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Human–machine teaming is key to AI adoption: clinicians’
experiences with a deployed machine learning system
Katharine E. Henry1, Rachel Kornfield 2,3, Anirudh Sridharan4, Robert C. Linton4, Catherine Groh5, Tony Wang1, Albert Wu6,
Bilge Mutlu5,7,10✉ and Suchi Saria 1,6,8,9,10✉

While a growing number of machine learning (ML) systems have been deployed in clinical settings with the promise of improving
patient care, many have struggled to gain adoption and realize this promise. Based on a qualitative analysis of coded interviews
with clinicians who use an ML-based system for sepsis, we found that, rather than viewing the system as a surrogate for their
clinical judgment, clinicians perceived themselves as partnering with the technology. Our findings suggest that, even without a
deep understanding of machine learning, clinicians can build trust with an ML system through experience, expert endorsement and
validation, and systems designed to accommodate clinicians’ autonomy and support them across their entire workflow.
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By taking into account numerous patterns of risk and leveraging a
wide variety of data sources, machine learning (ML) has the
potential to improve upon rule-based clinical decision support
systems (CDSS) in supporting clinical care, even identifying
patterns not apparent to human experts1. However, the impact
of ML systems in medicine depends on clinicians consulting them
and applying their insights. Integrating ML could present a
challenge in time-constrained clinical contexts, where clinicians
must rapidly evaluate whether and how to act on recommenda-
tions while managing competing demands on their time and
attention2,3. Indeed, most systems typically report users respond-
ing to only 6–45% of alerts or requiring dedicated staff4–6. It is not
yet well-understood how clinicians perceive ML recommendations
in these contexts, and thus it remains unclear how to most
effectively deploy ML systems to maximize clinical benefit7–9.
Two predominant hurdles have been theorized that potentially

compromise clinicians’ willingness to integrate ML models into their
work. First, experts may struggle to develop trust with ML-based
systems due to a large number of inputs and the complex
integration of data involved, which can make it challenging or
impossible to convey the specific logic behind an alert or
recommendation10–12. Second, some evidence suggests that many
view ML as being impoverished relative to human expertise and
question whether it can add clinical value for highly trained expert
users13,14. By making a competing diagnosis, ML systems could also
be perceived as encroaching on clinicians’ professional role,
presenting a “threat to autonomy” that may make clinicians reluctant
to use, rely on, and trust them15,16.
The purpose of this study is to understand (1) the role that

clinicians see ML as playing in acute clinical care, and (2) pathways
and barriers to building trust with ML-based recommendations.
Through a series of in-depth interviews with 20 physicians and
nurses, analyzed following a grounded theory approach (see
Methods), we explore these issues in the context of a deployed
ML-based system: the Targeted Real-time Early Warning System

(TREWS) for sepsis, a syndrome with high mortality and morbidity
wherein a whole-body inflammatory response causes organ
dysfunction17–20. Leveraging an ML-based risk score, TREWS was
developed to support clinicians’ timely identification and treat-
ment of sepsis (See Methods for system description)21,22. Whereas
most ML systems have not yet been broadly deployed and
adopted in clinical practice23–25, TREWS was integrated into the
electronic health record (EHR) at a large non-teaching hospital
beginning in 2017 and was in use for over 6 months at the time of
this study, with high, sustained adoption21. At a moment when
ML-based support is poised for broad deployment across the
healthcare system, this work seeks to inform system designers,
implementation scientists, clinicians, and healthcare administra-
tors by clarifying the experiences and views of clinicians tasked
with using this emerging technology in their day-to-day work.
A Grounded Theory analysis was systematically applied to

transcripts from the interviews to identify themes characteriz-
ing how an ML system is perceived and used by clinicians in
practice (Supplementary Table 1), yielding four primary themes
described below.
The first theme identified was that, while clinicians appreciated

