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Amyotrophic Lateral Sclerosis (ALS) disease severity is usually measured using the subjective, questionnaire-based revised ALS
Functional Rating Scale (ALSFRS-R). Objective measures of disease severity would be powerful tools for evaluating real-world drug
effectiveness, efficacy in clinical trials, and for identifying participants for cohort studies. We developed a machine learning (ML)
based objective measure for ALS disease severity based on voice samples and accelerometer measurements from a four-year
longitudinal dataset. 584 people living with ALS consented and carried out prescribed speaking and limb-based tasks. 542
participants contributed 5814 voice recordings, and 350 contributed 13,009 accelerometer samples, while simultaneously
measuring ALSFRS-R scores. Using these data, we trained ML models to predict bulbar-related and limb-related ALSFRS-R scores. On
the test set (n = 109 participants) the voice models achieved a multiclass AUC of 0.86 (95% Cl, 0.85-0.88) on speech ALSFRS-R
prediction, whereas the accelerometer models achieved a median multiclass AUC of 0.73 on 6 limb-related functions. The
correlations across functions observed in self-reported ALSFRS-R scores were preserved in ML-derived scores. We used these
models and self-reported ALSFRS-R scores to evaluate the real-world effects of edaravone, a drug approved for use in ALS. In the
cohort of 54 test participants who received edaravone as part of their usual care, the ML-derived scores were consistent with the
self-reported ALSFRS-R scores. At the individual level, the continuous ML-derived score can capture gradual changes that are absent
in the integer ALSFRS-R scores. This demonstrates the value of these tools for assessing disease severity and, potentially, drug

effects.
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INTRODUCTION

ALS is a progressive motor neuron disease presenting with both
upper and lower motor neuron signs. It is generally agreed that
clinical symptoms and pathophysiology in ALS are usually focal
initially, spreading contiguously from the onset site in both upper
motor neuron (UMN) and lower motor neuron (LMN) compart-
ments'™. However, clinical presentations of motor neuron
diseases and ALS are highly heterogeneous—particularly at
symptom onset and early during disease®. Hence, medical
assessments of ALS onset and severity rely on subjective
evaluation of overall functionality of the patient, particularly
through qualitative evaluation of UMN, LMN and bulbar symp-
toms. However, the design of efficient clinical trials largely requires
identifying signals of therapeutic efficacy in large numbers of
patients with demonstrably similar rates of disease progression’.
This makes it challenging to test many promising therapeutics.
The combination of qualitative symptom evaluation and hetero-
geneous disease presentation are major challenges for both
disease diagnosis, prognosis, and for identifying effective ther-
apeutics®. For instance, of more than 54 potential therapeutics
having been tested in ALS clinical trials, only one (riluzole) has
been shown to extend survival, and only two (riluzole and
edaravone) may marginally slow ALS disease progression®™'".
Thus, the lack of diagnostic and/or prognostic biomarkers for ALS
and the similar lack of objective clinical outcome measures (that
balance robustness and sensitivity) have contributed to inefficient
and unsuccessful efforts to effectively treat or cure ALS'>7'*, As a

step to overcome this, our work aims to provide an objective
measure for ALS disease severity.

The current standard tool for monitoring ALS disease severity is
the ALS Functional Rating Scale (ALSFRS) and ALS Functional
Rating Scale-Revised (ALSFRS-R)'*>'6, These measures are based on
multiple choice questionnaires designed to assess the global
function of the person living with ALS. Specifically, the ALSFRS-R
questionnaire asks participants to rate their functional abilities on
an integer scale of 0 (“can’t do”) to 4 (“normal ability”) on three
bulbar functions (speech, salivation, swallowing), six limb-related
functions (handwriting, cutting_food, dressing_hygiene, turnin-
g_in_bed, walking, climbing_stairs), and three respiratory func-
tions (dyspnea, orthopnea, respiratory_insufficiency). Individual
scores are summed to produce a global score of between 0=worst
and 48=best. As the disease progresses, global function
measurably declines'>'®. ALSFRS-R is a non-invasive and cost-
effective approach to monitor disease severity which strongly
correlates with survival time in ALS patient populations and can
serve as a linear predictor for the future rate of progression'”:'8,
Clinical settings utilize ALSFRS-R scores assessed by a variety of
examiners. Most often, scores are assigned by neurologists
specializing in ALS and or nurse practitioners'®'®, However, in
some instances, self-assessment of ALSFRS-R has been utilized for
clinical research?%?'. Differences between the examiner—neurol-
ogist, nurse, self-report—does introduce variability in the mea-
sure?>23, While early studies®* showed low interobserver reliability
due to its categorical nature, more recent studies?> have shown
high correlation (0.93) between in-clinic ALSFRS-R and
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smartphone self-report. Other efforts, such as the Rasch-Built
Overall Amyotrophic Lateral Sclerosis Disability Scale (ROADS)%®
aim to improve on the test-retest reliability and item targeting of
ALSFRS-R. However, ROADS also relies on a subjective ques-
tionnaire. Nevertheless, ALSFRS-R is still the most popular and
well-studied measure.

