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Executable network of SARS-CoV-2-host interaction predicts
drug combination treatments
Rowan Howell 1,6, Matthew A. Clarke1,6, Ann-Kathrin Reuschl2,6, Tianyi Chen1, Sean Abbott-Imboden1, Mervyn Singer3,
David M. Lowe 4, Clare L. Bennett1,4, Benjamin Chain2,5, Clare Jolly2✉ and Jasmin Fisher 1✉

The COVID-19 pandemic has pushed healthcare systems globally to a breaking point. The urgent need for effective and affordable
COVID-19 treatments calls for repurposing combinations of approved drugs. The challenge is to identify which combinations are
likely to be most effective and at what stages of the disease. Here, we present the first disease-stage executable signalling network
model of SARS-CoV-2-host interactions used to predict effective repurposed drug combinations for treating early- and late stage
severe disease. Using our executable model, we performed in silico screening of 9870 pairs of 140 potential targets and have
identified nine new drug combinations. Camostat and Apilimod were predicted to be the most promising combination in
effectively supressing viral replication in the early stages of severe disease and were validated experimentally in human Caco-2
cells. Our study further demonstrates the power of executable mechanistic modelling to enable rapid pre-clinical evaluation of
combination therapies tailored to disease progression. It also presents a novel resource and expandable model system that can
respond to further needs in the pandemic.
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INTRODUCTION
COVID-19 is a complex disease in both dynamics and severity1–4.
While most infections only result in mild symptomatic presenta-
tion, a proportion suffers more severe disease, for example, the
CDC estimate 4.9% of SARS-CoV-2 infections in the USA resulted in
hospitalisation in the period up to March 20215,6. Mild cases see
an innate immune and interferon (IFN-I/III) response to SARS-CoV-
2 infection, as typically observed in other viral infections, likely
supporting clearance of the virus and the onset of adaptive
immunity1,7,8. By contrast, a delayed or absent IFN-I/III response to
infection may contribute to the presentation of severe disease7,9–15.
This is especially of concern as emerging variants have adapted to
allow potent host immune antagonism16, allowing the virus to
replicate with little opposition in the early stages of infection1,10.
This can then be followed by a maladaptively strong and
persistent inflammatory response only after the majority of viral
replication has occurred9,17, leading to life-threatening conditions
such as acute respiratory distress syndrome (ARDS)18.
There is an urgent need for new effective drugs to manage

COVID-19 infection to lower morbidity, mortality and reduce the
strain on healthcare systems19,20. While several vaccines have
been approved21–23, many millions more patients will need
treatment during the years it will take to deliver vaccination
worldwide24,25. The path for de novo drug discovery is long and
complex; the best hope for rapid development of new therapies is,
therefore, to combine readily available drugs26, with a focus on
affordable and well-tested treatments, such as Dexamethasone,
which will be necessary to treat COVID-19 in low-income countries
that are struggling to obtain sufficient doses of vaccines. Given the
large range of potentially suitable compounds, several challenges
arise: which drugs are most effective and at what stage of the

infection? Are there combinations of drugs that allow effective
treatment at lower doses and reduced toxicity?
Driven by the different characteristics of early and late stages of

severe COVID-19, and the need to find therapies appropriate to
each stage of the disease without interfering with the effective
immune response in mild cases, we have developed a computa-
tional model that can reproduce these different phases of COVID-
19. This approach builds upon our previous success at finding
novel drug targets and effective drug combinations for cancer
therapy27–30. We created a detailed network map of the
interaction between SARS-CoV-2 and lung epithelial cells, as
pulmonary involvement, in particular, is a hallmark of severe
disease. We use this model to screen thousands of drug
combinations to find treatments that block either key viral–host
interactions important to viral replication, or the pathogenic
dysregulation of the immune response. We focus especially on
host-directed therapies, which may be more robust to future
variants of the virus31. We identify several combinations of
repurposed drugs that are predicted to act together to target
viral replication in the early stages of the disease or inflammation
in the late stage. Moreover, we propose that the model and screen
results represent a powerful resource for the community to
generate hypotheses about the potential effects of targeting host
and viral targets in combination.

RESULTS
Executable network map of the interaction between SARS-
CoV-2 and lung epithelium
We model the interaction map between SARS-CoV-2 and
lung epithelial cells as an executable Qualitative Network32

model (Fig. 1) using the BioModelAnalyzer (BMA) tool
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(https://biomodelanalyzer.org). This model is an executable
computer program in graphical form characterising the signal-
ling regulatory network (Fig. 2a), made up of 175 nodes,
representing viral and host proteins, as well as cellular
processes affected by these proteins such as viral replication
and inflammation. There are 387 edges joining these nodes
representing activating or inhibiting interactions (Supplemen-
tary Table 1). At any point, each node has a discrete level that
represents its activity that is determined by the input of
activations and inhibitions that the node receives and the
node’s target function (Methods, Supplementary Table 2).
Given the importance of the degree of type I/III IFN response in