that the ML-based system improved upon other clinical support
systems, they generally did not differentiate the operations
between ML-based and conventional CDSS. As far as comparing
the ML-based system to prior CDSS they had used, most clinicians
recognized its improved reliability and timely information. Indeed,
all clinicians favorably compared TREWS to the rule-based CDSS
that had previously been in place for sepsis. That alert, based on
meeting at least two of the SIRS criteria and an indicator of organ
dysfunction26, was perceived as having low precision, and as
repeatedly alerting the same patient when a diagnosis was
already clear, preventing clinicians from developing trust in
the system and leading to some frustration. For instance, one
physician described the previous system as “irritating” because “it
kept telling you to reorder lactate every time you’d open the
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patient’s chart,” even if the provider had previously indicated that
the patient did not have sepsis.
However, despite recognizing these improvements, clinicians

lacked an understanding of how specifically the ML-based system
achieved higher reliability than the prior CDSS. While describing
the model behind the ML-based system as being generally more
“sophisticated” than a conventional CDSS, most could not identify
how the internal logic of the ML-based system differed from that
of rule-based CDSS, often attributing improvements solely to the
fact that the ML-based system considers a larger number of
measurements. Others appeared to have an incorrect under-
standing of the ML-based model, assuming that it (like the prior
CDSS) simply checked whether parameters exceeded established
thresholds. In actuality, instead of using prespecified thresholds,
the ML behind the system learned multidimensional indicators of
risk from the data, combining patient history and clinical
presentation into a predictive risk score. However, as the next
section describes, this limited understanding of the ML system’s
operation was not a substantial barrier to use.
The second theme identified from the interviews was that

clinicians perceived the ML-based systems as playing a support-
ing role both in and beyond diagnosis. Regardless of their
understanding of the ML behind the system, physicians were
generally responsive to its alerts and integrated them into their
diagnostic process. However, they saw themselves as maintain-
ing ultimate responsibility for diagnosis and treatment decisions.
Thus, physicians acknowledged that an alert might “make you
think of [an] alternative diagnosis” but this was differentiated
from “swaying” or “influencing” the physician. In cases where
they disagreed with the system recommendation (sepsis or not),
physicians reported that they would rely on their own
judgment. Therefore, while alerts led to increased consideration
of cases highlighted by the system, and required incorporating
new information into decision-making, they were not seen as
disrupting clinicians’ agency.
Clinicians also differentiated their diagnostic process from the

capabilities of ML, emphasizing elements of clinical expertise and
intuition that they felt ML could not replicate. Multiple providers
referenced the visible cues and richer information available from
interacting with the patient at the bedside. An ED physician
expressed, “[The system] can’t help you with what it can’t see.”
Clinicians also found value in the ML-based system beyond the

point of diagnosis. Both nurses and physicians reported viewing
the system as a “second pair of eyes” to bring cases to their
attention or to alert them to a change in the patient’s state. This
ongoing monitoring by the system was experienced as alleviating
some demands on their attention and cognition in a context of
feeling “bombarded with clinical information.” One physician
described the importance of “anything that helps cognitive
unloading.” They additionally described the system as helping to
prompt time-dependent actions and to coordinate across multiple
care team members. In the ED, the system helped both physicians
and nurses prioritize which patients to see next. A nurse
described, “I think we try to get them in front of a provider a
little bit quicker or get some of the stuff started out in triage.”
Support for non-diagnostic tasks added to the overall perceived
value of the ML-based system.
The third theme was that clinicians identified a variety of

mechanisms they used to establish trust with the system.
Clinicians described that their overall willingness to trust the
ML-based system was rooted in several factors that helped them
build a mental model of how the system worked. None of the
clinicians fully understood the machine learning behind the
system; however, while some were curious to learn more, they did
not perceive that understanding the system’s logic in an individual
case would change their decision-making. One physician
described, “For clinicians, I think just understanding [that] this is
a machine learning tool and it does data mining, I think will be