Development of objective measures of disease severity is a
critical unmet need. Recent efforts?®2” have explored frequent
data collection at home using relatively inexpensive technologies
including hand-grip dynamometry, electric impedance myogra-
phy, speech recordings, and self-reported ALSFRS-R scores
towards developing more objective ALS symptom progression
endpoints. As early as 2013, accelerometry data have been used to
study Parkinson’s disease progression?®. Recently, Rutkove et al
have shown that good response rates for at-home data collection
is possible with good design. Similarly, Berry et al. have shown
high correlation with in-clinic and smartphone self-report of
ALSFRS-R?®. Our work takes these a step further.

We develop ML-based objective measures of ALS disease
severity based on voice samples of prescribed speech and
accelerometer measurements of limb-based tasks. Here we
collected these physiological measurements—voice recordings
and accelerometer recordings—together with the self-reported
ALSFRS-R scores. We then build ML models, a voice model that
takes as input the speech data and accelerometer models that
take as input the accelerometer measurements. These models
objectively assess ALS severity by learning to predict the ALSFRS-R
scores corresponding to one or more functions. These were then
used to compare the objective ML-predicted scores with self-
reported scores to study the real-world effects of edaravone in
people living with ALS.

RESULTS
A key requirement for developing an objective measure is
collecting a dataset from a sufficiently large cohort of ALS
patients. In 2014, ALS-TDI launched the Precision Medicine
Program (PMP), which has enrolled more than 600 people with
ALS (as of January 2021). For each participant, the PMP collects a
rich dataset including biological samples (skin biopsy, whole
genome sequencing and blood-based biomarkers), as well as
regular measurements of self-reported ALSFRS-R scores together
with physiological indicators—voice recordings and accelerometer
measurements tracking prescribed limb exercises.

The dataset used in this work is derived from 584 people living
with ALS, who consented to participate in the research study and
contributed voice recordings, accelerometer measurements or

both over about four years (Sep’14 - Aug’19). We used this data to
build ML models by associating the data to self-reported ALSFRS-R
scores, within 60 days of their recording i.e. for each voice or
accelerometer sample we associate the ALSFRS-R score that is
closest to and within 60 days of the recorded sample, failing which
the sample is discarded. The average time delta between
recording and ALSFRS-R assessment was 3.2 days for voice and
5.3 days for accelerometer samples. This gave us 542 participants
with 5814 voice samples, and 350 participants with 13,009
accelerometer samples. To assess clinical intervention outcomes,
we took advantage of the fact that a subset of the Precision
Medicine Program participants had enrolled in the translational
research program before the FDA approval of edaravone
(Radacava). All of the participants who began using edaravone
following its approval in May 2017 (n=>54) were identified.
Participants self-reported edaravone use by email correspondence
or through the PMP web portal. Edaravone use was subsequently
confirmed this by telephone conversations and learned when
treatment with edaravone commenced for each participant. These
participants were placed in the test set. The remaining participants
were split randomly into the train, validation and test set to get an
overall ratio of 70:15:15. Demographic details and distribution of
the participants (and recordings) in the splits for model
development are reported in Table 1.

The speech data consisted of audio recordings (collected via
phone) of participants speaking a sentence, “I owe you a yoyo
today”?°, repeated five times. The participants login to a secure
portal and opt-in to receive an automated call where they utter
the sentence that gets recorded. Most participants have multiple
recordings taken every few weeks over a year or more.

The accelerometer measurements, obtained from Actigraph
GT3X devices (one for each limb), came from 5 limb-based
exercises each about 45 s long with a short 15 s break in between.
A full set of measurements is approximately 5 minutes in ~ length
(Supplementary Material- Video of movements).

Approach overview

Using the physiological measurements—voice and accelerometer
recordings—and the self-reported ALSFRS-R scores, we developed
2 types of models: (1) voice model and (2) accelerometer model.
The voice model is a convolutional neural network (CNN) that
takes as input the speech recording and was trained to predict the
probability distribution over the 5 ALSFRS-R score classes (0-4)
corresponding to the speech (bulbar) function and degree of
dysarthria. This was trained on 3776 speech samples from 389
participants. The set of accelerometer models take as input the

Table 1. Demographic and clinical characteristics of study participants: The number of participants and number of recordings/measurements (in
parenthesis) in the training, validation, and test sets. The rightmost column shows the set of participants in the Edaravone cohort (a subset of the
test set).