disease progression1,7,10,12,15,33, we use it in our modelling to
reproduce the mild case and both the early and late stages of
severe cases of COVID-19, as well as an uninfected control,
through setting key input nodes in the model (see Fig. 2b and
Supplementary Table 3). The mild case is characterised by modest
symptoms from presentation to resolution, in part due to a rapid
IFN response. In contrast, severe disease may present with mild
symptoms initially, but in these patients, the IFN-I/III response is
evaded and suppressed1,7,15,33. This presents an opportunity for
intervention to prevent progression to the late stage of severe
disease through treatments targeting viral replication. Conversely,
in the late stage of severe disease, IFN-I/III response is increased at
the site of infection34 and most viral reproduction has already
occurred. This leaves behind viral RNA and proteins that trigger
further maladaptive immune responses, so anti-inflammatory
treatments may be more appropriate to control severe symptoms.
These different treatment goals require modelling of these

stages of severe disease separately. To accomplish this, we use the
node “Sensitivity of IFN Response” to convey both the response to
and magnitude of, IFN-I/III production and set this node in the
model to a low level in the early stage of severe disease. In the late
stage, we set this to high, and specify a high burden of viral RNA
and protein by the Viral Genome node, assuming replication has

peaked (Fig. 2b, c and Supplementary Table 3). Finally, our model
also represents mild disease and uninfected individuals, in order
to investigate whether treatments are predicted to have adverse
effects beyond known side effects. For example, treatments that
reduce maladaptive inflammation in the late severe case may
inhibit beneficial inflammatory response if given improperly at the
early stages of infection or in mild disease.

Network model validation by comparison to known effects of
SARS-CoV-2 infection and treatment
Having generated a network model of viral infection, we first verified
that it reproduced key results from experiments that have defined
SARS-CoV-2 interaction with lung epithelial cells, as well as known
clinical results establishing the utility of different treatments at
different stages of the disease (Supplementary Table 4). In particular,
we tested the model responses to monotherapies that have been
used as COVID-19 treatments, such as the antivirals Remdesivir35 and
Lopinavir36; and the immune modulators Tocilizumab37, Dexametha-
sone38, Interferon α-2a (Roferon-A)39 and Ruxolitinib40. Drugs were
modelled by setting the affected node in the signalling network to
either zero, to represent an inhibitory drug, or to the maximum value,
to represent an agonist. The effect of the treatment was then
assessed by comparing the resulting level of the nodes representing
cellular processes such as viral replication and inflammation to
known experimental results (Supplemental Table 4). We then
predicted the response of all phenotypes to these drugs (Fig. 3).

Inhibiting protein translation is predicted to suppress viral
replication in the early stages of severe COVID-19
Our approach to find new and improved treatments is to test the
response of our computational model to an exhaustive search
across combinations of many different drugs, either clinically
approved or in phase II/III trials, to determine optimal treatments
for each stage of development of the disease (Table 1). We

Fig. 1 Schematic workflow of SARS-CoV-2 infection modelling. Publicly available COVID-19 datasets are collated into two subsets. Data on
the point-to-point signalling pathway interactions of the virus with the host cell, and of the host cell in response to infection, are used to build
a network model. Data from experiments showing how the overall behaviour of the infected cell changes under perturbations, such as a
potential treatment, are used as a testing dataset to validate the model. The readouts of the model are compared to the testing dataset and
the model is refined iteratively until it reproduces all the experimentally observed behaviours. We then screen the effects of potential drug
treatments, either singly or in combination, on the model, to find the best-predicted therapies for early and late stage severe COVID-19.
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Fig. 2 Computational modelling of host–virus interaction in COVID-19. a The SARS-CoV-2 infection signalling network as modelled in the
BioModelAnalyzer tool. Viral proteins depicted in pink, host proteins depicted in green, cellular processes depicted in orange, RNAs depicted
in purple. Activating interactions are represented by arrows (→), inactivating by bars (⊣). b Description of the model constraints and outputs
for the three states of the disease and the control healthy state. c Trajectories of IFN –I/III response and viral load in mild and severe COVID-19
(as described in Park and Iwasaki, Cell Host and Microbe, 2020) were used to inform the model.
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implemented the screening by fixing the activity of nodes in the
network to a constant value to represent the effect of mono- or
combination treatments over all drug combinations and disease
stages (Fig. 2b and Supplementary Tables 3, 5). This in silico screen
predicted the most effective drug treatments against each stage
of COVID-19 and checked for additional adverse effects beyond
known drug side effects in mild cases of the disease compared to
the severe cases.
At the presentation stage of severe COVID-19, characterised by

