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International comparisons of laboratory values from the 4CE
collaborative to predict COVID-19 mortality
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Given the growing number of prediction algorithms developed to predict COVID-19 mortality, we evaluated the transportability of a
mortality prediction algorithm using a multi-national network of healthcare systems. We predicted COVID-19 mortality using
baseline commonly measured laboratory values and standard demographic and clinical covariates across healthcare systems,
countries, and continents. Specifically, we trained a Cox regression model with nine measured laboratory test values, standard
demographics at admission, and comorbidity burden pre-admission. These models were compared at site, country, and continent
level. Of the 39,969 hospitalized patients with COVID-19 (68.6% male), 5717 (14.3%) died. In the Cox model, age, albumin, AST,
creatine, CRP, and white blood cell count are most predictive of mortality. The baseline covariates are more predictive of mortality
during the early days of COVID-19 hospitalization. Models trained at healthcare systems with larger cohort size largely retain good
transportability performance when porting to different sites. The combination of routine laboratory test values at admission along
with basic demographic features can predict mortality in patients hospitalized with COVID-19. Importantly, this potentially
deployable model differs from prior work by demonstrating not only consistent performance but also reliable transportability
across healthcare systems in the US and Europe, highlighting the generalizability of this model and the overall approach.
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INTRODUCTION
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
caused millions of cases of coronavirus disease 2019 (COVID-19) in
nearly every country. While most patients with COVID-19 have a
mild form of viral pneumonia, an appreciable subgroup develops
rapid onset of severe disease. Several large national studies have
demonstrated that a variable and potentially significant propor-
tion (ranging from 5% to 70%)1–3 of hospitalized patients with
COVID-19 develop cardiorespiratory failure, require mechanical
ventilation and hemodynamic support, and may ultimately die.
The early identification of patients at high risk for death can
improve triage and resource allocation, particularly when numbers
of COVID-19 cases overwhelm health systems4.
Numerous studies have reported models using clinical data,

including laboratory values, to predict patients at high risk of
death for COVID-192. However, most models have not been tested
across hospital systems and countries to determine general-
izability. Few studies have included patients from multi-national
cohorts. The international nature of this disease begs the question
of whether models derived using data from one site or one
country can be used in another. Is transportability possible if the
experience of one site or country could help another make better
decisions?
We formed the 4CE Consortium5 as an international research

collaborative of nearly 300 hospitals from four countries in order
to collect standardized patient-level electronic health record (EHR)
data to examine the epidemiology, pathophysiology, manage-
ment, and healthcare system dynamics of COVID-19. Using the
4CE data, we examined the relationship between pre-selected
laboratory values6 and mortality across institutions and countries.
We compared prediction models using single laboratory values at
admission to a prediction model containing multiple laboratory
values. Across all models, we evaluated geographical differences
(national and continental) among the outcome prediction models
to better understand if models trained on data from one country
and institution can be used elsewhere.

RESULTS
Characteristics of the study population
In this study population of 39,969 patients, the incidence of
hospitalization for COVID-19 largely tracked with population
dynamics of COVID-19 cases7 across different countries during

the initial pandemic period (Fig. 1). Both the COVID-19 case rate
and the COVID-19 hospitalization rate dropped significantly from
the first peak in April 2020. While hospitalization rates remained
relatively low for all countries, case rates increased in France,
Germany, Spain and United States after June 2020.
Consistent with prior studies4,8, the study population of patients

hospitalized with COVID-19 showed a higher prevalence of men
and older populations. See Supplementary Fig. 1 for demographic
characteristics and percentages among age group, race/ethnicity,
and sex. International comparisons were consistent and showed
across three countries that most patients (79.6%) were 50 years of
age or older and male (68.6%).

International comparisons of individual laboratory tests at
admission for mortality risk prediction
The prediction performances of individual laboratory test across
all sites, at country level and continent level were summarized
using random-effects meta-analysis. On average, albumin, creati-
nine, neutrophil count, CRP and white blood cell were stronger
predictors of mortality than the other labs (Supplementary Fig. 2).
The predictiveness of the laboratory tests for mortality within the
next few days after admission tends to be slightly higher than for
1 or 2-week mortality although the decrease in predictiveness
over time was moderate. The predictiveness of the labs varies
substantially across sites. Albumin has low predictiveness in
European sites but higher in the US, CRP appears to be slightly
more predictive in Europe than in US, while other labs performed
similarly in the US and in Europe on average.

International comparisons of mortality risk prediction model
The estimated log hazard ratios for demographic, nine laboratory
tests and Charlson comorbidity index from a comprehensive Cox
model are largely consistent across different healthcare systems
with respect to their directions and magnitudes (Supplementary
Fig. 3). The estimated log hazard ratios across all sites and at
country level were summarized using random-effects meta-
analysis. The risk models indicate that age, albumin, AST, creatine,
CRP, and white blood cell are most predictive of mortality. For
example, the risk model predicts a protective effect against
mortality from those who are <50 years old, report higher albumin
values and lymphocyte count values, and report lower AST,
creatinine and CRP values. The average AUC of the full risk model
is about 0.80, 0.79 and 0.77 for predicting both 3-day, 1-week, or

Fig. 1 Comparison of National Hospitalization Rates by Data Source. Adjusted 7-day average new hospitalization rate and rate of ever-
severe disease per 100,000 people by country based on 4CE contributors along with 95% confidence intervals compared with 7-day average
new case rates collected by Johns Hopkins Center for Systems Science and Engineering (JHU CSSE).
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2-week mortality (Fig. 2). While the performance of the locally
trained site-level models varies across healthcare systems, the
average performance of the full model is similar in the US versus
Europe.

