthcare setting(s) in
which the AIPM is to be deployed3,6–15. Before starting actual AIPM
development, it is advocated to first conduct a thorough
investigation into the current standard of care, context and
workflow7–11,14–18, and to provide a clear rationale for why the
current approach falls short. For example, via analysis of the needs
of targeted end users through observations and interviews, and by
involving them from the start in the developmental pro-
cess11,12,17–20. Once a precise (diagnostic or prognostic) prediction
task has been formulated, healthcare actions, treatments or
interventions should be defined that are to follow from the AIPM
predictions3,6–8,10,11,13,17,21. Clinical success criteria must be
determined and described3,6,7,9,11,12,20,22, including an analysis of
the potential risks of prediction errors6,23. Developers are advised
to perform a feasibility check to assess at an early stage whether
the expected benefit of the AIPM to the healthcare system
outweighs the costs of developing the AIPM, its maintenance, and
other consequences of incorrect (or unfair) use of the predictions
of the AIPM9–12,22,24–28.

Patient privacy. The literature advocates that, before starting
data collection, the development team should ensure compliance
with relevant privacy legislation (e.g., General Data Protection
Regulation (GDPR)29, the Personal Information Protection and
Electronic Documents Act (PIPEDA)30 or the Health Insurance
Portability and Accountability Act (HIPAA)31) and take measures to
protect the privacy of the individuals whose data are used for
AIPM development, evaluation, or application8,12,20,23,26,32–36.
Consultation with data protection specialists has been recom-
mended23. Legislation may require identification of the right legal
basis (such as informed consent) for processing confidential
information of individuals12,20,26,32,33,36,37. In many cases, indivi-
duals must be informed about the processing of their personal
data20,23,29,35,36,38. In the case of using (existing) data that was
originally collected for a purpose unrelated to the AIPM

Box 1 Phases1 of AI prediction model construction

Phase 1. Preparation, collection, and checking of the data: the preparation,
collection and checking of the data to facilitate proper AIPM development (phase
2) and AIPM validation (phase 3).
Phase 2. Development of the AIPM: the modeling of the relation between the
predictive input variables (features/predictors) and the health outcome of
interest, via a mathematical formula or algorithm.
Phase 3. Validation of the AIPM: the testing (validating) how well the developed
AIPM from phase 2 predicts the outcome in individuals whose data were not
used during AIPM development (so called external validation data), quantifying
the AIPM’s predictive performance.
Phase 4. Development of the software application: the development of the
software application, containing the programming, design, usage and support of
the digital packaging of the AIPM.
Phase 5. Impact assessment of the AIPM with software: the assessment of the
impact of the usage of the AIPM and software on daily healthcare practice,
patient or individual health outcomes, and healthcare costs.
Phase 6. Implementation and use in daily healthcare practice: the implementation
of the AIPM in routine care, including maintenance, post-deployment monitor-
ing, and updating.
1These phases are primarily introduced to provide a clear structure to the article.
In practice, the order of these phases may slightly differ.
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(e.g., patient care), there must be an adequate processing basis for
re-using these data for AIPM-related purposes23,35. The legal basis
can be different for the development and validating versus
deployment phases of AIPMs23,33. More specifically, data subjects
may not be directly affected by AIPM development but are often
affected by AIPM deployment as the AIPM’s predictions could
influence the treatment decisions of data subjects. Depending on
local legislation, it can be required (e.g., under GDPR29 or the
Canadian Privacy Act39) to develop a data protection impact
assessment23,26,32,33,35,40,41, assign a data protection officer23,26,36,
and take measures to conduct data protection oversight, by
limiting access only to necessary and qualified personnel23,26,35.
Moreover, taking measures to achieve privacy by
design12,23,26,32,35,36,41–43, such as data minimization23,35,41, encryp-
tion35,41, or the use of data pseudonymization or anonymization
methods is recommended35,41. The use (or absence) of such
methods should be clearly motivated8,12,14,20,26,35,44, especially
whenever patient data leave primary care systems8. Any trade-offs
between predictive performance and privacy should be consid-
ered23. Finally, under some data protection regulations, individuals
have the right to withdraw consent, the right to object, and the
right to be forgotten (e.g., under GDPR29 and the California
Consumer Privacy Act45), which should be considered and
implemented throughout development and deployment stages
of the AIPM12,23,36,41.

Sample size. It is recommended that the amount of collected data
is sufficiently large for the intended purpose6,8,12,15,20,22,26,46–49, is
ideally prespecified8 and should be clearly reported3,14,37,46,50. The
required sample size for AIPM development depends on the
specific context, including the used prediction modeling method,
the number of features, the proportion of the predicted health

outcome (in case of categorical outcomes), and the desired
predictive performance47,48, which may be linked to a minimal
required clinical impact8. For regression-based methods48, and a
selection of machine-learning-based methods47, technique-specific
a priori sample size calculations are available, although for many
model architectures and settings (e.g., semi-supervised learning,
decision trees, or convolutional neural networks) no specific
guidance was found. If some (closely related) data are already
available, it has been suggested to inspect the model’s learning
curve in that data, setting out prediction performance against the
amount of used data, to estimate the required total sample size for
a specific use case47,51,52. For external predictive performance
evaluation (discussed in more detail in phase 3), as a rule of thumb,
it has been suggested that the sample should at least contain 100
events per outcome53, but for binary and continuous outcomes
more specific sample size calculations are now available54,55.

Representativeness. The literature recommends that the collected
data are representative of the target population and intended
healthcare setting, and sufficiently cover the relevant real-world
heterogeneity and diversity7,9,12,26,27,32,37,48,56,57. This representa-
tiveness criterion is considered crucial to assess and combat
algorithmic bias8,16,19,20,22–27,43,46,56,58,59 and poor calibration60.
Thorough assessment of the representativeness of the data is
strongly advised6,7,13,14,16,26,37,46,56,57, for which a detailed descrip-
tion of the collected data is required, including the time span of
data collection3,6,7,9,12,21,22,37,61, the collection site and set-
ting3,7,14,15,20–22,24,42,46,61–63, relevant population characteristics
such as gender, age, ethnicity, and relevant medical his-
tory3,7,15,21,37,46, and any inclusion or exclusion criteria that were
used3,6,7,9,13–16,20,21,37,50,56,64,65. Finally, revaluation and reporting
of any differences between the collected data and the intended
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Papers returned by PubMed
(Jan. 29, 2021):

n = 645

Papers returned by Web of
Science Core Collection

(Jan. 29, 2021):
n = 133

Papers returned by ACM
Computing Literature Guide

(Jan. 29, 2021):
n = 2,060

Remaining papers after
duplicate removal:

n = 2,683

Remaining papers after title
abstract screening:

n = 89

Papers excluded:
n = 2,594

Included after full text
screening:

n = 27

Papers excluded:
n = 62

Papers provided by
consultation of experts:

n = 22

Papers found from citations
(snowballing):

n = 51

Papers included for data
extraction:

n = 72

Included after full text
screening:

n = 23

Papers excluded:
n = 28

Inclusion criteria:
- aimed at developers and users
- include actionable guidance
Exclusion criteria:
- limited to one medical domain
- limited to one AI technique
- aimed at governing institutions
- year of publication < 2000
- limited to prerequisites
- not written in English