a weak IFN-I/III response (Fig. 2b and Supplementary Table 3),
treatments that are able to arrest viral replication before it can
trigger an excessive inflammatory response are needed. As this
stage occurs mainly prior to hospitalisation, these treatments must
be taken as anticipatory therapy; at or close to the time of
suspected exposure or infection. It is therefore critical that they do
not adversely affect mild COVID-19 patients, as they will likely be
administered before it is possible to stratify patients by prognosis.
Our model predicts that, for example, consistent with known
treatments in clinical use and trials, Remdesivir35 and recombinant
Interferon α-2a (Roferon-A)39 are effective at reducing viral
replication at the early stage of severe disease (Fig. 4a). In
addition, several host translation inhibitors drawn from anti-cancer
therapies were also shown to be effective by our model, including
Homoharringtonine or Rapamycin (Fig. 4a). Homoharringtonine
has previously been identified in a profile of potential drugs
targeting SARS-CoV-241, believed to act through inhibition of the
eukaryotic small ribosomal subunit (60S)42, suppressing viral
replication as the virus depends on host translation machinery
for the production of viral proteins43. Homoharringtonine has
cleared Phase II trials for chronic myeloid leukaemia42 and so is a
good candidate to be fast-tracked for use. Similarly, Rapamycin
and other mTOR inhibitors, which block translation, are in trials as
post-exposure prophylaxis for COVID-19, to prevent the early
stage of severe disease from progressing44,45. Our model predicts
that Rapamycin is only effective against cap-dependent rather
than cap-independent protein synthesis. However, as SARS-CoV-2
is dependent upon hijacking the cap-dependent form of protein
synthesis46 this allows equal effectiveness in suppressing viral
replication as with other translation inhibitors, with less effect on
host protein synthesis and possibly fewer side effects (Fig. 5i).
Other translation inhibitors drawn from anti-cancer therapies
further demonstrate the potential of host-directed treatments47,48.

Combination of Camostat and Apilimod suppress viral
replication in early severe COVID-19
Our analysis further reveals options to combine different
treatments, focusing on cases where there is an improvement in
other pathological processes, in addition to decreasing viral
replication. Viral entry inhibitors Camostat (TMPRSS2 inhibitor) and
Apilimod (PIKfyve inhibitor) were shown to reduce viral entry but
not viral replication in the model, whereas in combination they
showed additional ability to prevent viral replication (Fig. 4a, b).
This combination also showed improved effects on other key
aspects of pathology compared to monotherapy (the effect of
mono- vs combination therapy is shown in Fig. 5a for all simulated
symptoms), recapitulating the effects of Apilimod seen in
TMPRSS2-negative cell lines49. Miltefosine (AKT inhibitor) was
shown in the model to be ineffective against viral replication alone
but exhibits several promising combinations. A combination of
Miltefosine with Ulixertinib (MAPK inhibitor) predicted effects
across the redundant pathways controlling translation, leading to
similar efficacy as Rapamycin (Fig. 4a, b). However, increased
inflammation is also predicted as a side effect (Fig. 5b). Conversely,
a combination of Miltefosine with the approved anti-inflammatory
Dexamethasone was predicted by the model to target both viral
replication and inflammation (Figs. 4b, 5c), if the ERK-inhibitory
effects of Dexamethasone are sufficient to replace a dedicated
inhibitor like Ulixertinib50.

Reduction of ER stress using 4-PBA predicted to reduce
excessive inflammation in late stage severe COVID-19
We next considered the late stage of the severe disease, as
defined by an inappropriate inflammatory response that must be
curbed (Fig. 2b and Supplementary Table 3). These treatments
must be used with care, lest they reduce the useful antiviral
immune response in the early severe or mild cases. As seen in the
landmark RECOVERY trial38, Dexamethasone alone is a partially
effective anti-inflammatory treatment for this stage of COVID-19
infection (Fig. 4c). Our model also predicts that sodium
phenylbutyrate (4-PBA) may have some efficacy at this stage.
Endoplasmic reticulum (ER) stress is dysregulated by the SARS-CoV
spike protein (S)51,52. It has been suggested that this pathway
plays a pro-inflammatory role, via activation of NFκB, in
coronavirus infections in general53,54; preliminary results show
similar effects in SARS-CoV-255,56. 4-PBA is a chemical chaperone
that helps reduce protein misfolding and so reduces ER stress
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Fig. 3 Model predictions of the effects of known drug treatments for COVID-19. The predicted behaviour of a Remdesivir, b Lopinavir, c
Tocilizumab, d Dexamethasone, e Roferon-A and f Ruxolitinib. Colour strength represents the strength of symptoms predicted by the model
following drug intervention. All nodes normalised to the maximal level of respective nodes, and range between 0–100%. Comparison to
known experimental results in Supplementary Table 4.
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(Figs. 4c, 5d). 4-PBA is already FDA approved for urea cycle
disorders and is under consideration for use in cystic fibrosis,
glioma and acute myeloid leukaemia57,58. However, this therapy is
predicted by the model to slightly worsen viral replication in the
mild case by decreasing IFN-II activity, and antiviral immunity
(Supplementary Fig. 2h). While this change is small, it may prevent
this therapy from being used prophylactically, but it can be safely
applied in the late stage of severe disease, once viral replication
has peaked, and viral load is waning. Similarly, the IFN-I blocking
agent Anifrolumab decreases inflammation in the late stage of

severe disease, but this has a counterproductive effect on viral
replication in mild disease (Supplementary Fig. 2h).

Antiviral Lopinavir predicted to suppress inflammation when
used in combination with Ruxolitinib in late stage severe
COVID-19
Ruxolitinib is already predicted to be effective as a monotherapy
and is currently being trialled for COVID-1940. However, Ruxolitinib
alone may, through inhibition of JAK-STAT and IFN-I signalling,

Table 1. List of approved drugs used for in silico screening and their targets in the network model.