Portability of mortality algorithms across sites, countries, and
continents
The AUCs of the locally trained mortality risk models for 1-week
mortality when porting to external sites were summarized in Fig. 3
(refer to Supplementary Table 4 for numerical results). The
averaged AUCs across all sites and at country level were
summarized using random-effects meta-analysis. The algorithms
trained from sites with large cohort size tend to have better
performance both locally and when transported to other sites. For
example, the AUCs of the model trained at SITE1 (France) are
always close to or higher than the those of the local trained
model. We additionally compared the portability performance
across continents. In general, when porting to North America sites,
the algorithms trained at both continents perform equally well.
For example, when porting to SITE5 (US), the maximum AUC was
0.842 and 0.847 for algorithms trained at North America sites and
at European sites, respectively, which are very close to the
maximum AUC of the local SITE5 algorithm. On the other hand,
when porting to Europe sites, the algorithms trained at North
America sites perform slightly better than those trained at Europe
sites, due to the relatively smaller sample size of the Europe sites.
For example, when porting to SITE1 (France), the maximum AUC
was 0.813 and 0.791 for algorithms trained at North America sites
and at European sites, respectively.

DISCUSSION
In this large-scale multi-national study, we reported a mortality
prediction model for patients hospitalized with COVID-19 that
retained accuracy across healthcare systems and countries.
Building on the growing literature of COVID-19 mortality
prediction, our study is unique in leveraging international cohorts
to validate the generalizability of the prediction model, which has
the following specific features. First, a predictive model containing
nine commonly measured laboratory test values performed better
than the model containing 17 laboratory test values: CRP,
creatinine, white blood cell count, lymphocyte count, AST, ALT,

total bilirubin, neutrophil count, and albumin. From a list of 17
laboratory tests associated with worse outcomes in patients with
COVID-19 based on prior reports6, we selected the subset of nine
tests based on their low rate of missing data in our data set.
Second, we identified albumin, CRP, creatinine, neutrophil count,
and white blood cell count as better individual predictors than
other individual laboratory tests. Third, a comprehensive model
containing the nine commonly measured laboratory tests as well
as baseline demographic features and comorbidity burden
indicates that age, albumin, AST, CRP, creatine, and white blood
cell count are most predictive of mortality. Interestingly, the
baseline covariates are more predictive of mortality in the early
days after admission for COVID-19, likely because other features
gain importance as hospital course prolongs. Finally, when
comparing prediction models between North American and
European sites, the final model showed crucial consistency across
international sites, highlighting its potential generalizable
application.
The study has several strengths. Chief among them is the

international consortium with a federated data sharing approach
that facilitated the pooling of laboratory values across 283
hospitals with diverse healthcare practices and populations,
enabling the examination of model transportability. Second, while
the accuracy (AUC) of individual laboratory test in predicting
mortality after hospital admission for COVID-19 varies substantially
cross countries, the accuracy of the mortality risk prediction model
is remarkably consistent between US and Europe. Further, the
estimated log hazard ratios from the best-performing Cox model
are largely consistent across different healthcare systems with
respect to their directions and magnitudes. Third, the mortality
prediction model using commonly measured laboratory tests and
baseline demographic and comorbidity burden trained at
healthcare systems performs well both locally and externally
when transported to other sites. Interestingly, the transportability
does not appear to depend on the continent or country. Taken
together, the key innovation of our study that differs from prior
studies is the transportability and the potential generalizability of
the COVID-19 mortality prediction model that seems independent
of the specific healthcare system.
The study also has several limitations that we took measures to

mitigate. First, EHR data have variable degree of intrinsic noise,
missing data, and available documentation due to differences in
clinical practice that contribute to differences among healthcare
systems. Indeed, we found healthcare system-level (within-
healthcare system and between-healthcare system) differences
were greater than country-level differences. By leveraging our
federated system of common EHR data elements and capturing
healthcare system-level heterogeneity, the 4CE consortium is
uniquely positioned to identify international differences in patient
characteristics and outcomes as well as to test model transport-
ability. To mitigate the quality issue of EHR data, we performed
extensive and iterative quality controls at each participating
healthcare system with local collaborators and centrally to address
potential imprecision due to healthcare system-specific variations
in data extraction and incompleteness of datasets (e.g., incom-
plete mapping of local EHR codes to desired data elements). These
critical quality control steps, which are often underappreciated in
multi-center EHR data research, further differentiate the 4CE
research efforts from other COVID-19 research efforts. Second, we
observed a significant level of heterogeneity in the predictiveness
of individual laboratory tests and the locally trained mortality risk
models across the participating healthcare systems. The hetero-
geneity could result from differences in patient population, clinical
practice and EHR system. To address this concern, we performed
random-effects meta-analyses to account for the heterogeneity
across sites. Importantly, the best-performing model showed
evidence of good transportability despite of the heterogeneity.

Fig. 2 Risk Model Performance Across Countries and Continents.
AUCs of cox regression models with nine common laboratory tests
(missing rate <30%) in predicting death adjusting for demographic
variables and Charlson comorbidity index.
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As the pandemic persists and new SARS-CoV-2 variants emerge,
two clinically relevant questions remain unanswered: (1) does the
mortality prediction model continue to perform well across
healthcare systems and countries? (2) can the prediction model
predict long-term mortality after COVID-19 hospitalization? To
address these questions, we are planning future analyses using
patient-level data at each participating healthcare system to
assess the temporal trends of the model performance throughout
the pandemic waves and at individual patient-level over longer
period. We will revise and adapt to temporal changes in clinical
scenarios. In this study, we observed that AUCs are generally
consistent across genders. Since age is a significant risk factor for
mortality, conditioning on the age group, the model performance
for distinguishing high-risk vs. low-risk patients within the age
group is expected to be lower than the overall accuracy. Further
developing age-specific risk prediction models warrants further
research. Beyond mortality prediction, the 4CE consortium has
established a platform of harmonized data capture through its
federated system with iterative and methodical expansion of data
elements to enable the clinical investigation of a wide range of
domains pertaining to COVID-19 such as coagulopathy and

thrombotic events, acute renal failure, pediatric manifestation,
neurological complications as well as the post-acute sequelae
syndrome (i.e., long-hauler). We will apply the approach from this
study to assess other prediction model transportability within our
international network of participating healthcare systems.
We make several noteworthy observations of clinical relevance.