Model Train Validation Test Edaravone cohort (subset of Test)
# total participants 395 80 109 54

# voice participants 389 63 90 49

# voice recordings 3776 705 1333 832

# accelerometer participants 209 58 83 44

# accelerometer measurements 7448 2028 3533 2061

Age in years (standard deviation) 58.69 (11.79) 57.83 (12.15) 59.35 (10.48)  59.41 (10.59)

Sex (Male/Female) 261 /134 52/28 66 / 43 33/ 21

Median days in program (Q1, Q3) 322 (114, 770.5) 465.5 (170.5, 880.5) 541 (303, 945) 742.5 (493, 1059)

Avg. ALSFRS-R scores at enroll ment (standard deviation) 38.20 (7.32) 39.89 (7.05) 39.32 (6.78) 40.69 (4.54)

Avg. ALSFRS-R scores at final point (standard deviation) 30.25 (11.56) 30.74 (12.11) 28.94 (12.59) 28.85 (10.36)

Onset-type (Limb / Bulbar / Respi ratory / Asymptomatic) 311/59/22/3 67/7/5/1 86/19/2/2 45/9/0/0
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accelerometer measurements and were trained to predict the
probability distribution over the 5 ALSFRS-R score classes (0-4) for
9 functions (the 6 limb-related and 3 respiratory functions). We
developed different accelerometer models to compare the
performance of (a) various architectures—CNN, linear regression,
logistic regression, MLP), (b) input types—high resolution (Raw
30 Hz) or down-sampled versions (Uniform-1Hz and FFT-1Hz) and
(c) output types—a single function'’s score or all 9 functions’ score
jointly (multi-label). These were trained on 7448 accelerometer
measurements from 209 participants. The details of the data
processing and the models themselves are described in the
Methods section. Our results in this section report the perfor-
mance of the single best performing accelerometer model (MLP
multi-label FFT-1Hz) and the voice CNN model.

ALSFRS-R analyses

ALSFRS-R data of 109 test participants were analyzed for pairwise
correlation between individual ALSFRS-R assessments (Fig. 1).
Strong correlations were found (a) between speech, salivation, and
swallowing (R?>=0.74-0.80), (b) between handwriting, cutting
food, and dressing/hygiene (R?=0.69-0.80), and (c) between
scores meant to evaluate lower limb functions (walking and
climbing stairs) (R?> = 0.8). Unsurprisingly, dyspnea, orthopnea, and
respiratory insufficiency self-assessments were also strongly
correlated (R? 0.74-0.76) (Fig. 1A). Interestingly, some ALSFRS-R
metrics of progression were very poorly correlated. For example,
scores for respiratory functions were not correlated with scores for
bulbar functions, and neither were scores for limb functions
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correlated with scores for bulbar functions, e.g., scores for walking

were also not correlated with scores for salivation or speech (R =
0.02 and 0.08) (Fig. 1A).

ML-predicted ALSFRS-R vs. ground-truth self-reported
ALSFRS-R

We defined self-reported ALSFRS-R values as ground-truth against
which to compare predicted ALSFRS-R values derived from
objective data collection tools, including voice recordings or
accelerometer recordings. The ML-predicted ALSFRS-R scores for
speech derived from voice recordings were strongly correlated
with ground-truth scores for speech, salivation, and swallowing
(R*=0.75, 065, and 0.68 respectively) (Fig. 1B). Similarly,
accelerometer reading-derived ALSFRS-R score predictions for
handwriting, cutting food, dressing/hygiene, turning in bed,
walking, and climbing stairs were correlated with their respective
ground-truth ALSFRS-R values (R? = 0.49, 0.62, 0.64, 0.64, 0.59, and
0.62 respectively). Unsurprisingly, neither voice recording derived
ALSFRS-R speech predictions, nor accelerometer-based ALSFRS-R
limb predictions achieved high correlation with respiratory
function ALSFRS-R ground-truth scores, with the highest R? at
0.59 (Fig. 1B).