Drug Pathway Targeted node References

4-PBA AT1R ER stress Hsu, A. C.-Y., 2020; Kolb, P. S., 2015

ACEi AT1R ACE1 Vaduganathan, M., 2020

Actimmune IFN IFN-II Razaghi, A., 2016

Aliskiren AT1R AngII, Ang1-7 Sriram, K., 2020

Anifrolumab IFN IFNAR Riggs, J. M., 2018

Apilimod Entry PIKfyve Ou, X., 2020

ARB AT1R AT1R Vaduganathan, M., 2020

Baricitinib IFN Jak1, Jak2, ViralFusion Richardson, P., 2020

Basiliximab Cytokines & Chemokines IL-2 Onrust, S., 1999

Belnacasan Inflammasome Caspase-1 Kudelova, J., 2015

Camostat Entry TMPRSS2 Hoffmann, M., 2020

Canakinumab Cytokines and chemokines IL-1B Ucciferri, C., 2020

Carlumab Cytokines and chemokines CCL2 Lim, S. Y., 2016

Cetuximab Signalling EGFR Drugbank 2021

Chloroquine Structural EndosomalpH, glycosylation, TNF-a, IL-6 Wang, M., 2020; Savarino, A., 2003

Colchicine Inflammasome Inflammasome Martinez, G. J., 2017

Copanlisib Signalling PI3K Yang, J., 2019

Dexamethasone Inflammasome IL-10, TNF-a, NF-kB, JNK, ERK, p38, IL-1B, IL-8 Selvaraj, V., 2020; Smoak, K. A., 2004;
RECOVERY 2021

Disulfiram Inflammasome GasderminD Hu, J. J., 2020

Emricasan Inflammasome Caspase-1, Caspase-3, Caspase-8, Caspase-10 Kudelova, J., 2015

Fedratinib IFN Jak2 Szelag, M., 2016

Homoharringtonine Translation 60S Choy, K.-T., 2020; Winer, E. S., 2018

Infliximab Cytokines and chemokines TNF-a Robinson, P. C., 2020

Lopinavir Non-structural 3CLpro Choy, K.-T., 2020; Ma, C., 2020; Cao, B., 2020

Losmapimod Signalling p38 Drugbank 2021

Miltefosine Signalling Akt Nitulescu, G. M., 2015

N-acetylcysteine AT1R ROS Meng, Y., 2015

Nivocasan Inflammasome Caspase-1, Caspase-8 Kudelova, J., 2015

Rapamycin Signalling mTORC1 Ballou, L. M., 2008

Recombinant IL-10 Cytokines and chemokines IL-10 Asadullah, K., 2003

Remdesivir Non-structural nsp12-nsp7-nsp8 Wang, M., 2020; Beigel, J. H., 2020

Roferon-A IFN IFN-I Mantlo, E., 2020

Ruxolitinib IFN Jak1, Jak2 Szelag, M., 2016; Cao, Y., 2020;
Thorne, L. G., 2021

SAR113945 Sensing of Viral RNA IKK Herrington, F. D., 2015

Tetrandrine Entry TPC2 Ou, X., 2020

Tocilizumab Cytokines and chemokines IL-6 Mihara, M., 2011; RECOVERY 2021

Ulixertinib Signalling ERK Hsu, A. C.-Y., 2020

Umifenovir Entry ACE2-Spike, S Wang, X., 2020; Kim, S. Y., 2020

The network model was used to evaluate the best single and combinations of 38 drugs, either clinically approved or in phase II/III trials at the time of writing.
Drugs that had not passed phase II/III clinical trials at the time of writing are included in Supplementary Table 5 and the network model predictions for these
drugs are shown in Supplementary Figs. 8, 9.
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impair innate immune-mediated suppression of viral entry and
replication in mild cases (Fig. 3f and Supplementary Fig. 2g, h),
and has no benefit in early severe disease (Fig. 3f and
Supplementary Fig. 3d). While our model does not suggest
combination treatments that can ameliorate this, meaning that
Ruxolitinib is likely too risky to use in mild disease, we predict
several ways to enhance the effects of Ruxolitinib appropriate for
the late stage of severe disease. These include drugs that are

ineffective alone such as SAR113945 (IKK inhibitor), Infliximab
(TNF-α inhibitor), Canukinumab (IL-1B inhibitor) and recombinant
IL-10 (Figs. 4c, d, 5e–j).
The trade-off of these combinations suggests that they should

be used only in the late stage of the disease. For example, a
combination of Rapamycin and Ruxolitinib is predicted to be more
effective against inflammation than either drug alone. However,
together these drugs are also predicted to increase viral entry (Fig. 5i).
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This may suggest that Rapamycin alone could be a good early
monotherapy and, if the disease progresses, could be combined with
Ruxolitinib in the late stage when a viral entry has already peaked.
However, secondary infection, especially bacterial, could be a concern
given the potent immunosuppressive effects of some of these
combinations.
Lopinavir, often administered with Ritonavir, an agent that

increases the half-life of Lopinavir in plasma, acts against the virus
directly by blocking viral proteases, but has not demonstrated
success in treating hospitalised COVID-19 patients36,59. This is
consistent with our model’s prediction, which suggests that while
Lopinavir may be effective at reducing viral replication in the early
stages of severe COVID-19 (Fig. 4a), it is not predicted to provide
additional benefit in the late stage of the disease (Supplementary
Fig. 4g, h). However, while Lopinavir inhibits the 3CL protease of
SARS-CoV-160, it may only be effective against SARS-CoV-2 at toxic
doses41 or not at all61 though dedicated 3CLPro inhibitors are in
development62, including Paxlovid (PF-07321332)63. Lopinavir is
one of the therapies currently being tested in the FLARE trial64,
which may shed light on this.
Promisingly, targeting 3CL protease in our network model