First, the laboratory tests predictive of mortality in patients
hospitalized for COVID-19 represent the combination of acute
inflammatory response (as indicated by CRP, white blood cell,
lymphocyte, and neutrophil count) and underlying physiological
function as well as the acute response of critical organ systems
(general nutritional status as indicated by albumin, renal function
as indicated by creatinine, and hepatic function as indicated by
AST, ALT, and bilirubin). These routinely collected laboratory
indicators of systemic response to the SARS-CoV-2 viral infection
in conjunction with easily ascertainable baseline demographic and
comorbidity burden formulate a clinically deployable prediction
tool of mortality risk following hospital admission for COVID-19.
Second, the relatively modest accuracy of individual laboratory
values in predicting mortality is likely due to its large variation
within each participating healthcare system. This combination of

Fig. 3 Transportability of the Mortality Prediction Model Across Sites and Countries. Heatmap of transportability of the Cox regression
model across different sites and countries. Each part of the figure represents performance when the model is trained at one site and evaluated
at another.
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commonly measured clinical laboratory tests dramatically
improved the prediction performance over individual laboratory
tests, and performed better than a larger panel of clinical
laboratory tests. A key clinical insight is that clinical laboratory
tests beyond the commonly measured routine tests may not
inform mortality, which is the most important clinical outcome.
Third, the performance of the final model was relatively stable
over the hospital course and did not improve beyond the initial
hospital days. This finding suggests that additional factors
contribute to mortality as the hospital course for COVID-19
patients prolongs. Of particular clinical relevance, it supports the
utility of commonly measured routine clinical laboratory test
values (and other routine clinical and demographic features) at
admission to identify patients at high risk for mortality who would
warrant early and aggressive intervention as well as close
monitoring, particularly in the setting of limited healthcare
resources.

METHODS
Cohort identification
We included all patients hospitalized at participating 4CE sites with an
admission date from 7 days before to 14 days after the date of their first
reverse transcription polymerase chain reaction (PCR)-confirmed SARS-
CoV-2 positive test result. The first admission date within this 21-day time
window was considered the index admission date. Throughout this work,
“days since admission” refers to this index date.

Participating sites
Data were available from 39,969 patients from 284 hospitals (affiliated with
16 sites) across four countries: France, Germany, Spain, and the United
States. See Supplementary Table 2 for details about participating sites.
Several sites collected data from multiple hospitals. In the United States,
170 medical centers of the US Department of Veterans Affairs were
grouped into five regional divisions called Veterans Integrated Service
Networks.

Fig. 4 Schematic of the federated EHR-based study involving healthcare systems from three countries. Each site generated three data
tables (comma-separated files) containing patient level data: 1) local patient clinical course indicates which days the patient was in the
hospital and when the patient died; 2) local patient observation includes first three-character ICD9/10 diagnosis code and laboratory tests,
where laboratory test has a numerical value; 3) local patient summary contains demographic variables including age, sex and race. Sites then
conduct analysis using these individual level data within their firewall (see Methods).
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Patient and public involvement
Patients and the public were not involved in the design, conduct, or
reporting, or dissemination plans of the research.

Outcome
We consider death as the main COVID-19 outcome. Death was identified
via standard coding and discharge data aggregation from each site. Each
partner institution used local criteria to identify in-hospital mortality.

Local data collection
Patient-level data. Sixteen sites representing 284 Hospitals assembled
patient-level data for detailed analyses, including twelve US sites, and four
international sites. Individual healthcare systems then ran separate
analyses using the patient-level data within their local firewall and only
reported the final analytic results to the central institution for meta-
analysis. A schematic of our workflow is presented in Fig. 4, and further
details of collected data are reported in Supplementary Table 3.

Software platform. Most sites used the open source i2b2 (Informatics for
Integrating Biology and the Bedside) software platform to obtain the data.
More than 200 organizations worldwide use i2b2 for purposes that include
identifying participants for clinical trials, drug safety monitoring, and
clinical and epidemiological research. Those 4CE sites with i2b2 used
database scripts to directly query their i2b2 repository, calculate the counts
and statistics, and export the data files. The 4CE sites without i2b2 used the
Observational Medical Outcomes Partnership (OMOP) Common Data
Model or their own clinical data warehouse solutions (e.g., Epic Caboodle)
and querying tools to create the required files.

Selection of laboratory tests
We focused on nine laboratory tests that are commonly measured (missing
rate <30% at most sites) and associated with mortality in patients with
COVID-19 based on prior reports6, We provided each site with a single
standard Logical Objects, Identifiers, Names and Codes (LOINC) identifier
for each test, but sites often needed to map tests to additional LOINC or
custom codes within their EHR. We addressed barriers that arose during
initial efforts to extract these laboratory values by stratifying region-
specific laboratory test types to reduce extraction errors and enable
standardization.

Quality control
We conducted site-specific quality control. Each site ran an R script for the
following additional quality control checks: consistency of the total counts
of total cases across all datasets within each site, consistency between the
3-digit diagnosis codes and the ICD dictionary, and consistency of the
range of laboratory data from each site with the normal range observed
from all sites. Sites checked and fixed the data if their laboratory values
were consistently lower or higher than the other sites or otherwise
implausible.