Next, we sliced the correlations by looking at the participants’
scores at baseline (when they enrolled into the PMP) and their
slopes over time. Figure 2 presents the correlation between
ground-truth and model predicted ALSFRS-R scores at baseline for
speech (Fig. 2A) and the average of 6 limb functions (Fig. 2C). The
correlation for speech scores at baseline is 0.80 and that of the

-08

A
(B) Predicted ALSFRS-R @

Correlations between ALSFRS-R subscores and ML-predicted ALSFRS subscores. Correlation between ground-truth (y-axis) ALSFRS-R

scores with A Groundtruth ALSFRS-R and B ML-predicted ALSFRS-R scores (x-axis) on the full test set of 109 participants. A There is a strong
correlation between ALSFRS-R scores for speech, salivation, and swallowing. We also observed correlations between other sets of limb-related
functions, specifically, handwriting, cutting food, dressing hygiene and turning in bed, and then between walking, and climbing stairs, and the
respiratory-related functions dyspnea, orthopnea, and respiratory insufficiency. B We observed that the predicted ALSFRS-R for speech (based
on the voice model) is most correlated with groundtruth speech ALSFRS-R followed by strong correlations with salivation and swallowing.
Additionally, as with the ground-truth FRS scores, we observed that the accelerometer models’ predictions for the limb-related functions
(handwriting, cutting_food, dressing_hygiene, turning_in_bed, walking, climbing_stairs) are also correlated. We further note that the
accelerometer models’ predictions and the speech models are not correlated with the respiratory-related functions’ scores.
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Fig. 2 Plots depicting correlation of ALSFRS-R scores at baseline (PMP enrollment) and correlation of slopes over time on the 109 test
participants. The plots depict pearson correlation between ground-truth and predicted scores based on A speech ALSFRS-R scores at
baseline, B slopes over time from ALSFRS-R speech scores, C limb ALSFRS-R scores (averaged over 6 limb-based movements) at baseline, and
D slopes over time from averaged limb-movement scores. The x-axis in the subfigures denotes the ground-truth values, and the y-axis denotes
the predicted values. Subfigures A and B for speech include scores on 90 participants, subfigures C and D for limb show scores on 83

participants.

limb functions at baseline is 0.67. The correlation of the slopes for
the speech scores is 0.68 (Fig. 2B) and is 0.60 for the slopes from
the limb scores (Fig. 2D). Not surprisingly, the correlation of the
slopes computed over time from the ground-truth and predicted
values is lower for both models compared to the correlations of
the raw scores at just the baseline which is just a single point in
time.

Table 2 presents ROC-AUC values with bootstrapped confidence
intervals for the predicted ALSFRS-R scores for speech, 6 limb-
related functions, and the 3 respiratory functions for our best

npj Digital Medicine (2022) 45

performing models, using the voice CNN model and accelerometer
(FFT 1 Hz MLP multi-label) model. Confusion matrices for these two
models’ predictions are presented in Supplementary Table 1a and
b. The voice CNN model, evaluated on 1333 samples from 90 test
participants, attained the highest AUC (0.86 [Cl:0.85-0.88]). For the
limb related functions, the MLP multi-label FFT-1Hz model
evaluated on 3833 accelerometer samples from 83 test participants
performed best, with an AUC between 0.70-0.75 on 5 of the 6 limb
related functions, with the lowest performance for handwriting
(AUC = 0.64). Somewhat surprisingly, the accelerometer model
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Table 2. AUC Values for predicted ALSFRS-R Scores: AUC values for
the predicted ALSFRS-R scores for speech, and 6 functions related to
limb movement using the voice (small CNN) model and accelerometer
(FFT 1 Hz MLP multi-label) model described in the Methods section.
Confidence intervals (95% Cl) were calculated by bootstrapping.
Results for other models are reported in Supplementary Table 2.
Function AUC 95% Cl Source model
frs_speech 0.865 [0.847-0.884] Speech
frs_climbing_stairs 0.701 [0.691-0.712]  Accelerometer
frs_cutting_food 0.733  [0.723-0.743]  Accelerometer
frs_dressing_hygiene 0.729 [0.719-0.742] Accelerometer
frs_handwriting 0.645 [0.634-0.658] Accelerometer
frs_turning_in_bed 0.755 [0.745-0.766]  Accelerometer
frs_walking 0.756  [0.746-0.766]  Accelerometer
frs_dyspnea 0.652 [0.636-0.666] Accelerometer
frs_orthopnea 0.723 [0.706-0.740]  Accelerometer
frs_respiratory_insufficiency  0.736  [0.721-0.752]  Accelerometer

also achieved AUCs between 0.63-0.75 on the respiratory
functions. Supplementary Table 2 presents performance of other
accelerometer model variants, and compares it with the previous
best method of normalizing the accelerometer data based on
TBVM (Premasiri et al. 2017). Prediction of the models on individual
participant recordings on 54 test participants in the edaravone
cohort, along with self-reported ALSFRS-R speech scores and
slopes, are shown in Supplementary Fig 3 (voice) and Supplemen-
tary Fig 4 (accelerometer).