*

**

*

Fig. 1 Flow diagram of screening strategy. This flow diagram displays the screening strategy for the inclusion of guidance documents in this
scoping review.
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target population and setting is emphasized3,6,13,14,16,24,26,46,56,57,
including which groups may be underrepresented in the data with
respect to the target population.

Data quality. Extensive assessment of data quality has been
widely recommended6,7,12,13,16,22,24,26,33,37,64,65. For both feature
variables as well as outcomes, this involves the inspection and
description of missing data, consideration of potential errors in
measurement, and their underlying mechanisms (e.g., random or
systematic)3,6,9,13,15–17,20,22,27,37,46,47,66,67. A clear definition of
how and when each variable was measured should be
provided3,6,9,12–15,17,21,22,25,37,46,50,58,62,64,65, including specifica-
tion of measurement instruments or tools (e.g., make and model
of devices). Any known data quality risks and limitations should
be reported and related to potential impact on the AIPM’s
predictions and its validation (with special attention to
algorithmic bias)3,13,20,22,26,32,33,37,43,57. An additional validity
check could be performed by randomly sampling a portion of
the data and manually checking it for errors28,61. The proportion
of errors should be reported61. The literature also recommends
the installation of a process through which data errors can be
corrected43,61. Note that when such a process is installed, it
should also be employed during implementation and not just
during model development. It must be clearly identified whether
data were collected retrospectively or prospectively6,14,15,21,46.

Prospective data collection may be preferred as it more closely
matches the real-world operating conditions56. It was pointed
out that one should be aware of potential quality risks of
routinely collected data as such data are often collected for a
different purpose56,68.
The literature places a particular emphasis on the quality of

outcome data, more specifically the reference standard or
‘ground truth’. A clear rationale on outcome data collection
needs to be provided (e.g., an expert panel, biopsy, clinical
determination via laboratory tests), and any potential quality
issues3,6,13–15,21,46. In case the outcome data were manually
labeled, the AIPM development and validation team are urged to
precisely specify how and by whom data were labeled, including
the level of experience of the labelers, and elaborate on relevant
pitfalls or difficult cases8,10,15,21,46,64,65,67. Ideally, to ensure label
quality and prevent bias in AIPM evaluation, it was advised that
this is a well-defined and controlled process46,66, where experts
labeling the data work independently from each other8,21, and
are not directly involved in performance assessment of the
AIPM15,46. Depending on the exact procedure, inter-observer
variability or test reproducibility8,15,21,46 should be calculated to
obtain an assessment of label quality.

Data preprocessing. To prepare data for the consecutive phases,
or handle identified data quality issues, data preprocessing steps
may be applied. Such preprocessing steps can include splitting
the data into different subsets (e.g., train, tuning, and test sets),
augmenting data, removing outliers, re-coding or transforming
variables, standardization, and imputation of missing
data6,13,17,27,46,47,49,68. The literature stresses that detailed
description of any preprocessing steps applied to the raw data
should be provided, including software used to perform the
processing steps3,6,7,9,13–15,22,50,61,62,64,65. Missing data imputa-
tion is generally recommended over complete case analysis
where incomplete data are excluded, but this should depend on
the underlying missing data mechanism (missing completely at
random, missing at random, or missing not at ran-
dom)13,17,47,49,68. Any data augmentation should be carefully
considered against the potential introduction of bias, and model
developers are advised to collaborate with domain experts on
these preprocessing steps9,22,46. Finally, the literature stresses
that data splitting actions, must happen before any other
preprocessing steps are applied (e.g., missing data imputation
or standardization)27,69,70. This is crucial to prevent information
leakage between data subsets, which leads to overoptimistic
AIPM predictive performance.

Data coding standards. To facilitate interoperability, and easier
adoption of the AIPM into healthcare settings, it has been
recommended to align data management with relevant coding
standards and widely adopted protocols20,26. Relevant standards
may include SNOMED CT for coding clinical data, ICD-10 and
OPCS4 for clinical conditions and procedures20. Additionally,
adopting data exchange protocols in the final AIPM software
design has been recommended, but is discussed later in the article
(in phase 4, about development of the software application).

Phase 2. Development of the AIPM
Model selection and interpretability. The literature indicates that
the following aspects may affect the choice for a certain modeling
technique (e.g., regression, decision tree, neural network): predic-
tion performance, interpretability, the familiarity of the modeling
technique to the end user, computational requirements, devel-
opment and validation costs, maintenance, privacy, sample size,
and the structure of the data6,9,13,16,17,22,23,71. It is recommended
that any motivations for choosing a modeling technique should
be clearly articulated6,8,13,14,20,23,24,26, including benefits and