Statistical analysis
We estimated the country-level daily incidence of new patients
hospitalized with COVID-19 during the study period from March 1, 2020
to September 30, 2020. Specifically, for each country, we summed the daily
incidence of new patients hospitalized with COVID-19 at each site within
that country per 100,000 people of the country and multiplied this by an
adjustment factor, defined as the ratio between the country’s overall
inpatient discharge rate and the overall inpatient discharge rate of all 4CE
sites in that country irrespective of COVID-19 status. We then reported the
adjusted 7-day average incidence of new COVID-19 hospitalizations per
100,000 of the country population.
We divided our analysis into two parts: (1) prediction of mortality using

individual laboratory values and a comprehensive algorithm derived from
multiple laboratory values, comorbid conditions, and demographics
available at each site and (2) comparison of these models across sites,
countries, and continents.
We evaluated the ability of a biomarker and demographics-based

algorithm to predict mortality using admission data. We removed patients
who died at admission. We developed mortality risk prediction models
using a set of nine common laboratory tests with missing rates <30% at
most sites, adjusting for demographic variables and the Charlson

comorbidity index. We derived the risk models by fitting penalized Cox
proportional hazards model. We evaluated the accuracy of the risk models
for predicting mortality by t-days since admission based on the time-
specific AUC9. We used the 10-fold cross-validation to estimate the AUC
when evaluating the model performance within each local site. The
mortality risk prediction model was not trained at Spain because the data
were not available at the time when we collected the model training
results. To assess the transportability of the mortality risk prediction
models across different sites, we validated the algorithm trained at local
individual healthcare centers using independent dataset from remaining
external sites including the healthcare center from Spain. We used random
effects meta-analysis on the prediction performance measures across sites
to summarize country level, continent level, and overall average
performances.
IRB Approval was obtained at Assistance Publique—Hôpitaux de Paris,

Beth Israel Deaconess Medical Center, Bordeaux University Hospital,
Hospital Universitario 12 de Octubre, Massachusetts General Brigham,
Northwestern University, Medical Center, University of Freiburg, University
of Pittsburgh, VA North Atlantic, VA Southwest, VA Midwest, VA
Continental, and VA Pacific. An exempt determination was made by the
IRB at University of California Los Angeles, University of Michigan, and
University of Pennsylvania.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Only aggregate data was shared by sites for this study. All aggregate data in a de-
identified fashion can be found and downloaded at www.covidclinical.net.

CODE AVAILABILITY
The SQL and R scripts used in this work can be found and downloaded at https://
github.com/covidclinical.

Received: 4 February 2021; Accepted: 11 March 2022;

REFERENCES
1. Wu, Z. & McGoogan, J. M. Characteristics of and important lessons from the cor-

onavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72
314 cases from the Chinese Center for Disease Control and Prevention. JAMA 323,
1239–1242 (2020).

2. Wynants, L. et al. Prediction models for diagnosis and prognosis of covid-19
infection: systematic review and critical appraisal. BMJ 369, m1328 (2020).

3. Goyal, P. et al. Clinical characteristics of Covid-19 in New York City. N. Engl. J. Med.
382, 2372–2374 (2020).

4. Fried, M. W. et al. Patient characteristics and outcomes of 11,721 patients with
COVID19 hospitalized across the United States. Clin. Infect. Dis. https://doi.org/
10.1093/cid/ciaa1268 (2020).

5. Brat, G. A. et al. International electronic health record-derived COVID-19 clinical
course profiles: the 4CE consortium. NPJ Digit. Med. 3, 109 (2020).

6. Lippi, G. & Plebani, M. Laboratory abnormalities in patients with COVID-2019
infection. Clin. Chem. Lab. Med. https://doi.org/10.1515/cclm-2020-0198 (2020).

7. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns
Hopkins University (JHU) (Johns Hopkins University (JHU), accessed 7 October 2020);
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd4029942
3467b48e9ecf6.

8. Guan, W. -J. et al. Clinical characteristics of coronavirus disease 2019 in China. N.
Engl. J. Med. https://doi.org/10.1056/NEJMoa2002032 (2020).

9. Uno, H., Cai, T., Tian, L. & Wei, L. J. Evaluating prediction rules for t-year survivors
with censored regression models. J. Am. Stat. Assoc. 102, 527–537 (2007).

ACKNOWLEDGEMENTS
G.W. reports funding from NCATS UL1TR002541, NCATS UL1TR000005, and NLM
R01LM013345. S.M. and J.K. report funding from NCATS 5UL1TR001857-05 and NHGRI
5R01HG009174-04. Z.X. reports funding from NINDS R01NS098023. G.O. reports

G.M. Weber et al.

6

npj Digital Medicine (2022)    74 Published in partnership with Seoul National University Bundang Hospital

http://www.covidclinical.net
https://github.com/covidclinical
https://github.com/covidclinical
https://doi.org/10.1093/cid/ciaa1268
https://doi.org/10.1093/cid/ciaa1268
https://doi.org/10.1515/cclm-2020-0198
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://doi.org/10.1056/NEJMoa2002032


funding from NIH grants NIEHS P30ES017885 and NCI U24CA210967. S.V. reports
funding from NLM R01LM012095 and NCATS UL1TR001857. A.S. reports funding from
NHLBI K23HL148394 and L40HL148910, and NCATS UL1TR001420. B.A. reports
funding from NHLBI U24 HL148865. D.B. and R.F. report funding from NCATS
UL1TR001881. T.G. and T.G. report funding from 01ZZ1801E German Federal Ministry
of Education and Research. D.H. reports funding from NCATS UL1TR002240. M.K.
reports funding from NHGRI 5T32HG002295-18. D.K. reports funding from MIRACUM
Consortium grant 01ZZ1801A. Y.L. reports funding from NLM R01LM01333. J.M.
reports funding from NCATS UL1TR001878. D.M. reports funding from NCATS UL1-
TR001878 Institutional Clinical and Translational Science Award (University of
Pennsylvania). L.P. reports funding from NCATS CTSA Award #UL1TR002366.