more than enough.” Although unconcerned with the specific
statistical model behind the system, clinicians reported having
come to better understand how the system operated by
observing its behavior in different scenarios and with different
patient types.
In addition to relying on direct experience of the system,

clinicians valued external studies of the system and recommenda-
tions by colleagues and experts that allowed them to develop
trust peripherally. Many clinicians described using the system
because a colleague or department head had endorsed it, or they
had seen descriptions of the system’s development and validation
process. For instance, one ED physician said, “I’d want to
understand the population it was derived from… and then I’d
want to see the population that they validated it on afterwards…
whether that group looks like the patients that I’m treating.”
Clinicians also valued that they were able to ask questions

about system design choices during educational sessions and
customize the interface and alert sensitivity to their environment
and patient population. One described, “I need to understand the
motivation behind that tool because when I apply that tool, I’m
applying the judgment of the creators of that tool.” Interacting
with the deployment team also allowed for input into the tool’s
operations, which was described as an improvement over prior
CDSS deployments.
Finally, the fourth theme identified from the interviews was the

remaining perceived barriers to the use of ML in medicine. While
clinicians were generally enthusiastic about the potential for ML-
based systems to improve patient care, they expressed some
concerns. Several pointed to the potential for over-reliance on
automated systems, which could ultimately degrade their clinical
abilities: “I think [that] there are a lot of people, frankly, that will
quickly default to having a tool tell them what to do and stop
assessing, and I hope that’s not true, but I’ve seen it happen.”
Several also mentioned concerns that regulatory agencies might
use these systems to standardize care even in scenarios where a
clinician disagrees with the system, potentially leading to over-
treatment and patient harm, especially in cases where the alerts
occurred prior to clinical recognition. When asked what would
convince them to act on the system’s recommendations prior to
apparent symptoms, suggestions included clinical trial evidence,
or personally experiencing scenarios where the alert was
dismissed but the patient was later diagnosed as having sepsis.
Ultimately, the capacity of state-of-the-art ML systems to

improve clinical care depends on clinicians’ ability and willingness
to incorporate the information provided by these systems into
their work. A Grounded Theory approach, systematically applied
to text data from interviews with 20 clinicians using an ML-based
system as part of routine clinical practice in an acute-care setting,
identified themes related to the use and perception of ML-based
clinical support systems. Key findings included (1) that clinicians at
the bedside did not perceive interpretability, in the sense of
understanding the calculations of the ML model that led to a
specific patient’s recommendation, as a primary driver of their use
of the system, (2) that they viewed the system as augmenting
both their diagnostic and treatment management processes
rather than supplanting their clinical judgment, (3) that they
developed a mental model or understanding of how to leverage
the system both through direct observations and indirectly
through interactions with peers, research team members, and
empirical studies, and (4) that some barriers remain to their
trusting ML in medicine. Below, we outline the implications of
these findings for the design and implementation of systems that
use ML to support clinical work.
A growing body of recent work has raised questions about

whether physicians would be willing to accept ML-based
recommendations in the absence of understanding the under-
lying ML model27–29. Contrary to our expectations, our findings
suggest that interpretability of the model’s computations was not
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perceived as a barrier among these clinicians. Instead, numerous
factors play a role in shaping how clinicians perceive and act on
ML recommendations, with many of the most influential
mechanisms of trust occurring outside the timepoint when a
clinician evaluates a specific TREWS recommendation. Prior work
has found that time constraints prevented primary care providers
from engaging deeply with a ML-based treatment recommender
system and that trust was better established outside of in-the-
moment use12. Similarly, we found that competing time demands
limited clinicians’ ability to explore advanced features of the
system, such as feature importance measures. While future work is
needed to clarify how systems might more efficiently commu-
nicate feature importance to build trust during time-constrained
clinical interactions, our findings suggest alternative pathways
through which trust can be built outside of patient care, including
through adequate onboarding of users, training, and technical
support (e.g., a technology “navigator”)30, discussions among
colleagues who have used the system and sharing findings from
relevant studies. In addition, many clinicians pointed to ongoing
relationships with the development team during the onboarding
process as allowing for refinements of the tool to respond to their
needs. This involvement in early system development may go
against the norms for CDSS deployment and may have
contributed to clinicians’ receptivity to the tool31. The implemen-
tation science literature likewise suggests the importance of early
feedback to align an intervention to its eventual setting32.
Much recent work evaluates how well ML-based systems