Box 2 Descriptions of identified phase-overarching topics2

Algorithmic bias refers to an AIPM that systematically disadvantages individuals
belonging to a particular subgroup when there is no a priori medical justification
for this discrepancy22–25,61–63,72,91. Subgroups can for example be based on
gender, race, culture, religion, age, sexual orientation, socioeconomic back-
ground, ability status and ethnicity6,7,22–24,26,32,42,61,72,79,91. There are two
important causes for algorithmic bias: non-representative development
data8,16,19,20,22–27,43,46,56,58,59 and historical human biases that are reflected in
data22–25,62. The field of AI fairness aims to address algorithmic bias by studying
how best to identify and mitigate it23,43.
Transparency and openness entail the possibility to inspect sufficient details on
e.g., study design, data selection, analytical scripts, the AIPM model and
modeling approach, justifications, and limitations, in a way that could allow
others to reproduce the process (e.g., for independent external validation of the
AIPM)9,22,40,58,62,125,126. Recommendations regarding transparency often involve
detailed reporting, following relevant reporting guidelines6,8,37,50,64,65,72, and
sharing of relevant information, code, and data across the different phases.
Interpretability of an AIPM refers to the degree to which a human can understand
how an AIPM comes to its predictions or classifications75. Being able to interpret
an AIPM may facilitate detection of potential errors and biases in its
predictions7,8,27,61. This may be an important factor in obtaining trust and
acceptance by end users (e.g., healthcare professionals and
patients)10,24,26,40,47,72,73,87. Interpretability and transparency are closely related.
For example, an interpretable AIPM may allow a physician to be more
transparent about the decision-making process to patients16,22,40,41,62,87.
Team members, end users, and stakeholders should be considered carefully
throughout the AIMP lifecycle (see Box 1). It has been recommended that already
from the start the AIPM development team must cover a multidisciplinary
technical, methodological and medical expertise8,11,17,20,23,26,32,71, consider data
and project management8,11,18,20,26, and attend to the diversity of the anticipated
end users of the AIPM11,20,26,62,66. Identifying and involving the right expertise
and stakeholders in each consecutive phase of the AIPM development,
evaluation and implementation cycle is crucial for its success in daily healthcare
practice8,18,22,23,26,32,58,79,88.
Security encompasses the protection of the AIPM and its (personal) data against
malicious actors9,22,32. Two risks particularly concerning an AIPM are the misuse
of the (often large amounts of) development and validation data23,33 and
software vulnerabilities introduced by the new AIPM code and infrastructure23.
Security measures protecting against these vulnerabilities form part of the AIPM
architecture and should be tested before deployment32.
Risks refer to any (unintended) consequences of the AIPM’s application that
threaten the AIPM’s safe and effective application9,18,20,57. Potential risks are flaws
in the design of the AIPM, technical defects, inappropriate or malicious use,
process changes, security breaches (see Security above), and disparate outcomes
for different use cases or subgroups (see algorithmic bias and fairness
above)12,26,28. Safety (for patients and healthcare professionals) should be
considered during all phases of AIPM development20.
2An index on where each phase-overarching topic is further discussed in the
article can be found in Supplementary Table 5.
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potential risks associated with the chosen techni-
que13,16,20,23,24,26,32. Facilitating interpretability of the AIPM, e.g.,
by providing insight into the impact of each feature or predictor
on the predicted outcome6,14,16,47,57,72,73, is frequently mentioned
as an important aspect for AIPM acceptance into healthcare
practice10,24,26,40,47,72. Important to note is that the term AIPM
interpretability—in this scoping review - does not imply causal
interpretability (e.g., high feature impact does not imply causal
influence of that feature on the actual health outcome).
Interpretability may help to detect trivial and erroneous AIPMs7,27,
provide medical domain experts with a possibility to discuss
whether the associations on which the AIPM relies are likely to
remain stable8,27,61, help to identify algorithmic bias7,22,24,27,40,43,
provide information on where the AIPM could be most easily
attacked27, or how the AIPM may behave under dataset shift7.
Neural networks are for example recommended for high volume,
dense, and complex data types13,74, but they are also considered
black boxes23,24,33, for which additional model-agnostic interpre-
tation tools (explainable AI) are needed to give insight into the
importance of individual features for the predictions13,23,24,33,57,75.
This is in contrast with linear regression and decision trees, which
have been considered inherently interpretable approaches.
Irrespective of the modeling choice, facilitating interpretability is
generally encouraged13,23,24,32,33,40,41,57,62,71, in particular when
AIPMs rely on sensitive social and demographic data, or if the
AIPM’s predictions significantly affect healthcare decision making
and a patient’s treatment16,22,41. Moreover, under the GDPR29,
patients have a right to an explanation that enables them to
understand why a particular decision was reached36,40,41. If a form
of interpretability is required, the underlying reasons should be
made explicit9,40.

Training the AIPM. Training (or fitting) the AIPM is the process of
determining the values of any model parameters (e.g., also called
weights, or coefficients) of the AIPM. Beside model parameters,
AIPM development involves choosing hyperparameters, which
influence model training and design, but are not necessarily part
of the AIPM itself (e.g., penalization factors of shrinkage, learning
rates, or the depth of tree-based methods). Automatic optimiza-
tion of hyperparameters (also referred to as tuning) has been
recommended9,27,66,76,77, for example, via nested cross-validation,
or using a small representative held-out tuning dataset. To foster
transparency and replicability it is advised that any details about
training and hyper-parameter optimization procedures should be
reported, including the final values of the (hyper-)parameters, the
number of intermediate models trained to come to the final
model, and an evaluation of predictive performance on the
training data3,8,13–15,50,61.

Internal validation. The goal of internal validation is to assess the
predictive performance of an AIPM in data that are unseen with
respect to model training but come from the same population and
setting.
To assess AIPM performance, the literature stresses that data

should be strictly separated into training, tuning and test
sets7,8,13,77, possibly stratified by the outcome event9,27 to prevent
data leakage, which can result in optimistically biased evalua-
tion7,13,27,69. Here, the training data is used to train the AIPM, the
tuning data for optimizing the hyperparameters, and the test data
for assessing the AIPM model performance. Variations on the
simplistic ‘split sample’ validation have been suggested for better
data efficiency and heterogeneity assessment (e.g., k-fold cross-
validation or bootstrapping). Especially for small datasets, a cross-
validated procedure is recommended13,27. The cross-validated
procedure should incorporate all processing steps (standardiza-
tion, imputation etc.) on the data to prevent data leakage9,69. The
split of the data and any potential repeats of this splitting
procedure should be reported13,14,50.

Following the literature, the performance evaluation should be
based on at least discrimination and calibration5,6,9,13,17,49,56,78.
Discrimination refers to the ability of the AIPM to distinguish
between subjects with and without the outcome of interest. It is
recommended to define the metrics used to measure discrimination
prior to the validation6,8,13. The chosen metrics should correspond
with the intended medical use and should be chosen in close
collaboration with domain experts (e.g., an AIPM estimating the risk
of breast cancer should be highly sensitive)7–9,14–16,19,57,79,80.
Discrimination is commonly quantified by the area under the
receiver operating characteristic curve9,15,17,46,49,56,69. In the case of a
clearly defined probability threshold, other metrics could also be
used like sensitivity (also labeled: ‘recall’) and specificity, or the
positive and negative predictive value (also precision)9,10,19,72,80.
Note that fixed probability thresholds are not always considered
necessary and when they are, they should be carefully determined
in collaboration with medical experts81.
Calibration refers to the concordance between predicted and

observed probabilities. A calibration plot is the recommended
method to evaluate calibration6,17,49,56,60. Discrimination and calibra-
tion evaluation metrics should be documented for all datasets13,14,16.
It is recommended to calculate confidence intervals to accompany
these metrics8,10,14,15,21,22,24,27,46,61.
For some application types, Decision Curve Analysis (DCA) is

considered a valuable addition to the discrimination and calibration
of the AIPM. This performance assessment quantifies how the AIPM
could impact patient care within the relatable workflow. Unlike
discrimination and calibration, DCA derives the clinical utility from
the predictive performance5,6,17,49,68,72. Promising results in a DCA
can provide a clear indication that an AIPM could benefit daily
healthcare practice. It could therefore serve as a precursor (but not a
replacement) of a prospective impact study or more fully developed
cost-effectiveness analysis (see phase 5).