AUTHOR CONTRIBUTIONS
G.M.W., C.H., N.P.P., P.A., S.N.M., A.G.S., G.S.O., J.G.K., R.B., M.A., B.J.A., D.S.B., F.T.B., K.C.,
A.D., J.H.M., I.S.K., T.C., and G.A.B. contributed to design and conceptualization of the
study. G.M.W., Z.X., N.P.P., P.A., S.N.M., A.S.L., A.N., S.V., J.G.K., A.M.S., N.H.W.L., M.C., B.K.
B.J., R.B., G.A., M.A., D.S.B., V.B., L.C., K.C., A.D., S.L.D., N.G.B., D.A.H., Y.L.H., J.H.H., R.W.I.,
Y.L., K.E.L., S.E.M., A.M., K.D.M., C.M., M.E.M., J.H.M., J.S.M., M.M., D.L.M., K.Y.N., L.P.P., M.
P.J., R.B.R., E.R.S., P.S., P.S.B., A.S., A.L.M.T., B.W.L.T., V.T., C.T., and E.M.T. contributed to
data collection. G.M.W., C.H., N.P.P., P.A., S.L., M.S.K., S.N.M., A.G.S., C.L.B., G.S.O., S.V., J.
G.K., A.M.S., M.C., B.K.B.J., G.A., M.A., B.J.A., D.S.B., F.T.B., A.D., S.L.D., D.A.H., J.H.H., M.L.,
Y.L., S.E.M., K.D.M., C.M., M.E.M., J.S.M., M.M., L.P.P., A.L.M.T., C.T., E.M.T., X.W., I.S.K., T.C.,
and G.A.B. contributed to data analysis and interpretation. All authors contributed to
drafting and revision of the manuscript and approved the final manuscript. All
authors are accountable for all aspects of the work in ensuring that questions related
to the accuracy or integrity of any part of the work are appropriately investigated and
resolved.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41746-022-00601-0.

Correspondence and requests for materials should be addressed to Tianxi Cai or
Gabriel A. Brat.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

THE CONSORTIUM FOR CLINICAL CHARACTERIZATION OF COVID-19 BY EHR (4CE)

James R. Aaron42, Giuseppe Agapito14, Adem Albayrak43, Giuseppe Albi13, Mario Alessiani15, Anna Alloni44, Danilo F. Amendola45,
François Angoulvant46, Li L. L. J. Anthony47, Bruce J. Aronow 16, Fatima Ashraf48, Andrew Atz49, Paul Avillach1, Paula S. Azevedo50,
James Balshi51, Brett K. Beaulieu-Jones1, Douglas S. Bell 17, Antonio Bellasi52, Riccardo Bellazzi13, Vincent Benoit53, Michele Beraghi54,
José Luis Bernal-Sobrino24, Mélodie Bernaux55, Romain Bey53, Surbhi Bhatnagar16, Alvar Blanco-Martínez24, Martin Boeker56,
Clara-Lea Bonzel1, John Booth28, Silvano Bosari57, Florence T. Bourgeois19, Robert L. Bradford58, Gabriel A. Brat1, Stéphane Bréant18,
Nicholas W. Brown1, Raffaele Bruno59, William A. Bryant28, Mauro Bucalo44, Emily Bucholz60, Anita Burgun61, Tianxi Cai1,
Mario Cannataro 12, Aldo Carmona62, Charlotte Caucheteux63, Julien Champ64, Krista Y. Chen65, Jin Chen66, Luca Chiovato20,
Lorenzo Chiudinelli67, Kelly Cho68, James J. Cimino69, Tiago K. Colicchio69, Sylvie Cormont18, Sébastien Cossin70, Jean B. Craig71,
Juan Luis Cruz-Bermúdez24, Jaime Cruz-Rojo24, Arianna Dagliati 22, Mohamad Daniar72, Christel Daniel73, Priyam Das1,
Batsal Devkota74, Audrey Dionne60, Rui Duan75, Julien Dubiel18, Scott L. DuVall23, Loic Esteve76, Hossein Estiri77, Shirley Fan78,
Robert W. Follett17, Thomas Ganslandt79, Noelia García-Barrio24, Lana X. Garmire80, Nils Gehlenborg1, Emily J. Getzen81, Alon Geva82,
Tobias Gradinger79, Alexandre Gramfort63, Romain Griffier70, Nicolas Griffon73, Olivier Grisel63, Alba Gutiérrez-Sacristán1, Larry Han75,
David A. Hanauer83, Christian Haverkamp84, Derek Y. Hazard85, Bing He80, Darren W. Henderson42, Martin Hilka18, Yuk-Lam Ho 21,
John H. Holmes26,27, Chuan Hong 1,2,152, Kenneth M. Huling1, Meghan R. Hutch30, Richard W. Issitt28, Anne Sophie Jannot86,
Vianney Jouhet70, Ramakanth Kavuluru87, Mark S. Keller 1, Chris J. Kennedy88, Kate F. Kernan89, Daniel A. Key28, Katie Kirchoff90,
Jeffrey G. Klann77, Isaac S. Kohane1, Ian D. Krantz91, Detlef Kraska92, Ashok K. Krishnamurthy93, Sehi L’Yi 1, Trang T. Le26,
Judith Leblanc94, Guillaume Lemaitre63, Leslie Lenert71, Damien Leprovost95, Molei Liu96, Ne Hooi Will Loh 11, Qi Long97,
Sara Lozano-Zahonero98, Yuan Luo 30, Kristine E. Lynch23, Sadiqa Mahmood43, Sarah E. Maidlow99, Adeline Makoudjou98,
Alberto Malovini32, Kenneth D. Mandl 33, Chengsheng Mao 30, Anupama Maram100, Patricia Martel101, Marcelo R. Martins102,
Jayson S. Marwaha103, Aaron J. Masino104, Maria Mazzitelli41, Arthur Mensch105, Marianna Milano106, Marcos F. Minicucci107,
Bertrand Moal108, Taha Mohseni Ahooyi109, Jason H. Moore110, Cinta Moraleda111, Jeffrey S. Morris112, Michele Morris8,
Karyn L. Moshal113, Sajad Mousavi1, Danielle L. Mowery 26, Douglas A. Murad17, Shawn N. Murphy114, Thomas P. Naughton115,
Carlos Tadeu Breda Neto45, Antoine Neuraz 6, Jane Newburger60, Kee Yuan Ngiam36, Wanjiku F. M. Njoroge116, James B. Norman1,
Jihad Obeid71, Marina P. Okoshi107, Karen L. Olson117, Gilbert S. Omenn118, Nina Orlova18, Brian D. Ostasiewski119, Nathan P. Palmer1,
Nicolas Paris18, Lav P. Patel120, Miguel Pedrera-Jiménez24, Ashley C. Pfaff121, Emily R. Pfaff122, Danielle Pillion1, Sara Pizzimenti57,
Hans U. Prokosch123, Robson A. Prudente124, Andrea Prunotto98, Víctor Quirós-González24, Rachel B. Ramoni125, Maryna Raskin43,
Siegbert Rieg126, Gustavo Roig-Domínguez24, Pablo Rojo111, Paula Rubio-Mayo24, Paolo Sacchi59, Carlos Sáez127, Elisa Salamanca18,
Malarkodi Jebathilagam Samayamuthu8, L. Nelson Sanchez-Pinto128, Arnaud Sandrin18, Nandhini Santhanam79, Janaina C. C. Santos129,
Fernando J. Sanz Vidorreta17, Maria Savino130, Emily R. Schriver 39, Petra Schubert 21, Juergen Schuettler131, Luigia Scudeller57,
Neil J. Sebire132, Pablo Serrano-Balazote24, Patricia Serre18, Arnaud Serret-Larmande133, Mohsin Shah28, Zahra Shakeri Hossein Abad1,
Domenick Silvio134, Piotr Sliz135, Jiyeon Son136, Charles Sonday137, Andrew M. South138, Francesca Sperotto60, Anastasia Spiridou 28,