showed interesting anti-inflammatory effects, especially when
used in combination with other drugs. 3CL protease is responsible
for the proper processing of many viral proteins, including those
involved in RNA-dependent RNA polymerase activity (RDRP).
Without RDRP activity, the virus is unable to produce sgRNAs
required for translation of structural and accessory proteins,
including p3a and S, which have been shown to have a pro-
inflammatory effect55,56. Direct targets of 3CLpro activity like viral
nsp10 have also been shown to modulate the expression of pro-
inflammatory cytokines65. This means that 3CL protease inhibition
could potentially increase the effectiveness of anti-inflammatories
such as Anifrolumab (IFNAR inhibitor) or Ruxolitinib (JAK1/2
inhibitor) (Figs. 4c, d, 5j, k). As such, anti-3CLpro drugs, such as
Lopinavir or Paxlovid, may provide benefit even after viral
replication has peaked by also playing a role in combination with
other drugs to control dysregulated inflammation, and so can be
beneficial in both phases of the disease. This contrasts with drugs
such as Remdesivir, which blocks viral replication effectively by
blocking RDRP but leaves other pro-inflammatory proteins intact.
Consequently, our model predicts that Remdesivir will only be
effective when applied early in the course of the disease. This is in
line with clinical trials showing only modest effects when applied
in patients who are already hospitalised35.

Characteristic differences in cytokine level distinguish mild,
early severe, and late severe COVID-19
As our model predictions show that the effect of drugs is
dependent on the stage of the disease at which they are
administered, we further searched using our network model for
potential prognostic biomarkers for the different stages by
comparing the steady-state levels of each node in mild, early,
and late severe COVID-19. We observed that a characteristic
signature of the early disease is a lower activity of cytokines, such
as TNF-α, IL-6 and IL-10 and Interferons type I-III, compared to the
mild case (Supplementary Fig. 5). These will subsequently rise in
the late stage of the severe case, with some such as IL-6 exceeding
the level seen in the mild case. This is in line with the evidence
that severe disease arises, in part, due to an insufficient initial
innate immune response, followed by a maladaptively strong and
persistent inflammatory response and the prior identification of
TNF-α, IL-6, IL-8, IL-10 and CXCL10 as prognostic markers for
COVID-19 disease severity in hospitalised patients33,66–69. This
suggests that measuring cytokine levels could help distinguish
mild from severe cases in the early stages of the disease, but we
also note the risk of an incorrect prognosis due to similarities
between late severe and mild cases.

Camostat and Apilimod combined have significantly greater
effect suppressing viral entry and replication
To validate our predictions, we selected the most promising
combination treatments affecting viral replication identified from
modelling early severe disease. Our model predicts that Camostat
and Apilimod would have an enhanced effect on viral replication
in combination compared to monotherapy (Supplementary Table
7). We tested this in Caco-2 cells and found that, as has been
previously reported70, Camostat is effective at limiting viral entry
leading to a reduction in SARS-CoV-2 nucleocapsid protein-
positive cells in culture, but cannot completely suppress viral
entry and replication (Fig. 6a). The addition of Apilimod
significantly reduced SARS-CoV-2 infection further, even at the
maximum dose of Camostat (Fig. 6b, F= 90.67, p= 2.8 × 10−10), in
an additive manner (Supplementary Fig. 6). We further investi-
gated whether the reported inhibitory effects of Dexamethasone
on ERK activation50 were sufficient to synergise with Akt inhibition
by Miltefosine (Supplementary Fig. 27) to exert direct antiviral
effects, as this may provide extra benefit to Dexamethasone
application early in disease progression. This builds on earlier
findings that the combination of MAPK and PI3K pathway
inhibitors is effective for MERS-CoV71, and inhibitors of the PI3K/
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Akt/mTOR pathway are effective against SARS-CoV-272,73. How-
ever, this combination was ineffective except at doses of
Miltefosine that showed toxicity (Supplementary Fig. 7d), poten-
tially due to limited ERK inhibition by Dexamethasone in Caco-2
cells in vitro. This may be due to the slow nature of the effect of
Dexamethasone on ERK, and so beneficial effects may not be
evident in short-term cell-culture50.

