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Racial and ethnic minorities have borne a particularly acute burden of the COVID-19 pandemic in the United States. There is a
growing awareness from both researchers and public health leaders of the critical need to ensure fairness in forecast results.
Without careful and deliberate bias mitigation, inequities embedded in data can be transferred to model predictions, perpetuating
disparities, and exacerbating the disproportionate harms of the COVID-19 pandemic. These biases in data and forecasts can be
viewed through both statistical and sociological lenses, and the challenges of both building hierarchical models with limited data
availability and drawing on data that reflects structural inequities must be confronted. We present an outline of key modeling
domains in which unfairness may be introduced and draw on our experience building and testing the Google-Harvard COVID-19
Public Forecasting model to illustrate these challenges and offer strategies to address them. While targeted toward pandemic
forecasting, these domains of potentially biased modeling and concurrent approaches to pursuing fairness present important

considerations for equitable machine-learning innovation.
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INTRODUCTION

In response to the 2019 novel coronavirus disease (COVID-19)
pandemic, there has been significant investment in the develop-
ment of forecasting models. The Centers for Disease Control and
Prevention (CDC) COVID-19 Forecast hub incorporated forecasts
on mortality from 23 models representing contributions from over
50 academic, industry, and independent research groups'. Both
the CDC and the American Hospital Association (AHA) have called
on hospitals and public health officials to rely on forecasting to
help guide decision-making®>. Given the complexity of both
compartmental epidemiologic and machine-learned pandemic
forecasting models, concern has been raised about the potential
that inaccurate or unfair models could worsen healthcare
disparities®. An unfair model may display differing levels of
accuracy in making predictions for different subgroups or could
rely on false correlations and associations, leading to downstream
inequities if acted on. Though fair and effective forecasting
models have the potential to inform the public on the likely
course of the pandemic and to guide policymakers on the
allocation of scarce resources, usage of unfair models could
instead worsen disparities by failing to recognize the dispropor-
tionate burden experienced by minority communities facing poor
access to testing, increased risk of exposure due to essential work,
and other long-standing health inequities.

COVID-19 has had a disproportionate impact on racial/ethnic
minority communities in the United States, and it is critical that
policy actions recognize and address these inequities. There is
long-standing literature on the persistence of disparities in health
outcomes, and social determinants have been the primary drivers
of these disparities®=. While salient for COVID-19, these disparities
in health outcomes are in part due to the consequences of
structural inequities and existed long before the pandemic'®'",
Wide variations in life expectancy persist across counties and

cities, and the largest predictors of this disparity remain the effect
of socioeconomic and minority status'?~'*. Black and Hispanic
communities in the United States often face steep barriers to
healthcare access'”, but inequities are so ingrained into healthcare
systems that substantial inequities in outcomes persist even after
adjusting for disparities in healthcare access'®'”. These same
lower-income and minority communities have also borne the
brunt of the COVID-19 pandemic'®. Black, Hispanic/Latino, and
Indigenous communities have seen much greater rates of COVID-
19 than other communities in the United States, and they have
had three to four times higher hospitalization rates than their
White counterparts'®. On top of these structural inequities, there is
evidence that healthcare tools and algorithms themselves may
worsen disparities and redirect clinical attention in ways that
could worsen inequities?°~22, Given the proliferation of COVID-19
forecasting models, the years of healthcare inequity caused by a
history of structural racism in the US, and the encoding of inequity
in many healthcare tools, policymakers should recognize the
possibility of predictive algorithms perpetuating or exacerbating
existing disparities if not deliberately developed to ensure equity.
As we grow ever more aware of the ways that well-intentioned
innovation can instead perpetuate structural disparities, we have
both the opportunity and the obligation to do better.