G.M. Weber et al.

7

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)    74 

https://doi.org/10.1038/s41746-022-00601-0
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-5109-6514
http://orcid.org/0000-0001-5109-6514
http://orcid.org/0000-0001-5109-6514
http://orcid.org/0000-0001-5109-6514
http://orcid.org/0000-0002-5063-8294
http://orcid.org/0000-0002-5063-8294
http://orcid.org/0000-0002-5063-8294
http://orcid.org/0000-0002-5063-8294
http://orcid.org/0000-0003-1502-2387
http://orcid.org/0000-0003-1502-2387
http://orcid.org/0000-0003-1502-2387
http://orcid.org/0000-0003-1502-2387
http://orcid.org/0000-0002-5041-0409
http://orcid.org/0000-0002-5041-0409
http://orcid.org/0000-0002-5041-0409
http://orcid.org/0000-0002-5041-0409
http://orcid.org/0000-0003-3305-3830
http://orcid.org/0000-0003-3305-3830
http://orcid.org/0000-0003-3305-3830
http://orcid.org/0000-0003-3305-3830
http://orcid.org/0000-0001-7056-9559
http://orcid.org/0000-0001-7056-9559
http://orcid.org/0000-0001-7056-9559
http://orcid.org/0000-0001-7056-9559
http://orcid.org/0000-0003-3003-874X
http://orcid.org/0000-0003-3003-874X
http://orcid.org/0000-0003-3003-874X
http://orcid.org/0000-0003-3003-874X
http://orcid.org/0000-0001-7720-2848
http://orcid.org/0000-0001-7720-2848
http://orcid.org/0000-0001-7720-2848
http://orcid.org/0000-0001-7720-2848
http://orcid.org/0000-0002-4114-1286
http://orcid.org/0000-0002-4114-1286
http://orcid.org/0000-0002-4114-1286
http://orcid.org/0000-0002-4114-1286
http://orcid.org/0000-0003-0195-7456
http://orcid.org/0000-0003-0195-7456
http://orcid.org/0000-0003-0195-7456
http://orcid.org/0000-0003-0195-7456
http://orcid.org/0000-0002-9781-0477
http://orcid.org/0000-0002-9781-0477
http://orcid.org/0000-0002-9781-0477
http://orcid.org/0000-0002-9781-0477
http://orcid.org/0000-0002-1515-9626
http://orcid.org/0000-0002-1515-9626
http://orcid.org/0000-0002-1515-9626
http://orcid.org/0000-0002-1515-9626
http://orcid.org/0000-0003-3802-4457
http://orcid.org/0000-0003-3802-4457
http://orcid.org/0000-0003-3802-4457
http://orcid.org/0000-0003-3802-4457
http://orcid.org/0000-0001-7142-6728
http://orcid.org/0000-0001-7142-6728
http://orcid.org/0000-0001-7142-6728
http://orcid.org/0000-0001-7142-6728
http://orcid.org/0000-0003-4522-1029
http://orcid.org/0000-0003-4522-1029
http://orcid.org/0000-0003-4522-1029
http://orcid.org/0000-0003-4522-1029
http://orcid.org/0000-0002-6135-0173
http://orcid.org/0000-0002-6135-0173
http://orcid.org/0000-0002-6135-0173
http://orcid.org/0000-0002-6135-0173
http://orcid.org/0000-0001-6576-0244
http://orcid.org/0000-0001-6576-0244
http://orcid.org/0000-0001-6576-0244
http://orcid.org/0000-0001-6576-0244