Measures to reduce risk of overfitting. If an AIPM is adapted too
much to the training data, and therefore its predictions no longer
generalize well to new individuals not used for the development
of the AIPM, the model is said to be overfitted8,47,56,60,76,78. Often
mentioned factors contributing to overfitting are a small sample
size in combination with many candidate features, perfect
separation on rare categories, and a large imbalance resulting in
a small number of events for one of the outcomes6,47,49,72,76,77,82.
To prevent overfitting, a multitude of strategies are available,
often aimed at reducing AIPM complexity. It has been widely
recommended to report any measures taken to prevent over-
fitting3,7,8,13,15. One commonly referred strategy is feature selec-
tion13,15,27,47,76, for which it is explicitly recommended that
selection should work independently of model training (unlike
in methods as forward and backward selection) and is best
informed - a priori - by medical expert knowledge or existing
literature13,17,76. Other suggested strategies to combat overfitting
are dimensionality reduction47,76, which can be implicit (e.g.,
common in neural networks)76, and explicit penalization of
complexity (e.g., regularization)17,49,76. It should be noted that
when the sample size is simply too small, even penalization
methods have been shown ineffective to mitigate overfitting83,84.

Measures to identify and prevent algorithmic bias. The literature
indicates that tools to identify and mitigate algorithmic bias
should also be developed in the AIPM development phase when
applicable. First, a definition of fairness should be chosen that
corresponds with the AIPM’s intended use16. This definition should
be integrated with model development as part of the AIPM’s
evaluation metrics22,24,25. Examples of fairness metrics are out-
come parity22,23,25,42,43, true (false) positive (negative) rate
parity22,23,25,42,43,79, positive (negative) predictive value par-
ity22,42,43, individual fairness22, counterfactual fairness22,24,42,59,
and equal calibration23. Developers are advised to make the
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chosen fairness metrics available in a Fairness Position or Bias
Impact Statement that is reviewed by stakeholders22,23,25,26,62.
They are also advised to avoid modeling techniques for which it is
altogether impossible to evaluate algorithmic bias in an AIPM, for
example due to the high dimensionality of its architecture22.
Upon identification, algorithmic bias should be addressed by

employing an appropriate mitigation strategy during AIPM
development, which may be different for different applications
and domains. When the bias is caused by unrepresentative
training data, the main recommendation is to redo the data
collection to rectify this8,16,19,20,22–27,43,46,56,58,59. Unrepresentative
training data may also be addressed by undersampling the
overrepresented group or oversampling the underrepresented
group23,42. However, this may cause miscalibration of the model
predictions and should be used with caution85. The most popular
recommendation addressing other causes of algorithmic bias (e.g.,
historical human biases reflected in the data) is to exclude or
reweigh the features causing the algorithmic bias22,23,25,27,43,
although this may not eliminate the bias altogether. Alternatively,
the predictions themselves can be reweighed by adjusting the
probability threshold per subgroup42,43. Lesser mentioned recom-
mendations consist of the application of fairness optimization
constraints during AIPM training42,43 and the development of
separate models per specific subgroup23.
Note that the preconceptions and biases of designers can be

replicated in their modeling choices22. It is therefore considered
important to compose a diverse development team17,22–25, create
awareness and involve stakeholders in design choices22,24,26,27,72.
Also, developers should keep evaluating algorithmic bias at every
stage of the development process32.

Transparency of the modeling process. The literature advocates
that the final AIPM structure should be described in detail,
covering input, outputs, and all intermediate layers or para-
meters3,14,15,50. To facilitate transparency and reproducibility of
the developmental process, the used computational architec-
ture, high-performance techniques, software packages, and
versioning (data, model, configurations and training scripts)
should be reported13,14,16,50,64–66. Code for the complete model
building pipeline should be published in well-documented
scripts with computer environment requirements when possi-
ble7,8,13,14,16,19,20,24,25,27,33,50,62,64,65, including statements about
any restrictions to access or re-use.

Phase 3. Validation of the AIPM
External performance evaluation. In practice, an AIPM is likely to
be applied in a setting that differs from the setting in which the
AIPM was developed, which may have an impact on AIPM
performance. In contrast to internal validation (phase 2), external
validation is the application of an existing model without any
modifications to data from a different population or setting
compared to model development (see Generalizability below). The
literature highly recommends external validation for all AIPM
applications when applied to a new setting3,9,17,49,86. Similar to
internal validation of the AIPM, external AIPM model validation
can be based on discrimination (area under the receiver operating
characteristic curve, sensitivity, specificity, positive and negative
predictive values), calibration (calibration plot)5,6,13,17,49,56,78, and
Decision Curve Analysis5,6,17,49,68,72. When possible, the literature
recommends the comparison of current best practice (e.g., an
existing prediction model or medical decision rule) to the AIPM
performance7,8,14–16.
External validation can be performed on retrospective or

prospective data. Although prospective validation is rare, it is
preferred by the literature5,14,56, as it provides a better idea of the
AIPM’s true applicability to medical practice and allows the
healthcare professionals to identify and review errors in real

time19,72. External validation is ideally performed by independent
researchers from other institutions or settings3,8,10,16,27,68,72. The
necessity for external validation by independent researchers may
depend on the risks posed by the application (for example based
on the level of autonomy of an AIPM)80.