perform as a surrogate for clinician judgment, which has also led
to concern that clinicians will view these systems as inherently
threatening to their professional authority and avoid adopting
them15. While clinicians described the current ML-based system
as more reliable than the previous system and valued that it
could learn from past interactions, our results highlight that, in
practice, the ML-based system is still not seen as having the
ability to match clinicians’ judgment, and is therefore not
perceived as a threat. Rather than a tool or form of automation
that might supplant a specific function, clinicians described that
the tool partnered with them, e.g., by drawing their expert
attention to patients who needed it in a timely fashion. The
system was therefore viewed as augmenting a decision-making
process that remains fundamentally clinician-directed. This view
parallels recent work that has proposed “teaming” between
intelligent machines and humans, where each leverages the
strengths of the other to achieve better outcomes33–35. System
designers should continue to focus on augmenting rather than
replacing clinician judgment in order to maintain adoption and
protect against over-reliance.
Evaluations of ML-based systems for deployment often

emphasize identifying patients as early as possible. However,
our data indicate that physicians highly valued direct observation
of the patient to validate a recommendation by the system, and
this ability to directly observe the patient may have increased their
willingness to use alerts from a ML-based system. As current
provider practices involve the identification of specific symptoms
to trigger treatment guidelines, predictions that are too early for
the provider to validate may therefore result in rejection of system
recommendations and diminished trust. Reflecting these con-
siderations, which were relayed to the development team in early
feedback from clinicians and the hospital’s quality and safety
team, the system in this study delayed alerts until verifiable
symptoms were present, which likely contributed to trust and
acceptance in this study. The design of systems that provide
earlier predictions must consider providers’ ability to verify
symptoms and, in the absence of such symptoms, identify
alternative strategies to gain clinicians’ trust and adoption of
early interventions. Acceptance of early prediction may be
compromised if clinicians lack opportunities to appreciate the
accuracy of ML-based tools, especially if they view them primarily

as a cost-cutting measure, supplanting highly skilled and intuitive
work with something inferior but more scalable.
The main limitation of this study is that it relies on 20

interviews conducted in a single hospital with a single ML-based
system used at the bedside. While the in-depth interview format
limited the number of interviews conducted, we interviewed
physicians and nurses across several unit types to get a broad
perspective. A follow-up quantitative study looking at 2 years of
data from this and four other hospitals using the same ML-based
system shows that high adoption is sustained across all sites21.
However, the high receptivity to the system observed here may
not be typical across deployments of new technologies. Future
work is needed to assess how these findings generalize to other
hospital systems and clinical specialties where providers may
have different experiences with CDSS and personal attitudes
influencing their openness to new technologies. Additionally,
while the qualitative approach we adopted here offers provisional
theories about the use of ML-based systems in clinical decision-
making, these are based on a small number of interviews at a
single site and should be evaluated in follow-up studies using
hypothesis-testing approaches.

METHODS
Between October 2018 and April 2019, the research team conducted semi-
structured interviews with 20 clinicians who used TREWS in their daily work
at a community hospital. The study protocol was approved by the Johns
Hopkins Medicine Internal Review Board (IRB00252594) and informed
consent was obtained from all participants. The collected interviews were
then transcribed and coded in an iterative process using a Grounded
Theory approach to identify themes in the interviews. See the “Data
Analysis” section of the Methods for further details about the Grounded
Theory approach used and example questions from the interview guide.