Changes in ML-predicted and self-reported ALSFRS-R scores
with real-world Edaravone use in PMP Participants with ALS
Having established that voice and accelerometer recording based
ALSFRS-R predictions correlate with their related ground-truth
ALSFRS-R scores, we applied these technologies to study the real-
world performance of edaravone, approved in the United States
for the treatment of ALS disease progression, retrospectively on 54
test participants. We used the date of edaravone commencement
to define time ‘0’ and plotted self-reported ALSFRS-R scores
(Fig. 3A and C), ML model predicted speech ALSFRS-R (Fig. 3B),
and ML model predicted limb-function ALSFRS-R (Fig. 3D).
Individual participant plots are in Supplementary Figs 3 and 4.
Based on these figures we can observe that for an individual
function (speech in particular), the ML-predicted continuous score
is able to show gradual changes compared to the integer self-
reported score. This is also more apparent in individual participant
plots.

Where there were at least 3 data points both before and after
initiation of edaravone treatment, we calculated slopes (r-values)
using linear regression analyses of ground-truth self-reported
ALSFRS-R, predicted voice ALSFRS-R, and predicted limb-function
ALSFRS-R both pre- and post- edaravone initiation. These are
shown in Supplementary Fig 1A-D. Based on work by Takahashi
et al.>°, to study the association of edaravone with respiratory
functions, in Supplementary Fig 2A-E, we also plotted the slopes
(r-values) of participants computed after initiation of edaravone
against their respiratory ALSFRS-R (averaged over the 3 respiratory
functions) prior to and at the time of initiation of edaravone. This
compares progression of participants (slopes) computed on
ground-truth respiratory, speech, and limb scores as well as the
ML-predicted speech and limb scores. From these figures, we did
not observe any cohort-level changes after edaravone initiation.

Published in partnership with Seoul National University Bundang Hospital
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DISCUSSION ’

This real-world study of ALS symptom progression using digital
measures—accelerometer readings and speech recordings—
demonstrated the feasibility of applying digital outcomes in
conjunction with machine learning (ML) to predict self-assessed
ALSFRS-R. Our results, in particular the AUC values and ALSFRS-R
correlation analyses, show that the predictions of the ML models
are consistent with self-reported ALSFRS-R. Additionally, the
continuous ML-predicted score is also able to capture the gradual
transition in ALSFRS-R scores (over the duration of the study) in
comparison to the integer self-reported ones (Fig. 3 and
Supplementary Figs. 3 and 4), making it a useful tool to monitor
disease severity objectively. In terms of their practical application
within the PMP cohort, for the analysis of real-world use of
edaravone retrospectively, both ML-predicted and self-reported
ALSFRS-R did not show observable cohort-level changes (Fig. 3
and Supplementary Figs. 1 and 2) and indicated variable
outcomes from person to person.

We were able to apply similar ML approaches to two distinct
types of data: voice recordings, and limb movement as measured
by accelerometry. While neither the digital voice recording phrase
selected nor accelerometer-based prescribed movements were
optimized to maximize signal®', we learned that the ML methods
were still effective at predicting ALSFRS-R subscores (Table 2 and
Fig. 1). The effectiveness of the accelerometer-based models
(median multiclass AUC of 0.73 on 6 limb-related and 3 respiratory
functions) was somewhat surprising because cutting food,
dressing-hygiene, and handwriting can be considered largely
fine-motor functions?, while the prescribed exercise movements
captured by the accelerometer emphasized gross motor function
by way of deltoid and quadriceps strength and endurance while
de-emphasizing fine motor coordination. Perhaps the respiratory
functions are also correlated with strength and endurance. Thus, it
is interesting that the ML models were still able to effectively
predict functional assessment of skills that require both strength
and fine motor coordination.

Another key observation from this study is how closely the
predicted ALSFRS-R scores tracked variations in self-assessed
ALSFRS-R scores in many cases (Fig. 2, Fig. 3, and Supplementary
Figs. 3 and 4). The correlation between ground-truth and
predicted scores at baseline (Fig. 2) are substantially better than
the correlations of the slopes themselves. Self-assessment-based
measures present the risk of being subjective and, thus have low
interobserver reliability3, and show volatility over time32. We had
hypothesized that this volatility would not be evident using
objective digital outcome measures coupled with ML tools. The
volatility does manifest as lower correlation of slopes over time
(Fig. 2) perhaps not to the extent one would assume. Thus,
although the predictions (AUCs and individual correlations)
especially for speech are fairly good, there is still variance that is
not captured.