Generalizability. Generalizability refers to the AIPM’s ability to
generalize its performance to a new setting. Poor generalizability
may be caused by overfitting (see phase 2) or development data
that were unrepresentative for the new setting (see phase 1). The
literature recommends to assess generalizability on external data
from a different time period, place, or healthcare set-
ting3,7,8,10,16,17,27,56,68,72,79.
To ensure the generalizability of the AIPM to the intended

healthcare setting, developers are advised to extensively validate
the model for representative data from that setting6–8,10,13–
15,24,27,56,64,66,68,72,77,79,87,88 (see phase 1, Representativeness).
The intended healthcare setting may be different from the
population or setting on which the AIPM was originally
developed (e.g., an AIPM developed at a tertiary care center
applied to a smaller hospital). It is advised that the size of this
validation data should follow the available sample size recom-
mendations for AIPM validation (see phase 1)53–55. Developers
are urged to clearly describe any differences between the
development and validation data where possible14 and report
other sources potentially affecting generalizability6,8,27. Still,
AIPM updating, site-specific training or recalibration might be
needed to adapt an existing AIPM to a different healthcare
setting3,5,9,60,68,72. Statistical updating methods are available for
regression-based models89,90. For AIPMs outside of this context
no specific guidance was found.
Performance analysis by population subgroups or specific

problematic use cases is recommended to identify algorithmic
bias6,7,23,24,26,42,61,72,79,91. Note that such an analysis may be
limited by small sample sizes of certain subgroups. The literature
advises to discuss and explicitly report any identified sources of
algorithmic bias, so that end users know for whom the AIPM’s
predictive performance is subpar8,16. Many systems will display
some unfairness in their outcomes, and therefore a baseline
comparison with the algorithmic bias of the current systems may
be considered16.

Phase 4. Development of the software application
Interoperability. The ability for AIPMs to interoperate with various
existing digital infrastructure of hospitals and clinical care centers
is essential for their successful integration into healthcare practice.
Following existing standards from the industry was recommended
as this supports the interoperability of AIPMs9,18,20,26 (e.g., ISO/IEC
JTC 1/SC 4292 or the IEEE 7000-202193). This applies to data coding
standards as mentioned in phase 1 of this article, but also to data
exchange standards (e.g., FHIR94 and the HL7 framework95). Such
standards provide (among other aspects) guidance on what data
formats to use, how they should be exchanged between system
components, and reduce the risk that data are accidentally
misinterpreted due to slight differences in meaning of variables
(semantic interoperability). For wearable devices, following the
ISO/IEEE 11073-10418:201496 standard is advised20.
Moreover, multiple articles recommend the use of open source

or publicly available libraries in the software implementation of
the AIPM20,26 to increase the accessibility of the AIPM as a whole.
The NHS guide to good practice for digital and data-driven
health technologies goes as far as to recommend that all new
digital health services, including AIPMs, should be made internet-
facing from day one (and follow the Representational State
Transfer design principles) to promote accessibility and reduce
complexity and costs of incorporating them in the digital
infrastructure of organizations20.
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Human–AI interaction. A proper design of how end users can
interact with the AIPM is crucial for its adoption, and effective and
safe use in daily healthcare practice. What constitutes a good
design depends on the domain, healthcare setting and intended
end users. End users interacting with the AIPM can be healthcare
professionals, auditors, or patients (e.g., physicians may need to
communicate about the AIPM with patients18). Many of the
recommendations for human-AI interaction design come from the
general human-computer interaction literature and current
standards for general medical software design. Recommended
standards are ISO 9241-210:201997 for interactive systems and the
IEC 62366-1:201598 on application of usability engineering to
medical devices20. At the software development stage, it has been
recommended to include experts in user interface design8,18.
Designing a good user interface and interaction requires careful
consideration of the cognitive load of the end users10,18,68,99,100,
by showing only relevant information in the right context, and by
allowing adjustment of its behavior by end users99.
A widely suggested minimum criteria for AIPM user interaction

design is that it becomes clear to end users what the AIPM’s
intended use is26,79,87,99. Providing a model facts label should be
provided to the end users is advised, including the system’s
technical specifications, statistical working, limitations, fairness
criteria and validation, implementation disclaimer, and links to
process logs22,101.
To arrive at a good design, repeated extensive user experience

testing is recommended11,18. The AIPM should be evaluated
according to how it interfaces with the end user, and how well the
AIPM and the user perform together in a typical environ-
ment10,100,102,103. It was proposed that such evaluations can, for
example, be done via reader and user studies10,102,103. Tools such
as a system usability scale (SUS) have been suggested as a quick
and useful way of capturing user feedback20.
Careful attention should be paid to inclusiveness and broad

usability of the design20,22,26,62, for example by considering the
digital literacy of the end users20,22,26. Multiple sources state that
the design should match social norms, and make sure its
presentation does not reinforce stereotypes (e.g., regarding a
prespecified fairness position or bias impact statement, see
phase 2)22,24,26,32,99.
Moreover, the AIPM should have built-in mechanisms that

protect the end user and patient from potential risks to its safe
application (e.g., overconfidence in the AIPMs predictions or
automation bias). These mechanisms should detect situations
beyond the capabilities of the AIPM10,99, and share the
confidence in the predictions with the user10,22,26,99. Additional
information may be required explaining how the confidence
level relates to the input data23,43,61. It was recommended to
carefully consider whether predictions should be presented in a
directive fashion (by also proposing decisions), or in an assistive
way (e.g., by only showing estimated probabilities)9,22,40,68,86,87.
The literature advised that the design should facilitate AIPM

interpretability (see also Box 2. and the section on model
selection and interpretability in phase 2) and allow end users to
visually see the link between the input data and the predicted
output8,10,22,26,32,61,99 in a comprehensive way22–24,26,40,42,62, and
encourage giving feedback, correction and refinement about the
AIPM’s predictions99. Also, the design should enable the patient
to request a review of an AIPM-supported decision63, and may
need to provide the possibility to delete data (depending on
local legislation, see phase 1 on Patient privacy)12,23,36,41.

Facilitating software updating and monitoring. From a user
interaction design perspective, it has been recommended that
decisions are deterministic (consistently giving the same output
for a certain input)10, and that updates of or adaptations to the
AIPM should happen cautiously99. End users should be notified
clearly about any changes in the AIPM26,99, and AIPM software

should have the ability to roll back to previous versions, in case an
update results in significant problems20,66.
Finally, as monitoring and auditing of AIPMs in practice are

widely recommended (covered in more detail in phase 6), the
developed software should facilitate this10,22,26,32,58,62,104. This
means adequate logging and traceability of predictions and
decisions is required and the AIPM interface should provide
sharing of performance data with end users to enable ongoing
monitoring of both individual and aggregated cases, quickly
highlighting any significant deviations in performance10,26,61,66.
Such monitoring options should preferably be customizable by
the user79,99.