DISCUSSION
Using our computational model, we can predict differential
responses to therapy at different disease stages and explore the
potential benefits of combination therapies over monotherapies
for treating COVID-19 patients to identify the most effective
combinations (Table 2). In this study, we have focussed on
screening drugs that are clinically approved or in Phase II/III trials
as these have the potential to immediately benefit patients in the
current crisis and have had their efficacy validated in clinical
practice. We further assume all drugs are maximally effective
against all their putative targets to find the broadest array of
potential therapies to guide experiments. A specific advantage of
our computational approach is that we are able to screen a large
number of potential drugs and combinations of drugs in a few
hours. We have additionally screened for effective mono- and
combination treatments for 36 more drugs of interest that are not
yet approved or under trial (Supplementary Table 5 and
Supplementary Figs. 8, 9). In addition, we have tested all possible
hypothetical interventions against all the viral and host proteins in
the network model – screening a total of over 9,000 combinations.
These targets, if they can be made druggable, suggest potential
novel viral or host-directed targets (Supplementary Figs. 10, 11).
Together, the network model and the drug screening algorithm
provide a valuable resource that can be leveraged by the scientific
community to generate hypotheses about the effect of potential
therapies on cellular processes and complement existing screens
of monotherapies74.
There are several computational approaches that have been

applied to drug screening that are being applied to COVID-19,
each with their own strengths and weaknesses. For example, as
the structures of SARS-CoV-2 proteins have been determined,
existing databases of small molecules have been leveraged to
survey thousands of candidates to bind to these proteins75. Such
studies helped identify 3CLpro as a common target, as well as the
use of drugs such as Lopinavir and Remdesivir26. Another
approach is the use of protein–protein interaction networks,
which are particularly suited to identifying host-directed thera-
pies76,77. These networks can be analysed for their structure alone

and can cover a broad range of potential targets. These have been
used to identify, for example, the potential for cancer drug
repurposing47,48. However, static-network analyses rely on the
assumption that certain features of the network structure can
identify the best targets, e.g. proximity to disease-associated
nodes, but they cannot predict specific effects. Moreover, they rely
on pre-existing network databases or require additional cura-
tion78,79 or machine learning80 for new network types. Mathema-
tical models such as Ordinary Differential Equations can
interrogate the dynamics of the disease, but require precise data
to fit model parameters, and so can only handle a smaller set of
variables81,82.
By contrast, our approach combines scalable, executable

modelling with transparent, biologically plausible explana-
tions30,83 since each of our predictions is derived from biological
interactions that can be explained in the context of the overall
model, which itself is derived from, and consistent with,
experimentally verified observations (Supplementary Table 1).
The mechanistic explanations from our model advance the fight
against the COVID-19 pandemic by increasing our understanding
of why some treatments work and others fail. Our model and
screening are readily accessible and are built using the BMA open-
source and freely available toolset (https://biomodelanalyzer.org)
and can be updated as new SARS-CoV-2 variants emerge that may
exploit different mechanisms to enter cells and replicate or
suppress host defence mechanisms16.
We deliberately chose to focus on the innate, rather than the

adaptive immune response, specifically in lung epithelial cells. We
further prioritised predicting the best targets for optimised drugs,
rather than attempting to model the full pharmacodynamics of
specific compounds. This allowed us to survey a broad selection of
potential therapies for a critical cell type in the severe form of
COVID-19. It also allowed us to focus specifically on two scenarios
for the innate immune response: first, a low response seen in
many patients9–14 that we believe characterises the early stage,
and second, a persistent and excessive response in the late phase
of the disease17,84.
We considered this broad scope appropriate at this stage of the

pandemic, when there is a need for rapid development of new
treatments, but without compromising safety. In the absence of
computational screening of the kind we advocate, there has been
a focus on only a small number of drugs85,86, many screened
through expensive Phase III trials86 with high-profile safety
concerns in the case of Hydroxychloroquine87, one of the most
studied85. Our computational approach can help accelerate the
process of screening more drugs and rejecting those with safety
concerns, rapidly guiding clinicians to the most likely candidates.

Table 2. Summary of predicted effective treatments for early and late severe COVID-19.

Predicted treatments to reduce viral replication
in early stage severe COVID-19

Predicted treatments to reduce inflammation in
advanced-stage severe COVID-19

Single drugs Umifenovir
Baricitinib
Lopinavir
Rapamycin
Remdesivir
Roferon-A

Dexamethasone (anti-inflammatory)
4-PBA (ER stress inhibitor)

Drug combinations Camostat (TMPRSS2i)+ Apilimod (PIKfyve inhibitor)
Miltefosine (AKTi)+Ulixertinib (MAPKi)

Ruxolitinib (JAKi)+ Recombinant IL-10
Ruxolitinib (JAKi)+ Canakinumab (IL-1Bi)
Ruxolitinib (JAKi)+ Infliximab (TNF-α inhibitor)
Ruxolitinib (JAKi)+ SAR113945 (IKKi)
Ruxolitinib (JAKi)+ Rapamycin (mTORi)
Ruxolitinib (JAKi)+ Lopinavir (3CLpro inhibitor)
Anifrolumab (IFNARi)+ Lopinavir (3CLpro inhibitor)