As the supplementary figures show, in some instances, a
participant’s self-assessed score at the time of study enrollment
(baseline) was quite different from the predicted score. However,
surprisingly when transient downturns or upturns in self assessed
ALSFRS-R scores were apparent, the ML/digital outcomes would
sometimes vary similarly (Supplementary Fig 4). This indicates that
the participants are self-consistent, in the sense that if they
reported a lower score their functional ability does truly decline.
This is what we believe is reflected in the ML model predictions.
Although the participant might score themselves differently from
a clinician, they seem to consistently associate their functional
ability to the same score and are attuned to their own declines.
Hence the ML model picks up on the signal. Further, since we
always only consider self-assessments, this eliminates any issues
due to interobserver reliability in collection of ALSFRS-R scores.
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based movements), and D averaged limb-movement scores as predicted by the accelerometer model. The x-axis represents days with 0
(vertical blue line) as the point where the participant starts the drug. Y-axis represents the ALSFRS-R score. Subfigures A and B for speech
include scores on 49 participants, subfigures C and D for limb show scores on 44 participants. 6 representative participants (IDs: 489, 810, 823,
883, 911, and 1076) are highlighted in color in all panels, other participants are shown in lighter color in the background. Predicted scores are
plotted for each available recording (on the recorded date/day). The groundtruth and predicted scores for each of the 54 participants is
included in Supplementary Fig. 3 (for voice) and Supplementary Fig. 4 (for limb).

As a proof of concept, these tools were applied to the
assessment of the effectiveness of edaravone in a real-world
clinical setting. Neither self-assessed ALSFRS-R nor the ML/digital
predictions revealed cohort-level changes in slope (Supplemen-
tary Fig 1) that might have suggested overall slowing of ALS
disease progression. We also explored (in Supplementary Fig 2)
whether participants who began edaravone treatment with higher
respiratory function ALSFRS-R self-assessment would perform
better on the drug based on the clinical trial reports demonstrat-
ing that people with ALS in Japan with higher slow vital capacity
(SVCQ) responded to edaravone treatment while others did not®°. In
the retrospective study, on our small cohort we did not see
indications that the patients with higher self-assessed respiratory
function ALSFRS-R scores performed differently than the rest of
the test cohort. This requires additional study.

Important questions remain for ALS research and clinical
communities. First, regarding bulbar symptom assessment, could
recordings of other phrases be used to improve bulbar symptom
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assessment? Speech pathologists with experience in ALS assess-
ment have been developing batteries of phrases for improved
bulbar symptom assessment3%34. Deploying part or all of these
batteries and coupling them with ML tools could reveal even more
sensitive disease progression measures. Second, we used a limited
set of prescribed movements to capture arm and leg function
using accelerometers. The prescribed movements have not been
optimized to capture fine motor function or gross coordination.
More work needs to be done to improve these protocols. Third,
the PMP did not include any direct or surrogate sensory measures
of respiratory function that could be used in developing ML
models. That is worth further investigation.

Overall, this work demonstrates the value of digital outcome
measures, specifically voice recordings and accelerometry, to
study ALS. It shows that ML can be applied to such digital
outcome measures to objectively predict ALS disease severity and
to monitor and reveal progression patterns. Further, the proposed
measure was used to assess edaravone’s real-world performance
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retrospectively, on a small cohort of people with ALS enrolled in
the ALS-TDI PMP, as a proof-of-concept demonstration. This is a
study that combines digital clinical outcome measures with ML to
study an approved medication’s post-market effectiveness for ALS.
Our work suggests that the proposed methods can be helpful in
assessing medicines used to treat ALS, without imposing
additional financial or travel burden on patients. Such an
approach may be amenable for use in clinical trials, but may also
be an essential strategy for assessing experimental therapies
made available outside of the clinical trial setting in expanded
access programs.

METHODS

This research program has been conducted in accordance with the ethical
principles posited in the Declaration of Helsinki - Ethical Principles for
Medical Research Involving Human Subjects. Protocol approval was
provided by the institutional review board (ADVARRA CIRBI). Every
participant consented to participate in this research by signing and IRB
approved informed consent form.

Data preprocessing

The speech data was uniformly resampled to 8 kHz mono-stream. The
audio samples are then converted to spectrograms, the details of which
are described in the voice model section. For the exercise-based
accelerometer recordings, the original accelerometer measurements (on
3 axes) are recorded at 30 Hz (referred to as Raw 30 Hz). We also obtained a
low-resolution 1 Hz version from the Actigraph software [ActiLife version
6.13.3] (referred to as Raw 1 Hz). We used measurements from 4 exercises,
one from each of the four limbs, i.e. Left Ankle (LA), Left Wrist (LW), Right
Ankle (RA), and Right Wrist (RW). A fifth exercise involving both wrists
together, which was less emphasized, was often missing and thus
discarded. For all our models, we considered measurements from the
four limbs, and built and evaluated models on the 30Hz data or the
following variants derived from the 1 Hz data:

® Total Body Vector Magnitude (TBVM): We reproduced this baseline
from our previous report which is based on the Raw 1Hz
measurements where each limb value is normalized®'. To normalize,
a control 1Hz vector magnitude (VM) dataset was created by
collecting four to six months of accelerometer data from 18 healthy
volunteers. They calculated the average VM from each limb across the
prescribed movements from the healthy volunteer cohort and chose
the largest value to create vector magnitude normalization coefficient
for each prescribed movement (i.e., they divide by the largest value to
get a scaling coefficient for each limb in the health volunteer cohort,
and multiply by that co-efficient to normalize data from participants;
we report these values in the Supplementary materials). Following this
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process®', for each month of VM data for each patient, we normalized

each prescribed movement VM and summarized the VM for all limbs

into a single value by adding them together to obtain the TBVM value.

® FFT 1 Hz: We applied a discrete Fast Fourier Transform on the Raw 1 Hz

data and for each of the 4 limbs, leading to a total of 8 features for
each accelerometer measurement.

® Uniform 1Hz: This is a variant of the Raw 1 Hz data consisting of 70

measurements per limb, (truncating shorter samples or padding zeros

to longer samples). We normalized the training set’s values and
applied the same parameters to normalize the validation and test sets.

Voice model

To build a model for predicting ALSFRS-R scores from the voice recordings,
we used a convolutional neural network (CNN) architecture proposed in3?,
suited for audio classification tasks. Our model and approach is illustrated
in Fig. 4. The details regarding selection of parameters (mentioned below)
for modeling the data and the training details are described in the
Supplement.

The model takes as input the spectrogram of the waveform, a visual
representation of the spectrum of a signal’s frequencies as it varies with
time. To create the spectrogram inputs, the audio recording is processed
into non-overlapping 960 ms audio “frames”. These frames are then
decomposed with a short-time Fourier transform applied to 25ms
windows every 10 ms, with the last window zero-padded. The resulting
spectrogram is integrated into 64 mel-spaced frequency bins, and the
magnitude of each bin is log-transformed after adding a small offset of
0.001 to avoid numerical issues. This gives log-mel spectrogram context-
windows of 96x64 bins that form the input. The spectrogram windows are
then input to a 2-dimensional convolutional network (architecture
depicted in Fig. 4) with a logistic loss for each score class (0-4). During
training, all audio frames (equivalently, spectrogram context-windows)
from a recording get the same ALSFRS-R score as the entire audio clip’s
label, i.e., the patient’s reported speech ALSFRS-R score on the date closest
to the recording. The model’s output is a probability distribution for each
of the 5 ALSFRS-R score classes (0-4) for each audio frame. During training,
we fetch mini-batches of 64 input examples by randomly sampling
context-windows from all audio samples. Since the number and length of
audio samples from each participant (and correspondingly the frequency
of occurrence of the label/score) can be different, the loss for each window
is weighted inversely to the frequency of the class label at the frame-level.
During inference, we first aggregate the window/frame-level scores by
taking a mean across all spectrogram context windows to get a probability
distribution of the scores over the entire audio recording. The final ALSFRS-
R score predicted by our approach is the average of the score values
weighted by the model’s predicted probability of each score for the audio
recording.

ALSFRS-R
X ror1om)
predicted score

aggregate

7x7 conv, 100
3x3 maxpool, /2
3x3 maxpool, /2

o
o
=
=
c
8
)
X
o

3x3 conv, 200

predict

conv — convolution
drop — dropout

fc — fully connected
/n — stride of size n

24x4 maxpool, /1

Fig. 4 Model overview. Our approach segments audio/accelerometer recordings into non-overlapping frames. We then convert the
waveforms to derive spectrogram grayscale images. A classifier is trained on the image patches to predict the score label for each non-
overlapping frame which is then aggregated to predict an ALSFRS-R score for the entire voice sample. The CNN depicted here is the
architecture that was used to train the speech ALSFRS-R prediction model. (The kernel shape (mxn), and number of filters are denoted for
convolutions, while for maxpool the shape and stride are noted). We note that this overall approach is also identical to how the CNN model is

applied to the accelerometer data.
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Accelerometer models

We evaluated several methods to model the accelerometer measurements.
In particular, on the Uniform 1 Hz data and the FFT 1 Hz data, we applied
linear regression, logistic regression, as well as multi-layer perceptron
(MLP) models. The models are trained to predict the probability
distribution over the 5 ALSFRS-R score classes (0-4) for 9 functions (the 6
limb-related and 3 respiratory functions). For each ML model (linear
regression, logistic regression, MLP) and data type (Uniform 1 Hz and FFT
1 Hz), 9 models were trained to predict each of the 9 functions individually.
Additionally, for the MLP, a tenth model that jointly predicts scores for all 9
functions was trained. This joint model is termed the multi-label
classification model.