Security. The principles of security and privacy by design
mandate built-in data and software protection throughout the
AIPM lifecycle12,35,41–43, which is a central requirement in the
GDPR105. Cybersecurity standards provide guidance on how to
approach this20,23,26, for example ANSI/NEMA NH 1-2019106, NEN
7510107, MDCG 2019-6108, ANSI/CAN/UL 2900-1109, Medical Device
Cybersecurity Working Group on medical device cybersecurity110,
Food and Drug Administration on cybersecurity111, ISO/IEC TS
27110:2021112, ISO/IEC 27032:2012113, ISO/IEC 27014:2013114, and
ISO/IEC 27002:2013115. This might for example entail an initial risk
assessment of vulnerabilities in data and software, including the
risk of re-identification33, the risk of data loss and manipula-
tion33,35, and the risk of adversarial attacks9,22,23,26,35,43,59. Techni-
ques that make the AIPM more robust to these vulnerabilities can
be implemented, like converting data to less identifiable
formats23, adding random noise to the data23,34,41, federated
learning23,34,41, saving personal data across different data-
bases34,35, and adversarial ML techniques such as model hard-
ening and run-time detection22,42,43,59. Code review by an external
party and staying up to date on security alerts for code derived
from third parties are also recommended23,35. All security
measures should be tested before full deployment79 (also see
Software testing). The level of the required security measures will
depend on the impact a potential security breach might have on
the individuals involved, the type of AI deployed, and the risk
management capabilities of the organization23,27,35,41. The time-
frame within which security updates will become available should
be reported26.
An incident response plan anticipating a potential security breach

is recommended before deployment (also part of western legisla-
tion104,105,116), describing how incidents will be addressed and who
takes responsibility with relevant contact information23,35,61. When
new software vulnerabilities come to light, they should be
documented and reported32,61, and so should any changes made
to the AIPM in response to an attack after thorough testing10,23,35,61.

Software testing. AIPM software developers are recommended to
follow relevant existing international standards with regard to
software testing, such as the IEC 62304:2006117, the IEC 82304-
1:2016118, IEC 62366-1:201598, ISO 14971:2019119, Food and Drug
Administration principles of software validation120, and Food and
Drug Administration guidance for off-the-shelf software use in
medical devices121. Deliberate stress tests like load testing,
penetration testing, integration testing and unit testing are
important for the verification of the AIPM from a software
perspective10,26,35,46,66,79. Each different context of use may
require separate software testing to ensure reproducibility of
results across different situations, computational frameworks, and
input data58,62,88. These testing requirements depend on the level
of reliability needed and the risks posed by the AIPM in healthcare
practice26. These types of tests are also recommended to assess
the effectiveness of the security measures taken and to detect
new security vulnerabilities (see Security). They should be
repeated regularly to monitor the data and software security
during the AIPM lifecycle23,26,35.
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Phase 5. Impact assessment of the AIPM with software
Feasibility study. An impact assessment is performed to deter-
mine the clinical benefit of the AIPM for healthcare practice. It is
important to note that a good performance of the AIPM in terms
of discrimination and calibration (phases 2 and 3) does not
necessarily translate to clinical utility5,27,72.
A feasibility study or implementation pilot is recommended

preceding an impact study to ensure correct and safe use in
healthcare practice10,18,72. This type of study consists of repeated
live clinical tests in which variation is key to understanding the
functionality of the technology and workflow11,18. By adhering to
the ‘plan, do, study, adjust’ process, adjustments can be made
frequently and rapidly to optimize the workflow11,18.
The literature advises to clearly define the intended use and

intended users in the preparation of both the feasibility and impact
study12,19,64,65. It is also recommended to report any differences in
healthcare setting between the current and previous (validation)
studies68 and to state the inclusion and exclusion criteria at the
level of the participants and input data28,64,65. A description of the
integration into the trial setting is highly recommended, including
onsite and offsite requirements, version number and other
technical specifications28,64,65, but also the human-AI interaction
involved (e.g., assistive versus directive, see phase 4)46,64 and the
patient treatment strategy associated with the AIPM outcomes64,65.
It is emphasized that potential interventions included in the patient
treatment strategy following from the AIPM decision support
should have a solid scientific basis68. Stakeholders have preferably
given informed approval of the development and clinical applica-
tion of the AIPM88.

Risk management. Risk management is highlighted as an
important part of the impact assessment, alongside the prepara-
tions for a comparative study28,43. The literature recommends the
identification of potential sources of risk, extreme situations, and
failures before the onset of the study26,57,58. Determining
corresponding safety critical levels and quality checks is advised26.
Special attention may be paid to accidental misuse and
manipulation of the AIPM. Implementers are urged to report
errors, failures or near misses occurring during impact assessment
and afterwards24,26,43,61,64,65. A risk management plan can help to
execute the monitoring, reporting and mitigation of risks
encountered in healthcare practice12,16,20,26,28. This plan can for
example describe the roles and responsibilities of the partici-
pants28, the process for assessing and logging potential
risks12,20,24,26,43,61, a pathway to report potential risks12,24,26,43,62,
and the process to address these issues in practice12,43,62. Some
sources suggest that the assessment should be proportionate to
the risk posed by the AIPM26,43.

Impact study. In terms of the impact study design, a prospective
comparative study is recommended5,8,19,27,56,68,72,86,88. In a com-
parative study, the effects on clinical outcomes and decision
making are compared for a group exposed to the predictions of
the AI versus a non-exposed control group receiving standard
care5,28,68,86,88. The literature identifies a randomized controlled
trial (RCT) as the ideal comparative study design, randomizing
patients individually or per cluster5,9,49,68,86. However, this may
require more patients and might not always be feasible.
Alternative designs are stepped-wedge trials9,19,86, before-after
studies86, and observational studies5,19,56,68,86. For some applica-
tions (like imaging technology), a multiple reader multiple case
study design is also possible46, in which the effect of the AIPM on
decision making is measured by assessing the differences in
discrimination (see phases 2 and 3) with and without the tool.
Decision Analytical Modeling may give an initial estimate of
clinical utility before commencing a full-blown impact study (see
phases 2 and 3)68,86.