Zachary H. Strasser77, Amelia L. M. Tan 1, Bryce W. Q. Tan40, Byorn W. L. Tan40, Suzana E. Tanni107, Deanne M. Taylor139,
Ana I. Terriza-Torres24, Valentina Tibollo 32, Patric Tippmann85, Emma M. S. Toh140, Carlo Torti41, Enrico M. Trecarichi41, Yi-Ju Tseng141,
Andrew K. Vallejos142, Gael Varoquaux143, Margaret E. Vella1, Guillaume Verdy108, Jill-Jênn Vie144, Shyam Visweswaran8,
Michele Vitacca145, Kavishwar B. Wagholikar9, Lemuel R. Waitman146, and Xuan Wang1, Demian Wassermann63, Griffin M. Weber1,
Martin Wolkewitz85, Scott Wong40, Zongqi Xia147, Xin Xiong75, Ye Ye148,149, Nadir Yehya150, William Yuan1, Alberto Zambelli151,
Harrison G. Zhang1, Daniela Zöller98, Valentina Zuccaro59 and Chiara Zucco106

42Department of Biomedical Informatics, University of Kentucky, Lexington, USA. 43Health Catalyst, INC., Cambridge, USA. 44BIOMERIS (BIOMedical Research Informatics
Solutions), Pavia, Italy. 45Clinical Research Unit of Botucatu Medical School, São Paulo State University, Botucatu, Brazil. 46Pediatric emergency Department, Hôpital Necker-
Enfants Malades, Assistance Public-Hôpitaux de Paris, Paris, Paris, France. 47National Center for Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore, Singapore.
48BIG-ARC, The University of Texas Health Science Center at Houston, School of Biomedical Informatics, Houston, USA. 49Department of Pediatrics, Medical University of South
Carolina, Charleston, USA. 50Internal Medicine Department, Botucatu Medical School, São Paulo State University, Botucatu, Brazil. 51Department of Surgery, St. Luke’s University
Health Network, Bethlehem, USA. 52Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland. 53IT Department, Innovation & Data,
APHP Greater Paris University Hospital, Paris, France. 54IT Department, ASST Pavia, Voghera, Italy. 55Strategy and Transformation Department, APHP Greater Paris University
Hospital, Paris, France. 56Technical University of Munich, Munich, Germany. 57Scientific Direction, IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy. 58North
Carolina Translational and Clinical Sciences (NC TraCS) Institute, UNC Chapel Hill, Chapel Hill, USA. 59Division of Infectious Diseases I, Fondazione I.R.C.C.S. Policlinico San Matteo,
Italy, Pavia, Italy. 60Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, USA. 61Department of Biomedical Informatics, HEGP, APHP Greater
Paris University Hospital, Paris, France. 62Department of Anesthesia, St. Luke’s University Health Network, Bethlehem, USA. 63Université Paris-Saclay, Inria, CEA, Palaiseau, France.
64INRIA Sophia-Antipolis – ZENITH team, LIRMM, Montpellier, France. 65Computational Health Informatics Program, Boston Children’s Hospital, Boston, USA. 66Department of
Internal Medicine, University of Kentucky, Lexington, USA. 67UOC Ricerca, Innovazione e Brand reputation, ASST Papa Giovanni XXIII, Bergamo, Bergamo, Italy. 68Population
Health and Data Science, MAVERIC, VA Boston Healthcare System, Boston, USA. 69Informatics Institute, University of Alabama at Birmingham, Birmingham, USA. 70IAM unit,
INSERM Bordeaux Population Health ERIAS TEAM, Bordeaux University Hospital/ERIAS - Inserm U1219 BPH, Bordeaux, France. 71Biomedical Informatics Center, Medical University
of South Carolina, Charleston, USA. 72Clinical Research Informatics, Boston Children’s Hospital, Boston, USA. 73IT department, Innovation & Data (APHP), UMRS1142 (INSERM),
APHP Greater Paris University Hospital, INSERM, Paris, France. 74Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, USA.
75Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, USA. 76SED/SIERRA, Inria Centre de Paris, Paris, France. 77Department of Medicine, Massachusetts
General Hospital, Boston, USA. 78Health Information Technology & Services, University of Michigan, Ann Arbor, USA. 79Heinrich-Lanz-Center for Digital Health, University Medicine
Mannheim, Heidelberg University, Mannheim, Germany. 80Department of Computational Biology and Bioinformatics, University of Michigan, Ann Arbor, USA. 81Biostatistics,
Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA. 82Department of Anesthesiology, Critical Care, and Pain Medicine and Computational Health
Informatics Program, Boston Children’s Hospital, Boston, USA. 83Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, MI, USA. 84Institute of
Digitalization in Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Germany, Freiburg, Germany. 85Institute of Medical Biometry and Statistics, Institute of
Medical Biometry and Statistics, Medical Center, University of Freiburg, Freiburg, Germany. 86Department of Biomedical Informatics, HEGP, APHP Greater Paris University
Hospital, Paris, France. 87Division of Biomedical Informatics (Department of Internal Medicine), University of Kentucky, Lexington, USA. 88Center for Precision Psychiatry,
Massachusetts General Hospital, Boston, USA. 89Department of Critical Care Medicine, Children’s Hospital of PIttsburgh, Pittsburgh, USA. 90Medical University of South
Carolina, Charleston, USA. 91Department of Pediatrics, Division of Human Genetics, The Children’s Hospital of Philadelphia and the Perelman School of Medicine at the University
of Pennsylvania, Philadelphia, USA. 92Center for Medical Information and Communication Technology, University Hospital Erlangen, Erlangen, Germany. 93Renaissance
Computing Institute/Department of Computer Science, University of North Carolina, Chapel Hill, USA. 94Clinical Research Unit, Saint Antoine Hospital, APHP Greater Paris
University Hospital, Paris, France. 95Clevy.io, Paris, France. 96Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, USA. 97Department of Biostatistics,
Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA. 98Institute of Medical Biometry and Statistics, Faculty of Medicine and
Medical Center, University of Freiburg, Freiburg, Germany, Freiburg, Germany. 99Michigan Institute for Clinical and Health Research (MICHR) Informatics, University of
Michigan, Ann Arbor, MI, USA. 100Harvard Catalyst, Harvard Medical School, Boston, USA. 101Clinical Research Unit, Paris Saclay, APHP Greater Paris University Hospital, Boulogne-