Setting
This study was conducted at a 285-bed, acute-care, non-teaching hospital
in the northeastern United States. At the start of the study, Targeted Real-
time Early Warning System (TREWS), a machine learning (ML)-based system
for sepsis detection and treatment management was in use in the
emergency department (ED) for 11 months and across all medical and
surgical units, including the intensive care unit (ICU), at the hospital for
6 months at the start of study enrollment. We describe the system in
further detail below. Prior to TREWS, the hospital had used a rule-based
sepsis best practice alert (a type of CDSS) that was built into the Epic EHR
environment and that generated a pop-up alert for sepsis whenever a
patient met at least two of the criteria for systemic inflammatory response
syndrome and one of the organ dysfunction criteria specified by the
Centers for Medicare and Medicaid sepsis core measure (SEP-1)26. This rule-
based alert was turned off following the deployment of TREWS.

System description
Developed from 5 years of historical data collected from three hospitals,
TREWS uses an ML approach to learn patterns from time-series data to
predict, in real-time, whether a patient is at risk of developing
sepsis21,22,36,37. In order to account for the heterogeneity of patients with
sepsis, the risk prediction method automatically discovers multiple
phenotypes of sepsis and learns from provider behavior over time to
improve sequential predictions. It also reduces false positive alerts, thus
improving precision, by accounting for confounding comorbidities that
can cause automated systems to mistakenly identify a patient as having
sepsis21,38. Based on provider feedback, the version of TREWS deployed at
this hospital waited for an indicator of organ dysfunction prior to alerting.
Evaluated on 2 years of data from three community and two academic
hospitals (469,419 screened encounters), the system generated 31,591
alerts, 89% of which had an evaluation entered within the system page (53
and 73% of alerts had an evaluation entered within 1 and 3 h,
respectively)21. The system had a sensitivity of 82%, with a corresponding
38% of evaluated alerts confirmed as having sepsis21. While we were
unable to directly compare performance to the prior system due to lack of
alert records, evaluations of similar alert criteria at other hospitals have
found that such criteria have low precision, with fewer than 20% of

K.E. Henry et al.

3

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)    97 



patients with an alert having sepsis39. The precision of rule-based CDSS is
generally even lower during deployment since there can be multiple false
alerts on the same patient40.

Interface description
The TREWS interface is a dynamic system that adapts based on the type of
user and patient status. It consists of three main components: a nursing
assessment section, a provider evaluation section, and a treatment
management section. While all components are visible to all users, actions
on the page are user-specific and aligned with the scope of their clinical
practice (e.g., only providers are able to place orders through the
treatment management section). After an alert is activated, providers are
requested to complete an evaluation within the TREWS page to either
confirm that the patient has sepsis, dismiss the alert, or temporarily pause
the alert until more information is available (Supplementary Fig. 1). In order
to help explain the factors contributing to an individual alert, the TREWS
page also contained a list of the measurement names and values that were
included in the model and starred the features that were considered most
important. We computed a feature’s importance to the model based on
ranking the magnitude of change in the predicted risk if that value were
replaced with the population mean value. However, a numeric ranking of
features was not shown to users, only a star indicating the top features.

Deployment description
The deployment process consisted of three main phases: pre-deployment,
ED-deployment, and full hospital deployment. In the first phase, the team
prepared for deployment by verifying that the alert was correctly
integrated with the EHR and running as expected, met with key
stakeholders to identify clinical champions and discuss the integration of
the alert with the clinical workflow and met with clinicians to explain the
alert including how it was developed and validated, the types of
information the system uses to generate alerts, and how to use the
interface. The ED-deployment phase took place between November 2017
and March 2018. During this time, the system was only active in the ED in
order to allow the deployment team to verify the implementation and
make refinements to the model and system workflow. Starting March 2018,
the deployment was expanded to all inpatient units at the hospital and
entered a maintenance phase of the deployment. Throughout the ED and
all hospital deployment phases, the deployment team participated in staff
meetings and met with individual clinical users, as requested, to explain
the system and how to use the interface. A feedback button was also
implemented to allow users to ask questions and seek clarification about
the system’s behavior.