In this manuscript, we outline key challenges to the fair and
equitable development of pandemic forecasting models from
both a statistical and social epidemiology perspective. Using our
experiences building the Google-Harvard COVID-19 Public Fore-
casting model as an example, we suggest ways to resolve these
barriers and to help ensure fairness. Our approach has been
informed by the robust literature demonstrating the potential for
health interventions to actually worsen disparities if not under-
taken deliberately?>=2°, and with a careful understanding of
inequities, structural racism, and the need to build models that
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actively work toward increasing equity?*=3°. Therefore, our

conceptual framework begins with an explicit focus on equity
and fairness instead of simply focusing on accuracy.

We also highlight the importance of transparency with respect
to both the fairness and confidence of models, such that
policymakers have the context they need to use models in ways
that do not exacerbate inequities. While we frame these statistical
and sociological approaches as they apply to machine-learned
COVID-19 forecasting models, this method of developing and
validating algorithms in a fairness-focused and transparent
manner may be generalized to other forecasting approaches such
as annual influenza modeling or forecasting of future pandemics,
as well as to machine-learning endeavors across healthcare and
social policy applications.

Recognizing biases when selecting outputs

The decisions made around selecting model inputs have
substantial implications for the potential biases that may be
introduced. For example, algorithms designed to predict follow-up
care by using healthcare spending have been shown to widen
racial and ethnic disparities by failing to recognize that structural
and financial inequities have led to disparities in healthcare
spending independent of healthcare needs?°. In this example, the
selection of an improper output (healthcare spending instead of
actual illness) led to the exacerbation of already inequitable health
outcomes. Just as healthcare spending is reflective of structural
inequities, many COVID-19 endpoints are deeply intertwined with
structural inequities, and one must be careful when building
COVID-19 forecasts to generate true forecasts and not merely
extrapolate trends that represent baseline healthcare disparities.

One of the most important model inputs for pandemic
forecasting has been clinical outcomes, especially as the clinical
outcomes of COVID-19 themselves may be biased by underlying
racial and ethnic disparities in healthcare access and quality.
Pandemic forecasting presents a dual challenge of remaining fair
and accurate while also providing useful and actionable policy
insights. There is not always an overlap between the most reliable
and most actionable variables, so it can be valuable to incorporate
a mix of variables that provide sufficient quality of input data to
make fair predictions while also providing useful outputs.

When building our COVID-19 model, we chose to include not
only mortality, a relatively reliable and hard-to-miss variable, but
also additional outputs for cases, hospitalizations, and ICU
admissions. Details of the statistical methods underlying the
Google-Harvard COVID-19 forecasting model can be found in a
separate methods paper®'. While each output offers value from a
policy-planning standpoint, they differ substantially in their
reliability. We recognized that case data are highly dependent
on the number of tests performed in a community, and there is
evidence that throughout the pandemic, Black and Hispanic
communities have had substantially reduced access to testing
relative to White communities®2. If certain communities have less
access to testing resources than others, they will appear to have
fewer cases, and models may underestimate their future caseloads
as well. Failure to account for this skewed data could then lead to
a cycle in which models underestimate the healthcare needs of a
low-resourced community, leading to further shifting of resources
away from that community and exacerbating the undertesting
and underestimation of cases already faced by that community.
Hospitalization data may be more challenging to collect and
aggregate from smaller and lower-resourced hospitals, leading to
sparse input data that results in the least-accurate forecasts for the
hospitals that serve the most vulnerable. Additionally, there are
known racial and socioeconomic disparities in access to hospitals
and critical care®, as well as in access to the health insurance
coverage that enables individuals to seek out care®*. These
structural disparities may mask the true need for critical care in
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vulnerable populations and lead to embedded unfairness in
hospitalization data. Thus, while cases and hospitalizations are
certainly important to forecast for timely policy planning and
intervention, models should include mechanisms to overempha-
size higher-quality observations such as deaths while training.