Drug treatments predicted by the computational model to be effective in early or late stage severe COVID-19.
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Exemplifying this, amongst the most promising targets for early
severe COVID-19 predicted by our model were Camostat and
Apilimod, primarily targeting TMPRSS2 and PIKfyve respectively.
We show that these drugs are significantly more effective together
than alone in suppressing viral entry and replication in Caco-2
cells (Fig. 6). Combining these drugs effectively blocks the two key
pathways for viral entry, via the cell membrane exploiting
TMPRSS2 and via the endosomal route, without which the virus
is severely limited in routes into the cell70. This novel combination
builds on prior work blocking cathepsin directly70,88 and
demonstrates its effectiveness with two phase II tested drugs.
This combination also limits the range of host target cells the virus
can infect. Camostat alone will only be effective in cells that allow
TMPRSS2 entry, while the TMPRSS2-negative cell population also
targeted by the virus remains permissive89. The addition of
Apilimod may prevent this by targeting the endosomal entry
pathway. While current variants of SARS-CoV-2 primarily exploit
the TMPRSS2 entry route90, this may be beneficial if the virus
evolves to exploit the endosomal route more aggressively. Host-
directed therapies such as this and others suggested by the model
may be more resistant to future mutations in SARS-CoV-231.
Our computational model could be developed further to

address patient stratification and correct dosing. Many treatments,
including those we suggest, depend upon being administered at a
specific stage of the disease, making it vital to accurately stratify
patients, and necessarily includes factors outside the scope of our
model, such as when it is practical to administer treatment. As an
example, Remdesivir and Interferon α-2a (Roferon-A) have similar
effects in the model, but Interferon α-2a may be significantly
easier to administer as it is inhaled, and so may be more
appropriate in the early case, compared to Remdesivir that
requires intravenous administration. The likely side effects of
treatments must also be considered, though it is hoped that
treatment courses will be relatively short; Miltefosine with
Ulixertinib is likely to produce diarrhoea and vomiting, which
may be a severe burden in an unwell patient and pose aerosol
risks to medical staff attending to them. Many of these adverse
effects are driven by interaction outside the scope of the current
model and this could be a fruitful area of expansion. Our network
model helps address stratification by identifying potential
biomarkers for different stages and severities of disease. It could
also be extended to address dosing for both mono- and
combination therapies. Finally, as we understand more about
the progression of the disease and the set of traits that determine
mild versus severe disease, the model could be expanded to
better and, in more detail, explore the stages of severe COVID-19.
In this study, we have demonstrated that computational

modelling has the ability to rapidly screen and predict new and
improved therapies for previously unknown and life-threatening
conditions. In particular, through this approach, we have listed
several new combination therapies, based on existing and
approved drugs, with the potential to improve outcomes for
COVID-19 patients. The flexibility and transparency of mechanistic
computational modelling will allow this work to be further
developed as the virus evolves and demands further changes in
therapeutic practice.

METHODS
Qualitative networks
We model the viral–host interaction network as a discrete qualitative
network32. Qualitative networks are an extension of Boolean networks91 in
which each node may take multiple finite values in a fixed range (e.g. 0,1,2)
rather than only ON and OFF. We build and analyse this network model
using the open-source (MIT License) and freely available BioModelAnalyzer
(BMA) tool92 https://biomodelanalyzer.org. The model is available at
https://github.com/JFisherLab/COVID19.

The network consists of nodes representing viral proteins and RNA; host
genes and proteins; processes such as viral entry; and phenotypes such as
inflammation (see Supplementary Notes). The interactions between nodes
are represented as edges (see Supplementary Table 1). The level of activity
of a node is represented as a positive integer within a fixed range specific
to that node. The level of activity changes in response to other nodes, as
determined by a mathematical function associated with the node called a
target function. The target function takes as input the level of
neighbouring nodes that have an incoming edge to the node the target
function controls. The default target function is avg(pos)-avg(neg). This
takes the mean of the level of activity of all the nodes with a positive edge
(represented by an arrow (→)) and subtracts the mean of the level of
activity of all the nodes with a negative edge (represented by a flat head
(⊣)). More complex functions are needed to describe nodes with behaviour
such as only activating when an input rises above a threshold. These target
functions, and their rationale, are described in Supplementary Table 2. If
node X has a granularity of a-b and is used in the target function of
another node X’ with range a’-b’, then it is scaled to the range of X′ using
the equation:

X � að Þ b0 � a0ð Þ
b� að Þ þ a0

(1)

When presenting the values of nodes of differing ranges in the same
plot (Figs. 3, 5 and Supplementary Figs. 1, 5, 12) we normalise the value of
each node as a percentage of the maximum value of the node.
For a given set of initial values for all nodes, the network model will

update all node values synchronously, and so there will be a single stable
attractor the network will tend to. This attractor may be of any number of
states, if it is one state we refer to it as a fixed-point attractor, if greater
than one state we refer to it as a loop. We can test for whether the network
reaches a fixed-point attractor for all possible initial states93. If there are
different attractors for different initial states, we refer to this as a
bifurcation. In the case of a fixed point, we take the level of every node in
the attractor as the prediction of biological behaviour, in the case of a loop
or a bifurcation we use the mid-point of the upper and lower bound that
can be placed upon node behaviour using the algorithm described in Cook
et al.93. Details of the procedure of network simulation can be found in
Schaub et al.32 and the bounds and reported mid-point are given in
Supplementary Data S1.