Data collection
Between October 2018 and April 2019, the research team conducted semi-
structured interviews with 20 clinicians who used TREWS in their daily work
at a community hospital. Physicians and nurses who had used TREWS for at
least 6 months were asked to participate, thereby representing a number of
units and clinical roles. Among clinicians who responded to the
investigator’s interview requests and were available at the interview times,
a representative sample of nurses and physicians across different unit types
was selected. Interviews were conducted until saturation was reached, such
that conducting new interviews failed to generate novel themes and
insights. Study participants included 13 physicians (4 ED, 4 critical care, 5
general ward) and 7 nurses (3 ED, 4 critical care). Interviews were conducted
at the hospital, in each participant’s work environment (e.g., nurse’s
stations, private office, etc.). The interviews were conducted by one of two
graduate research assistants who were familiar with the system and clinical
environment and had been trained in semi-structured interview methods.
The interview guide was developed collectively by all authors and
questions concerned clinicians’ role in diagnosing and treating sepsis, their
experience with CDSS in general, their experience with TREWS and other
ML-based CDSS, and their thoughts regarding the current and future role of
ML in medicine. For example, interviewees were asked questions including,
“How would you describe how TREWS works to a coworker who had not
used it before?”; “What impact has TREWS had on your clinical practice, if
any?”; “When evaluating an alert, what information inside or outside the
page do you consider?”; “Do you have any concerns about the use of
intelligent systems in medical diagnosis?”; “Can you describe any ways you
have used AI tools in your life outside of medicine?” The interviews were
audio-recorded and then transcribed and anonymized.

Data analysis
Inductive coding approaches are well-suited for research questions where
there is limited established theory41. Given the limited understanding of the
factors driving clinicians’ perceptions and adoption of ML, a Grounded
Theory approach (a type of inductive approach) was employed for data
analysis, with themes emerging from a review of the transcripts rather than
determined a priori42. We consulted the Standards for Reporting Qualitative
Research (SRQR) guidelines in presenting our process and findings43.
Consistent with our Grounded Theory approach, three researchers

employed a process of open coding, axial coding, and selective coding,
moving from less to more formalized code definitions as they narrowed
their area of inquiry. The second author, who is experienced in qualitative
analysis, trained the other two coders. After immersing themselves in the
data by reading all transcripts, the three coders first engaged in open
coding in which they coded the transcripts for a broad set of preliminary
themes related to clinicians’ roles in sepsis care, experiences with ML-
based tools, and perceptions of these tools and of AI. The three coders
then met to discuss, name, and define these codes, resulting in a shared
codebook. In an iterative process, the three coders each read and coded
overlapping transcripts, and then met to refine and formalize the
codebook, including adding new themes emerging from the data and
adjusting code definitions to better encompass the data. Next, axial coding
was performed in which researchers established connections between
codes and grouped them hierarchically. For example, the axial code for
“Trust in AI” included subcodes capturing “trust based on experience” and
“trust based on peer recommendations.” The coders engaged in selective
coding by narrowing their coding to focus on those areas of the codebook
most central to understanding the use of ML, excluding more tangential
areas of the codebook. Four primary themes emerged from the axial
coding. As is common for Grounded Theory analyses44, no formal inter-
rater reliability metrics were computed; however, the coding process
included repeated discussions of coding discrepancies to increase
consistency and arrive at a consensus. Consensus coding is designed to
catch errors, reduce groupthink, and minimize researcher biases while
recognizing data complexity45. After several rounds of iterations, additional
coding failed to yield coding discrepancies or codebook revisions. After
agreeing to this final codebook, the uncoded transcripts were divided
among the coders.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The full transcripts of the interviews are not publicly available in order to minimize
the risk of participant reidentification. Summaries of the interview contents and
related metadata that support these findings are available from the corresponding
author upon reasonable request.
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