Including social determinants

Many socio-economic and related factors have been associated
with increased rates of COVID-19 cases. In Massachusetts, for
example, COVID-19 cases were highly associated with Hispanic
ethnicity, but they were similarly associated with foreign-born
immigrant status, greater household size, and share of foodservice
workers®. Incorporating demographic and socioeconomic vari-
ables into forecasting models as predictors can help improve
accuracy and allow models to recognize and account for
inequities, yet there is concern that in some cases these variables
may do more harm than good by amplifying structural inequities
rather than adjusting for them. Concerns about this dichotomy are
especially true with machine-learning techniques in which the role
each variable plays in the ultimate predictions is largely obscured.
Many demographic and socioeconomic variables are highly
interrelated and may be correlated with confounding effects.
Using such variables could cause a model to draw inaccurate
explanatory insights and to rely directly on factors like race or
gender even though these variables merely serve as proxies for
other structural factors. This is perhaps best characterized by race,
which is a social construct and largely representative of structural
racism and inequities rather than innate differences between
people and populations'®3¢, Additionally, much data on social
determinants are often underreported or inaccurately reported,
which could potentially mask underlying associations. When
generalizing a model to new scenarios, there may then be an
introduction of unfairness as the model continues to falsely rely on
racial, gender, and other variables rather than on factors truly
associated with the outcome of interest.

We recommend including socioeconomic factors in predic-
tive models only if their effects on outputs are well-
characterized by the scientific community and can be
decoupled from the rest of data-driven learning. Specifically,
we advise training models with and without each potentially
problematic input variable and observing the effect on
performance. The performance differences attributed to a
specific factor could be quantified using analysis of variance
tests that yield an f-statistic representing the importance of that
factor. Those factors that do not significantly impact model
performance can be excluded while those that do seem to have
a major impact on performance should be further evaluated,
drawing on social epidemiological and medical research, to
validate that these observed associations are legitimate and not
false or biased proxies for other more meaningful variables. If
there are no scientific or sociological studies about the
association, then further analysis should be employed to
investigate the confounding effect, and modelers should clearly
report any potentially confounding effects within their model.
In the Google-Harvard forecasting model, we chose to avoid
gender- and race-related variables as predictors in our
forecasting model, though included age and population density
as these were well understood to be directly linked to COVID-19
spread and severity. A more detailed explanation of how
socioeconomic factors were incorporated into model transitions
is available in the Google-Harvard Public Forecasting Model
methods paper®'. It is important, though, to use socioeconomic
variables such as race and gender to stratify model outputs for
fairness analyses, even if they are excluded as predictors during
model training. A more detailed description of stratified fairness
analyses is provided below.
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Choosing the appropriate geographic unit of analysis

In the US, it has been said, your zip code is more important than
your genetic code. Given the legacy of segregation and structural
inequity in the US, access to healthcare resources remains largely
tied to geography®’. With this clear association between
geography and disparities in health outcomes, the geographic
unit of analysis for pandemic forecasting models needs to be
carefully considered by modelers and policymakers. Though state-
level models provide more aggregated and higher-quality data
inputs, they do not offer the jurisdictional granularity needed to
guide policy or to accurately capture the uneven impact of the
pandemic on areas with predominantly minority populations. This
ecological fallacy is a well-studied problem, and while we
highlight here some key considerations, there is considerable
literature on small-area statistics and the intricacies of survey
sampling®4°, Just as declining cases in New York caused a
decline in national cases that hid exponential growth in Florida
and Arizona in June of 2020, an example of Simpson’s paradox,
building models at overly-aggregated geographies may conceal
the critical heterogeneity that can guide policy action and reveal
inequities. Capturing clustering and interaction within commu-
nities could perhaps best be accomplished by focusing on
granular indicators like outbreaks in schools, but it should be
noted that less-aggregated data can suffer from sparseness, lack
of availability, and other issues of quality. When weighing the
benefits and costs of different geographic units of analysis, we
consider three fundamental challenges of more granular data:

(i) Data availability: our model, and other highly-accurate
models, often use a wide range of data sources that
correspond to case counts, healthcare availability, socio-
economic factors, mobility signals, non-pharmaceutical
interventions, and other factors. These data sources are
often not available beyond a certain granularity. Most states
do report case counts at the county level but not at the zip-
code level or other smaller areas. Most healthcare and
socioeconomic data variables are reported at the county
level as well, and mobility data is often limited to the county
level due to privacy concerns. As such, we did not have the
option to build our model at finer geographies than the
county.