Trial outcomes can differ across domains and applications.
The most mentioned trial outcomes consist of clinical out-
comes or patient-reported outcomes5,16,20,68,72,86,88 followed
by cost effectiveness of care5,16,20,86,88 and changes in decision
making and workflow5,20,68,86. Additional trial outcomes are
patient experience20,56,88, user satisfaction and engagement88,
and changes in patient (healthy) behavior88. It is advised that
trial outcomes are also evaluated per clinically relevant user
group12 or per affected non-user group (also in terms of
algorithmic bias)12,24,91.
It is recommended that findings are communicated in an

understandable and meaningful way to healthcare profes-
sionals, but also to administrators and policymakers57. AIPM-
specific guidelines have been developed as extensions to the
CONSORT and SPIRIT guidelines for reporting on clinical trials
and their protocols respectively64,65. Peer-reviewed open
access publication may increase trust and facilitate adoption
of the AIPM in a wider clinical community9.

Phase 6. Implementation and use in daily healthcare practice
Clinical implementation. Clinical implementation consists of all
the steps that are necessary to deploy the AIPM in the healthcare
environment outside of the clinical trial setting (see phase 5). The
literature strongly recommends to state the necessary conditions
for deployment before proceeding with the implementa-
tion11,19,20,26,87. For example, the AIPM system might require
dedicated and locally available hardware8.
Although not always feasible, the integration of an AIPM

directly into the existing medical workflow is pre-
ferred8,19,59,68. This could for example involve direct integra-
tion into the EHR. Moreover, the user is urged to explicitly
disclose what part of decision making might be affected by
AIPM predictions24,26,42,62,63,87.
To further facilitate the implementation and consecutive

monitoring, the literature recommends automatic AIPM deploy-
ment (moving software from testing to production environments
with automated processes) and the facilitation of shadow
deployment66,91, which enables prospective local validation
(see phase 3) of new versions and updates19. Enabling the
automatic roll-back for production models is also advised to
address real-time operating risks (see phase 4)66. Moreover, a
procedure to safely abort an operation is highly recommended
when the system should stop being used due to a security
breach or safety risk23,26,62,79. Comparable to the feasibility study
of phase 5, pilot studies are recommended to examine the
potential pitfalls during implementation, considering both soft-
ware and hardware issues10,18,72.
Lastly, Institutions and implementers are encouraged to disclose

their innovation pathway, including the routes to commercializa-
tion16. The risks, investments, roles, and responsibilities of the
different parties may inform the allocation of benefits in a
commercial arrangement16,20. Albeit sparse,88 provide good
guidance on performing economic impact analysis.

Maintenance and updating. Although maintenance is essential to
AIPMs (and their software) that are highly dependable on changes
in the external world, little guidance can be found on this topic.
Developers are recommended to regularly update their AIPMs
over time to improve the AIPM’s predictive performance as new
improvements become available and to mitigate dataset
shift10,19,23. It is advised to pay special attention to the safe and
automatic updating of mature systems involving many configura-
tions for many similar models71. Note that updating the AIPM may
involve recertification. The USA Food and Drug Administration is
currently working on a framework that allows for repeated
updating of an AIPM without repeated recertification through a
change control plan122.
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Education. Education involves the training of end users in the
correct use of the AIPM. The literature recommends the general
education of end users, often healthcare professionals, on the
probabilistic nature22–24,42 and the limitations of AIPMs22,42. This
may involve the development of a general AI curriculum for
medical students and healthcare professionals.
Application specific training is also advised. The end user may

for example be educated on the underlying assumptions of the
AIPM58,68, its legal framework26, benefits20,26,58, risks and (techni-
cal) limitations15,22,26,58,62. Providing the end user with examples
of incorrectly classified cases could help in creating an under-
standing of the strengths and limitations of the AIPM14. Moreover,
it is recommended to regularly repeat the training on the correct
use of the AIPM12,15,26,58,62 and the appropriate response to
security breaches23,35. For example, end users may be made aware
of the possibility of automation bias and trained to maintain
vigilance22,26,57,87,91.
When the end user (healthcare professional) and AIPM subject

(patient) are different people, as is often the case for AIPMs in
healthcare, the literature recommends to train the healthcare
professional to explain one’s AIPM-supported decisions to their
patient22.

Monitoring and auditing. Monitoring refers to the post-
deployment evaluation of the behavior of an AIPM throughout
its lifecycle10,23,26,27,57,62,64,66,72,80,91. It is performed by the devel-
oper and implementers at the implementation site. Auditing refers
to periodic quality control checks of the AIPM (and all of its
monitoring aspects) performed by an independent third
party26,58,62,91. Among other things, It will aid the detection of
failures and near misses and through this strengthen the risk
management and security of an AIPM35,58.
Several aspects of AIPM functioning can be monitored as

identified in the literature. These may for example consist of
predictive performance and other model outputs9,10,26,57,63,79,80,
distribution of predicted versus observed labels71, reliability and
reproducibility10,26,62, types and severity of errors57, changes in
risk80, quality of the input data26,57,63,71,88, quality of the label91,
case-mix factors72,91, accessibility and integration of the model57,
use of the AIPM recommendations57,63,88, user satisfaction and
user feedback9,10,57,79,88, and (clinical) outcomes26,57,80,88.
Several monitoring aspects are highlighted in the literature that

deserve additional scrutiny. The monitoring of the fairness of an
AIPM throughout its lifecycle is often mentioned9,12,20,23,24,26,63, for
example by recording false positive and false negative prediction
rates sliced across different subgroups25,26,79,91. Second, the
monitoring of dataset shift is also repeatedly mentioned in the
literature5,10,22,72,79,91. Dataset shift is a change in the composition
of the input data caused by changes in clinical or operational
practices over time that can lead to the deterioration of AIPM
performance. It can for example be measured by an increase in
classification errors over time23. It can be mitigated by retraining
or updating the AIPM72. One last aspect is the monitoring of
feedback loops26. They originate when an AIPM is modeled on
care delivery features that in turn might be affected by the
outcomes of an AIPM.
It is advised to develop integrated mechanisms to facilitate real-

time monitoring available at the start of implementation16,71.
Implementers are encouraged to clearly define the context and
boundaries within which the monitoring is to be performed57.
Specifying the type of oversight is also recommended, e.g.,
human-in-the-loop, human-on-the-loop, or human-in-command26.
Some sources suggest the frequency of the monitoring should be
proportional to the AIPM’s risks22,23,91: the higher the risk to the
welfare of the patient, the higher the monitoring frequency
should be. One source suggests frequent monitoring may be less
important for AIPMs solely based on causal mechanisms as they
are less likely to change over time27.