Billancourt, France. 102Medical Informatics Center, Hospital das Clínicas, Faculty of Medicine of Botucatu, Clinics hospital of the Botucatu Medical School, São Paulo State
University, Botucatu, Brazil. 103Department of Surgery, Beth Israel Deaconess Medical Center, Boston, USA. 104Department of Anesthesiology and Critical Care, Children’s Hospital
of Philadelphia, Philadelphia, USA. 105ENS, PSL University, Paris, France. 106Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Italy, Catanzaro,
Italy. 107Internal Medicine Department of Botucatu Medical School, São Paulo State University, Botucatu, Brazil. 108IAM unit, Bordeaux University Hospital, Bordeaux, France.
109Department of Biomedical Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, USA. 110Department of Computational Biomedicine, Cedars-Sinai Medical
Center, West Hollywood, USA. 111Pediatric Infectious Disease Department, Hospital Universitario 12 de Octubre, Madrid, Spain. 112Department of Biostatistics, Epidemiology, and
Informatics (dept), Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Berwyn, USA. 113Department of Infectious Diseases, Great
Ormond Street Hospital for Children, UK, London, UK. 114Department of Neurology, Massachusetts General Hospital, Boston, USA. 115Harvard Catalyst | The Harvard Clinical and
Translational Science Center, Harvard Medical School, Boston, USA. 116Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA.
117Computational Health Informatics Program and Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, USA. 118Department of
Computational Medicine & Bioinformatics, Internal Medicine, Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, USA. 119CTSI, WFBMI, Wake Forest
School of Medicine, Winston Salem, USA. 120Department of Internal Medicine, Division of Medical Informatics, University of Kansas Medical Center, Kansas City, USA.
121Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA. 122NC TraCS Institute, UNC Chapel Hill, Chapel Hill, USA. 123Department of
Medical Informatics, University of Erlangen-Nürnberg, Erlangen, Germany. 124Clinical Research Unit São Paulo State University, Clinical Research Unit São Paulo State
University, Botucatu, Brazil. 125Department of Veterans Affairs Department of Veterans Affairs, Office of Research and Development, Washington, DC, USA. 126Division of Infectious
Diseases, Department of Medicine II, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany. 127Biomedical Data Science Lab, ITACA Institute, Universitat
Politècnica de València, Valencia, Spain. 128Department of Pediatrics (Critical Care), Northwestern University Feinberg School of Medicine, Chicago, USA. 129Nurse Departament of
FMB - Medicine School of Botucatu, Clinical Research Unit of Botucatu Medical School, São Paulo State University, Botucatu, Brazil. 130ASST Pavia, Lombardia Region Health
System, Management Engineer, Direction, Pavia, Italy. 131Department of Anesthesiology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Germany, Erlangen, Germany.
132Digital Research, Informatics and Virtual Environments (DRIVE), Great Ormond Street Hospital for Children NIHR BRC, UK, London, UK. 133Hôpital Saint Louis, Department of
Biostatistics and Bioinformatics, APHP Greater Paris University Hospital, Paris, France. 134MICHR Informatics, University of Michigan, Ann Arbor, USA. 135CHIP, Boston Children’s
Hospital, Boston, USA. 136Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, USA. 137Critical Care Medicine, Department of Medicine, St. Luke’s
University Health Network, Bethlehem, PA, USA. 138Department of Pediatrics-Section of Nephrology, Brenner Children’s, Wake Forest University School of Medicine, Winston
Salem, USA. 139Department of Biomedical Health Informatics and the Department of Pediatrics, The Children’s Hospital of Philadelphia and the University of Pennsylvania
Perelman Medical School, Philadelphia, USA. 140Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. 141Department of Information
Management, National Central University, Taoyuan, Taiwan. 142Clinical & Translational Science Institute, Medical College of Wisconsin, Milwaukee, USA. 143Université Paris-Saclay,
Inria, CEA, Montréal Neurological Institute, McGill University, Palaiseau, France. 144SequeL, Inria Lille, Villeneuve-d’Ascq, France. 145Respiratory Department, ICS S. Maugeri IRCCS
Pavia Italy, Lumezzane (Bs), Italy. 146Department of Health Management and Informatics, University of Missouri, MO, Columbia, USA. 147Department of Neurology, University of
Pittsburgh, Pittsburgh, USA. 148Department of Veterans Affairs, 1100 First Street, NW, Washington, DC 20420, USA. 149University of Pittsburgh, Pittsburgh, USA. 150Department of
Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, USA. 151Department of Oncology, ASST Papa Giovanni
XXIII, Bergamo, Bergamo, Italy.

G.M. Weber et al.

8

npj Digital Medicine (2022)    74 Published in partnership with Seoul National University Bundang Hospital

http://orcid.org/0000-0003-0623-6623
http://orcid.org/0000-0003-0623-6623
http://orcid.org/0000-0003-0623-6623
http://orcid.org/0000-0003-0623-6623
http://orcid.org/0000-0003-0623-6623
http://orcid.org/0000-0003-2687-3822
http://orcid.org/0000-0003-2687-3822
http://orcid.org/0000-0003-2687-3822
http://orcid.org/0000-0003-2687-3822

	International comparisons of laboratory values from the 4CE collaborative to predict COVID-19 mortality
	Introduction
	Results
	Characteristics of the study population
	International comparisons of individual laboratory tests at admission for mortality risk prediction
	International comparisons of mortality risk prediction model
	Portability of mortality algorithms across sites, countries, and continents

	Discussion
	Methods
	Cohort identification
	Participating sites
	Patient and public involvement
	Outcome
	Local data collection
	Patient-level data
	Software platform

	Selection of laboratory tests
	Quality control
	Statistical analysis
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