(i) Informative content and forecastability: as we consider
signals at higher granularity, their “forecastability” also
decreases. Splitting signals into smaller pieces reduces the
signal-to-noise ratio and, in other words, each occurrence
becomes closer to a random process. Additionally, most
variables become sparser at higher granularities which
creates challenges for the supervision of end-to-end
machine-learning models.

(iii) Interlocation dynamics: as the location granularity increases,
interlocation dynamics, or the movement and mixing of
people between geographic areas, become much more
prominent. At the state level, the proportion of people
spreading the disease to another state or using healthcare
resources in another state is quite low. At the county level,
there is much more inter-county mobility, disease spreading,
and healthcare resource use. Beyond county-level granular-
ity, interlocation dynamics can be very dominant and can
challenge the independent, uniform mixing assumptions
that most forecasting models, including the Google-Harvard
model, rely on.

Based on the tradeoffs between accuracy and utility posed by
different granularities of data, we ultimately chose to build both
state- and county-level models in the US for our Google-Harvard
COVID-19 Public Forecasting Model, and to use a prefecture-level
model for Japan. Though models at the hospital-referral-region
level or other aggregated geographies may have proved a
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valuable compromise, aggregating input variables like air quality,
mobility, or other variables not well captured by a simple average
limit the ability to build models at intermediate geographies.
Recognizing that county-level data suffers from some of the issues
of sparseness and inaccuracy mentioned above, we used data-
imputation methods to fill in missing data and carefully conducted
fairness analyses to help avoid introducing inaccuracy or
unfairness into our predictions. Given previous work suggesting
that data imputation itself can introduce bias*', we were especially
careful in testing the fairness of our model and were transparent
in reporting our imputation methods and the results of our
fairness analyses so those seeking to use our model can recognize
this potential source of bias and evaluate for themselves whether
our model is sufficiently fair.

Evaluating models through an equality lens

Whether comparing predictions to historical data or evaluating in
real-time, assessment of model performance is a critical stage of
development. While validation of accuracy is undoubtedly
important, it is insufficient for a fairness-focused development
process. Evaluation of model performance should be coupled with
equality analyses in which forecasting models undergo subgroup
analysis to verify that results are comparably accurate for each
group and that there are no systematic biases in the model
predictions. In order for the model to not introduce or reinforce
any unfair decision-making, its forecasting accuracy should be
similar across different subgroups when the population is
partitioned based on race, socioeconomic status, sex, or other
key factors that might highlight disparities. Potential approaches
include ensuring that the mean absolute error and mean absolute
percentage error are not systematically greater in key vulnerable
populations. For example, in the Google-Harvard COVID-19 Public
Forecasting Model, counties were divided into quartiles across a
range of demographic variables, specifically age, gender, median
income, race, and population density. The analysis then verified
that the model had comparable errors across these groups, using
mean absolute percentage error for comparisons3'. We chose to
conduct these fairness analyses at the county level, since
distributions of demographic subpopulations tend to be fairly
similar at the state level but show substantial variation at the
county level. Though we ultimately found no major concerns in
model performance across subgroups in the Google-Harvard
COVID-19 Public Forecasting Model, we discuss below potential
approaches to take when discovering that a model has unequal
performance across subgroups. Conducting equality analyses can
be helpful both for providing opportunities to fix those problems
that may be fixable and to provide information on model
limitations that cannot be fixed, allowing for greater transparency
on the part of modelers and greater context available for
policymakers seeking to use models in ways that do not worsen
disparities. The effectiveness of these equality analyses can be
further maximized by considering the consistency, directionality,
and normalization of results.