To model the high-resolution (Raw 30 Hz) accelerometer data, we use a
small CNN similar to the voice model described above. In this case, the
accelerometer measurements are processed into non-overlapping 75s
“frames.” These are decomposed with a short-time Fourier transform
applied to 7 s windows every 3 s, with the last two windows zero-padded.
These result in linear spectrogram patches of 19x129 bins. The details of
these parameter choices and computation of spectrogram patch sizes are
described in the Supplement. The accelerometer CNN model also differs in
that it uses a multi-task classification to learn and predict scores for all the
respiratory and limb-related ALSFRS-R scores. The rest of the training and
evaluation procedure is identical as with the voice model.

Evaluation metric

As described in the section on Voice model, our models output a
probability for each score class (0-4) for each function, from which we
derive the predicted ALSFRS-R score for each function (speech, walking
etc.). To evaluate the overall performance of the model, we use the
probabilities predicted for each score class to compute the ROC-AUC (1 vs
all AUQ) and take the average to report the multiclass AUC for each
function. For all the other analysis, such as to compute correlations, or
participant slopes, we directly use the predicted ALSFRS-R score for the
function.

Voice and accelerometer model parameter choices and
training details

Developing the voice and accelerometer models from the original data
samples involve a number of choices, both in terms of parameters for
processing the data, as well as hyper-parameters chosen for the
optimization/training process. To determine a number of these para-
meters, we first used a subset of the data (from Sep’14 - July’18) and
created a training, validation, and test split (each containing roughly a third
of the participants). This dataset was used to select many of the
parameters used to model and process the data. Specifically, the duration
of the spectrogram frames (960 ms for audio, 300 s for accelerometer), the
overlap between frames (non-overlapping frames, or an overlap of 75s
duration) and verify the choice of spectrogram i.e., log-mel spectrogram of
64 bins for audio, and a linear spectrogram for the accelerometer. In the
case of the accelerometer frames, the spectrogram images are of size
19x129 calculated from the window-size, stride and frequency as: 75/(7-3)
=19; and 129 =128 + 1 (30hz*7 rounded up to the nearest power of 2,
then divided by 2, and then add 1). We treated both CNN models as a
multi-class multi-label task to be able to predict ALSFRS-R scores for
multiple functions. So we used a sigmoid function and a logistic loss for
each label i.e. function+rating (e.g. speech-FRS-4, speech-FRS-3, and so
on). With these parameters set, we used the validation set of the final
dataset splits described in the ‘Data’ section to choose the training hyper-
parameters.

Regarding training, our CNN voice and accelerometer models used
batch normalization. We compared mini-batch sizes of 32, 64, and 128
frames, and learning rates of 1e-5, 1e-6, and 3e-6, and the Adam optimizer.
While these parameters in themselves didn't result in significant
differences in performance some models trained faster achieving better
performance sooner. For our final models, the voice model used a mini-
batch size of 64 and learning rate of 1e-5, and the accelerometer model
used a mini-batch of size 32 and a learning rate of 1e-5. The models were
trained for around 25 epochs. The simpler accelerometer model variants
(linear regression, logistic regression, and multi-layer perceptron) used a
batch size of 100 and were trained for 60 epochs, and the model
performing best on the validation set was used to run evaluations on the
final test set.
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Normalization coefficient values used in TBVM computation

To compute TBVM values in our work, we used the previously described
process>'. To normalize, they created a control 1 Hz vector magnitude (VM)
dataset by collecting four to six months of accelerometer data from 18
healthy volunteers. They calculated the average VM from each limb across
the prescribed movements from the healthy volunteer cohort and chose
the largest value (which corresponded to the left-wrist and was 717.9) to
create vector magnitude normalization coefficient for each prescribed
movement (i.e. they divide by the largest value to get a scaling coefficient
for each limb in the health volunteer cohort, and multiply by that co-
efficient to normalize data from participants). The coefficients they
obtained (and which we used after dividing the VM values by 717.9) are:
2.497844 (for the left-ankle), 2.492674 (for the right-ankle), 1.0 (for the left-
wrist), 1.01044 (for the right-wrist), and 3.123886 (for both wrists together).

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

CODE AVAILABILITY

Code for ML models are available at: https://github.com/pmphelp/paper-code
There are no restrictions with regard to use of the code.

DATA AVAILABILITY

The datasets generated and/or analyzed during the current study are available from
the corresponding author on reasonable request.
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