In terms of auditing, the literature recommends the installation
of a comprehensive auditability framework10,22,58 and an audit
trail25,46,62, in which the AIPM’s predictions, model version, input
data, and use practices are methodologically logged and made
available to interested third parties22,26,32,35,58,61,62,66,91.
Implementers are advised to define mitigation pathways as part

of the monitoring and auditing plan to deal with inci-
dents22,35,71,79. This may for example involve the regular reporting
on failures and near misses and the organization of meetings to
discuss incidents58. Moreover, the literature states that mitigation
could and sometimes should lead to a change in the AIPM’s
design or use practices, for example an adjustment in the
instructions for use, a re-evaluating of the stakeholder impact
assessment, or a model update22,72,80.

Current gaps and future perspectives
We identified several important aspects of the AIPM development,
evaluation and implementation cycle for which clear guidance
was missing in the literature. First, guidance is lacking on the
requirements to be fulfilled during the assessment of the medical
problem and context. In other words, what aspects of a medical or
healthcare problem and setting make the introduction of an AIPM
likely to result in better patient care, and when are conditions
sufficient to initiate AIPM development? Guidance is also missing
on the a priori estimation of a minimum sample size for AIPM
development for semi-supervised approaches, and for certain
commonly used groups of ML modeling techniques such as
decision trees (e.g., random forests) and deep learning (e.g.,
convolutional neural networks).
Across all phases, several methodologies and quality criteria

were identified to address ethical issues such as algorithmic bias,
privacy preservation, and interpretable AI. However, the relevance
of these issues for different healthcare domains might differ and
so will the preferred definitions, metrics, and techniques to
describe and mitigate them. As domain specific guidelines were
not the primary focus of this investigation, we cannot with
certainty comment on the general absence of such guidelines.
Nevertheless, we would advise individual healthcare domains to
scrutinize the currently available guidance and, when necessary,
address these ethical issues across the AIPM development,
evaluation and implementation cycle for their respective settings.
Another aspect for which guidance was limited, is the

combination of different data sources (e.g., from different
registries and collection sites), and data modalities (e.g. imaging
data, electrophysiological data, and lab results) for AIPM devel-
opment. Although methodological studies exist for various
combinations, further research on best practices is needed. Also,
current guidance is primarily focused on binary outcomes (e.g.,
mortality), and guidance is missing on other outcome types (e.g.,
multinomial, ordinal, hierarchical or sequential outcomes).
Although many standards exist for software security, it is

unclear whether they suffice to address cyberattacks particularly
geared at AIPMs. Experience with AIPM security in practice and
experimentation with the insulation of AIPMs against different
types of cyberattack in preclinical settings will help to clarify this.
Also, more guidance on the unique aspects of AIPM-specific
human-AI interaction design is needed. This will for example entail
the presentation of and interaction with probabilistic outcomes
and the impact of model interpretability on end users.
Much more guidance is needed addressing how to integrate

the AIPM into the current healthcare or clinical workflow. More
guidance is also required specifying what design and execution of
the feasibility and impact studies are needed, and how to report
such studies.
Moreover, guidance is needed regarding the assessment of the

cost effectiveness of AIPMs. AIPMs differ from other health
technologies and are likely to affect healthcare differently, which

A.A.H. de Hond et al.

9

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)     2 



should be reflected in their cost effectiveness assessments (as was
done for the guidance on impact studies).
We described recommendations regarding the responsibilities

of different parties (developers, end users, organizations) involved
with AIPM development and deployment as described in the
identified literature (e.g., risk assessment, incident reporting,
patient privacy). However, more work is needed addressing the
proper distribution of accountability across all involved parties,
which may in turn inform institutional governance.
Lastly, guidance is needed on (long-term) maintenance aspects,

on dataset shift (and how to mitigate it), and on the frequency and
necessity of local validation, recalibration (updating), and retrain-
ing. As more and more AIPMs will be implemented into healthcare
practice in the coming years, this practical experience can be used
to inform these aspects.

DISCUSSION
This scoping review provides an easy-to-use overview and
summary of the currently available actionable guidelines and
quality criteria driven by the six phases of the AIPM development,
evaluation, and implementation cycle: (1) data preparation, (2)
AIPM development, (3) AIPM validation, (4) software development,
(5) AIPM impact assessment, and (6) AIPM implementation into
daily healthcare practice. Guidance was structured in specific
topics and mapped to the different phases and we provided an
overview of the current gaps in this guidance.
To appreciate our scoping review and suggested framework of

six phases several issues need to be addressed. First, our
definitions of ‘actionable’ guidance as an inclusion criterion and
the defined six phases are somewhat arbitrary and mainly
informed by vast experience with and guidance on developing,
evaluating, and implementing prediction models in healthcare.
Individual AIPM applications may deviate from the structure
presented here. Nevertheless, we believe the phases and their
associated topics will translate to most AIPM projects and are in
agreement with other phases formulated in the literature4,5,8,22.
Also, the structure provided by the six phases, and our focus on
actionability form two strengths of this scoping review and
produce a comprehensible and easy-to-use overview of practical
recommendations for those involved in the AIPM development,
evaluation and implementation cycle. This sets our review apart
from other work that was previously undertaken (e.g.,32,123,124).
Second, the literature databases and sources we used mostly

contain scientific literature and only English documents were
included in the final search (translations were also considered).
This may have biased our results towards academic sources and
English-speaking countries of origin. To combat this, we identified
additional gray literature through consultation with AI experts and
a thorough screening of citations in the included literature. As a
result, a substantial number of our included sources can be
considered gray literature. Moreover, due to our extensive search,
the current summary of available guidelines and quality criteria is
comprehensive.
Lastly, the expert group consulted was a convenience sample,

resulting in experts predominantly working in the Netherlands.
Diversity was obtained by inviting experts with different occupa-
tions (e.g., healthcare professionals, data scientists, statisticians,
engineers), from different healthcare domains (e.g., radiology,
internal medicine, intensive care, primary care, family medicine),
and from both academia and industry.
In conclusion, a substantial number of studies provide guide-

lines and quality criteria pertaining to the AIPM development,
evaluation, and implementation cycle, which can be grouped into
six well-defined phases. While the opportunities of AIPMs in
healthcare are undeniable, the growing interest in these
techniques requires careful quality and applicability assessment
to guarantee their safety and (cost-)effectiveness before they are

used and disseminated in healthcare. This review can serve as the
basis for a structured quality assessment framework. Several gaps
in the literature were identified where more research is needed.
Additional domain and technology specific studies may be
necessary and more practical experience with implementing
AIPMs is needed to inform further guidance.
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