Consistency across forecasting dates. Traditional mechanistic
epidemic models include time points such as peak-time or
epidemic doubling time, thereby capturing the dynamics of an
epidemic*2. However, given that COVID-19 is highly non-stationary
and that parameters can change rapidly in response to behavior,
testing, or interventions, equality analyses should be performed
for varying relevant prediction dates and forecasting horizons in a
given location. Assessing models across multiple time points is
also valuable because phases of a pandemic can have varying
disease dynamics across population subgroups. For example, the
availability of vaccines initially to older Americans caused a larger
reduction in mortality for elderly populations than for younger
populations. Assessing a mortality prediction model at multiple
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time points can ensure that the model is making fair predictions of
mortality for younger and older Americans both before and after
the introduction of vaccines to specific groups. When selecting
time points for equality analyses, it is also important to consider
the intent of the model—to inform public health decisions or to
illustrate long-term dynamics or counterfactual projections.
Equality analysis should ideally be conducted both for short-
term projections directed at changing behavior or policy and for
longer-term projections, but the particular emphasis should be
placed on analyses focused on time points most relevant to a
model’s intended usage.

Accounting for the challenges of compartmental models. Tradi-
tional epidemiologic models for pandemics have relied on compart-
mental models such as the susceptible, exposed, infected, and
recovered (SEIR) model. These compartments are then used to
inform endpoints such as disease prevalence or death. While
compartmental models are extremely powerful forecasting tools,
they present an especially heightened concern with regard to bias
and inequality. One risk of compartmental models is the assumption
of similar behavior by subpopulations within each compartment. This
assumption can be easily violated if social differences or structural
disparities cause subpopulations to have different rates of infection
or recovery. For example, individuals of low socioeconomic status in
service or manufacturing jobs may be more likely to continue work
on-site, increasing the likelihood of COVID-19 transmission compared
to workers telecommuting from home. Though this assumption of
uniform mixing is critical to achieving high forecasting accuracy with
limited data and highly nonlinear dynamics, it provides a clear path
for bias to be introduced into a model. When building compart-
mental models, it is important to understand the implications of this
assumption and to select data and geographies that maximize the
extent to which uniform mixing holds true. With the Google-Harvard
Forecasting Model, we modeled compartmental transitions using
machine learning based on numerous relevant input features, which
can be helpful in mitigating the heterogeneity of compartments and
mixing. Compartmental models also complicate efforts to ensure
fairness through the nature of their compartmental structure, which
relies on numerous interrelated and interacting variables. This
interrelated structure is such that bias introduced in any compart-
ment can be propagated and amplified into unequal and unfair
model outputs across all compartments. Models should be built with
the highest-quality data available and equality analyses should be
conducted on multiple compartments and outputs to ensure that
bias in internal compartments is not embedded into external
predictions.

Normalizing to real-world magnitude and effect sizes. Since the
prevalence of COVID-19 has varied markedly between communities,
the raw errors of a predictive model can vary in ways that obscure its
true fairness. Specifically, larger subgroups will have greater absolute
errors even if a model is not biased against them. Failing to account
for this could lead equality analyses to reflect the underlying sample
size and distribution of data rather than the actual fairness or
unfairness of the model. A model designed to predict cases in both
White and Indigenous populations in the US, for example, would
likely show a much greater mean absolute error in the White
population, simply because there are many more White individuals
than Indigenous individuals living in the US. Normalization to
account for this imbalance in population size might reveal that in
fact, the model makes less accurate predictions for the Indigenous
population than for the White population. Similarly, a community
with a higher incidence of COVID-19 may see greater absolute errors
solely because a model is predicting larger numbers of cases than in
a similar community with a smaller infection rate. This on its own
should not be considered unfairness, and errors should therefore be
normalized to real-world data. Normalizing also helps ensure that any
unfairness in predictions between subgroups will not be obscured by

npj Digital Medicine (2022) 59

varied community sizes or differing rates of COVID-19 between
subgroups. For the Google-Harvard COVID-19 Public Forecasting
model, we normalized errors to the cumulative deaths within a state
or county when conducting equality analyses. While the scope of
disparities during the COVID-19 pandemic is such that no variable is
wholly untainted by bias and inequity, we felt deaths were the most
concrete variable available and the least likely to be substantially
undercounted in low-resourced settings.