Model testing
We built the network using a bottom-up iterative approach. We collated
data from the literature describing interactions between and within SARS-
CoV-2 and the host cell. The experimental evidence for each edge is
described in Supplementary Table 1. We then collated a separate set of
testing data used to evaluate the model. This was formed from published
data on the effect of drugs on SARS-CoV-2 in culture and is summarised in
Supplementary Table 4. These data describe experiments that do not
define a point-to-point interaction between genes and/or proteins, but
rather the overall behaviour of the system that emerges from the sum of
the interactions and so provides a testing dataset for the model separate
from the data used to build it.
In order to reproduce an experimental condition in the model, we set

the target function of the relevant node to a constant value. For example,
the presence of SARS-CoV-2 is represented by changing the target function
of Virion to 1. We then find the stable states of the model in this case and
compare the predicted stable value of nodes for which there are data (e.g.
inflammation or level of IL-6) to that observed in the experiment. We
iteratively tested the model and based on these tests, expanded and
refined the model until it matched all the observed behaviours, as
described in Supplementary Table 4.

In silico drug combination screens
In order to find the most effective treatments, we inactivate (set target
function to a minimum) or activate (set target function to maximum) all
nodes, or all sets of nodes targeted by a corresponding drug
(Supplementary Table 5) either singly or in a pair-wise combination, using
the BMA Command Line tool BioCheckConsole. We consider all combina-
tions of nodes and all combinations of drugs, where a single drug may
target multiple nodes. This assumes that drugs are able to act on all their
putative targets and does not account for other pharmacodynamic effects
that may reduce their efficacy. For each node in the network, we manually
curated from the literature a list of drugs that could target nodes within
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the network, finding 74 candidate drugs (Supplementary Table 5), of which
38 had passed phase II trials at the time of writing (Table 1). We also found
all the reported targets for these drugs using the DrugBank database94 to
ensure all targets included in the model are direct and clinically relevant.
We evaluate these perturbations by the stable state of the network for the
eight phenotypes of interest, or in the case that the steady-state could not
be found, the mid-point of the upper and lower bounds BMA could place
on the behaviour of that node using the algorithm described in Cook
et al.93. We compare different stages of the disease by using different
backgrounds; setting certain nodes to a constant level to reproduce the
mild, early severe, and late severe forms of the disease (see Supplementary
Notes, Supplementary Table 3 and Supplementary Data 1).

Cell and virus cultures
Caco-2 cells were a kind gift to Dr. Dalan Bailey (Pirbright Institute). Cells
were cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemen-
ted with 10% heat-inactivated FBS (Labtech), 100 U/ml penicillin/strepto-
mycin. For infections, cells were seeded at 0.2 × 106 cells/ml. Stocks of
SARS-CoV-2 strain BetaCoV/Australia/VIC01/2020 (NIBSC) were generated
by propagation on Caco-2 cells and virus titres determined by RT-qPCR for
viral E RNA copies as described previously17.

Inhibitor treatment and infections
Caco-2 cells were pre-treated with Camostat Mesilate (ApexBio, B2082),
Apilimod (Selleckchem, S6414), Miltefosine (Cayman Chemicals, 63280),
Dexamethasone (EMD Millipore, 265005) or DMSO (Sigma) vehicle control
at 2x the final concentration for 2 h prior to infection in 50 μl culture
medium. Cells were infected with 1000 E copies/cell SARS-CoV-2 in 50 μl,
bringing the total culture volume to 100 μl and inhibitors to 1x final
concentrations as indicated. Cytotoxicity of inhibitors was determined by
tetrazolium salt (MTT) assay. About 10% MTT was added to culture media
and cells were incubated for 24 h at 37 °C. Cells were lysed with 10% SDS,
0.01 M HCl and the formation of purple formazan was measured at 570 nm.

Flow cytometry
Infection levels were measured at 24 h by flow cytometry. Caco-2 cells
were trypsinised, stained with fixable Zombie UV Live/Dead dye
(BioLegend) and fixed with 4% PFA before intracellular staining for
nucleocapsid protein. For intracellular detection of SARS-CoV-2 nucleo-
protein, cells were permeabilised for 15min with Intracellular Staining
Perm Wash Buffer (BioLegend). Cells were then incubated with 1 μg/ml
CR3009 SARS-CoV-2 cross-reactive antibody (a kind gift from Dr. Laura
McCoy) in permeabilisation buffer for 30min at room temperature, washed
once and incubated with secondary Alexa Fluor 488-Donkey-anti-Human
IgG (Jackson Labs). All samples were acquired and analysed using a
NovoCyte (Agilent) and NovoExpress 1.5.0 software (Agilent). Supplemen-
tary Fig. 13 shows the gating strategy applied to a representative sample of
Caco-2 cells.

Calculation of drug combination indices
The expression of intracellular SARS-CoV-2 nucleocapsid protein was
measured by flow cytometry at 24 h post infection and used as a measure
of drug effect on viral entry and replication. The data were normalised to
the value of the control group and averaged across nine replicates. For
each treatment, the combined effect of drug 1 at concentration a and drug
2 at concentration b was calculated as Ea;b ¼ ð100� Na;bÞ=100, where Na;b
is the average percentage of cells expressing nucleocapsid protein at this
concentration. The combination index (CI) was then calculated according
to the Bliss independence model95,96:

CI ¼ Ea;0 þ E0;b � ðEa;0 ´ E0;bÞ
Ea;b

(2)

When CI< 1, this indicates synergy between the drugs at this
concentration, while CI � 1 indicates additivity and CI> 1 indicates
antagonism.
Plots were generated using R97 and the pheatmap98, fmsb99,

RColorBrewer100, ggplotify101 and the tidyverse packages102.

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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