Remedying any unfairness identified in models

Proper equality analyses are vitally important to ensuring a deep
understanding of any concerns of unfairness in a model as well as
the potential sources of that unfairness. When models are found
to perform differently across subgroups, steps must be taken to
ensure that unfair models are not used by policymakers in ways
that may inadvertently widen health disparities. While the specific
steps taken to address an unfair model may depend on the details
of a model’s sources, methods, and desired uses, we recommend
three broad approaches to remedy unfairness in forecasting
models. Modelers may need to experiment with multiple
approaches to find a successful strategy.

Data analyses and modifications. The collection of underlying
data needs to be closely examined. Bias could arise from the use
of variables reflecting structural disparities, from the selection of
overly-granular geography, or from the use of low-quality data
sources. Individual data sources should be evaluated both
qualitatively and via statistical analyses (e.g., quantifying the
correlation between them and subgroup populations). Based on
the results of this investigation, modelers can choose not to use
problematic data sources, ideally replacing them with less biased
data. The model can then be retrained, and equality analyses can
be repeated to see if modifications to model inputs have helped
alleviate the unfairness of the model.

Model training modifications. There is a wide literature on
technical approaches to improve fairness in modeling, including
methods such as adversarial debiasing, fair representation
learning, and fairness-constrained optimization**=*°, These meth-
ods can add an additional objective to model training that
promotes fairness as well as accuracy. In general, these methods
can cause a small decrease in model accuracy but a significant
gain in fairness. After adjusting the training methodology of a
model, it is important to conduct both traditional analyses of
accuracy as well as equality analyses to ensure that the
methodological change results in a reasonable and beneficial
tradeoff between overall accuracy and subgroup fairness.

Transparent reporting of potential remaining fairness issues. If
modifications to both the input data and model training
methodology are insufficient to fully eliminate concerns about
the fairness of a model, it is important for the users (policymakers,
healthcare managers, etc.) to acknowledge and understand these
concerns. Many models may suffer from some small but inevitable
levels of unfairness while still offering valuable insight. Modelers
should therefore clearly and explicitly report these fairness
concerns alongside the results of the model. This reporting can
be done both through explicit disclosures and through structuring
predictions to highlight the level of confidence. In the Google-
Harvard COVID-19 Public Forecast model, we used bootstrapping
to estimate confidence intervals by sampling with replacement
across prediction dates and locations. In addition, we chose to
provide results as confidence intervals and with statistical
significance tests rather than simply as point estimates, so that
our accuracy and fairness across regions were clear and
transparent. Policymakers armed with this knowledge can then
use models to help guide decision-making while understanding

Published in partnership with Seoul National University Bundang Hospital



the context around confidence and fairness and while taking
action to mitigate the potential inequities that could be
introduced if the model was fully trusted and used naively.
Reporting the results of equality analyses can be valuable even
in situations where no concerns are observed, as this can provide
confidence to those considering the model and can increase the
likelihood that models are used in actionable and valuable ways.

CONCLUSION

In recognition of the potential harm of building and using pandemic
forecasting models without explicit acknowledgment of structural
inequity, one silver lining of the COVID-19 pandemic should be the
opportunity and responsibility for forecast modelers to adopt an
explicit framework around fairness and equity. Modelers should
carefully consider the outputs they predict, the geographies for
which they make their predictions, the social determinants they
include as predictors, and the downstream implications of their
predictions. They should also explicitly evaluate the fairness of their
models before releasing them into the world and should be fully
transparent so that others can understand the development and
testing of their models. Of equal importance, policymakers must
understand both the promises and the pitfalls of forecast results and
should strive to use models in ways that promote equity and avoid
perpetuating inequities. By deliberately working to improve the
fairness of forecasting models, we can alleviate concerns, promote
equity, and help forecasting models achieve their promise of
providing a valuable policy tool to those seeking to respond to the
COVID-19 pandemic and future healthcare emergencies.

Reporting summary

Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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