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A novel AI device for real-time optical characterization of
colorectal polyps
Carlo Biffi 1, Pietro Salvagnini1, Nhan Ngo Dinh1, Cesare Hassan 2,3, Prateek Sharma4,5, GI Genius CADx Study Group* and
Andrea Cherubini 1,6✉

Accurate in-vivo optical characterization of colorectal polyps is key to select the optimal treatment regimen during colonoscopy.
However, reported accuracies vary widely among endoscopists. We developed a novel intelligent medical device able to seamlessly
operate in real-time using conventional white light (WL) endoscopy video stream without virtual chromoendoscopy (blue light, BL).
In this work, we evaluated the standalone performance of this computer-aided diagnosis device (CADx) on a prospectively acquired
dataset of unaltered colonoscopy videos. An international group of endoscopists performed optical characterization of each polyp
acquired in a prospective study, blinded to both histology and CADx result, by means of an online platform enabling careful video
assessment. Colorectal polyps were categorized by reviewers, subdivided into 10 experts and 11 non-experts endoscopists, and by
the CADx as either “adenoma” or “non-adenoma”. A total of 513 polyps from 165 patients were assessed. CADx accuracy in WL was
found comparable to the accuracy of expert endoscopists (CADxWL/Exp; OR 1.211 [0.766–1.915]) using histopathology as the
reference standard. Moreover, CADx accuracy in WL was found superior to the accuracy of non-expert endoscopists (CADxWL/
NonExp; OR 1.875 [1.191–2.953]), and CADx accuracy in BL was found comparable to it (CADxBL/CADxWL; OR 0.886 [0.612–1.282]).
The proposed intelligent device shows the potential to support non-expert endoscopists in systematically reaching the
performances of expert endoscopists in optical characterization.
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INTRODUCTION
Colorectal cancer is one of the most common malignancies1. Optical
colonoscopy with white light (WL) endoscopy is the gold standard
for the detection and resection of colorectal mucosal polyps and its
adoption in population-based screening programs has resulted in a
significant reduction in the incidence and mortality of colorectal
cancer2. Accurate real-time visual differentiation between adeno-
matous and non-adenomatous polyps (optical characterization, OC)
during colonoscopy is clinically relevant to select optimal treatment
regimen, avoid inappropriate endoscopic resection, improve cost-
effectiveness, and reduce the number of polypectomies3,4.
In order to standardize OC, several classification schemes have

been proposed with the aim of being incorporated into clinical
practice5–7. These classifications are based on combinations of
vascular and mucosal patterns, specific features of the polyp
surface, and the presence of a cloudy or irregular appearance and
indistinct borders. Moreover, although optical colonoscopy is
performed using WL large spectrum illumination, all these
classification schemes are based on virtual chromoendoscopy
illumination (narrow-spectrum blue light [BL]8) able to enhance
the appearance of superficial mucosal vascular patterns. Never-
theless, these classifications in BL showed significant inter- and
intra-observer variability when prospectively evaluated, limiting
their widespread adoption by the endoscopic community9,10.
Endoscopy procedures are an ideal arena for the development

of intelligent medical devices11,12. This is due to the huge quantity
of information that the physician needs to extract and interpret
from the video flow, in real-time, under time pressure, and with
repetitive modalities during long working hours. In similar

situations, where humans may act non-Bayesian by violating
probabilistic rules and thus making inconsistent decisions, artificial
intelligence (AI) has proven to be a valuable tool to help humans
in making better decisions13. The first generation of AI-based
medical devices in colonoscopy authorized by regulatory bodies
has focused on improving the task of polyp detection14,15.
Different randomized controlled trials have demonstrated the
ability of such computer-aided detection (CADe) devices to
improve the detection of precancerous polyps during colono-
scopy16–19. However, AI-based algorithms in endoscopy have also
the potential of supporting physicians in the task of OC (CADx),
thereby reducing the limitations described above.
Nevertheless, AI algorithm proposed for the task of OC has

failed to be implemented in mainstream clinical practice so
far20–22. This might be due to limitations in design that prevent
seamless integration into clinical workflow, such as classifying still
images rather than videos22, or requiring additional technology
such as virtual chromoendoscopy (BL) or endocytoscopy as a
prerequisite to operate21.
In this work, we propose an intelligent medical device for real-time

OC of colorectal polyps that can overcome the limitations of current
solutions and can be integrated easily into clinical workflow. The
device can operate on an unaltered conventional WL video stream
without human intervention. We validate this AI on a prospectively
acquired dataset with a multi-reader study design. For this purpose,
we benchmark the performance of the AI against a group of expert
endoscopists and a group of non-expert endoscopists. Our
hypotheses are that AI accuracy is comparable to experts and
superior to non-experts, with a substantial equivalence between
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performances in WL illumination and virtual chromoendoscopy (BL).
Our predictions were pre-registered before the start of the data
gathering, together with the study plan and statistical models and
analyses (available at https://osf.io/m5cxt).

RESULTS
Figure 1 depicts the intended use in the clinical workflow of the
proposed intelligent device. Briefly, the CADx system is designed to
automatically activate when a new polyp is detected by a CADe
detection algorithm in a colonoscopy video stream. For each polyp,
the device overlays a frame-by-frame live decision specifying its binary
histology (“adenoma” or “non-adenoma”). The CADx can also abstain
from predicting the polyp histology in a frame either by printing “no-
prediction” if the system is unsure about the histology or “analyzing” if
an insufficient number of features across multiple frames was
detected. Example videoclips of the CADx real-time output for three
polyps of the study are provided as Supplementary Videos.
This study included lossless video recording and histology

information on 513 prospectively acquired colorectal polyps (198
adenomas, 315 non-adenomas) in a total of 165 subjects (77 males,

88 females, mean age 66.6 ± 10.2). The proposed medical device was
applied to each full-procedure video recording, hence reproducing
the same frame-by-frame output that was shown in the clinical
room. The full per frame processing time of the device (including on-
screen output visualization) was always inferior to 60ms, while the
average CADx processing time was 2ms—as per the device
specifications. A total of 10 experts and 11 non-experts endoscopists
performed OC of each polyp via an online platform enabling careful
assessment of the video recordings. Video recordings contained
imaging of the polyp using both WL and BL technology. The expert
reviewer group had an experience (measured in years of activity) of
12.3 ± 7.3 years [range: 6–29 years], while the non-expert reviewer
group had an experience (measured in number of colonoscopies
performed) of 363 ± 136 colonoscopies [range: 100–500 colonosco-
pies, range of years of experience: 1–3 years].

Performance comparisons
Study endpoints were evaluated using both log-binomial
regression and bootstrapping methods. Table 1 shows the
results of group comparisons using log-binomial regression.

Fig. 1 AI device intended use workflow. The endoscopy video stream flows through the device with no modification or delay (<1.5 μs). In
real time (50–60ms), the device augments the video stream by adding overlay markers to surround areas of interest, such that they can be
further inspected by the endoscopist. During colon navigation (1), the endoscopist is focused on exposing the mucosa appropriately in order
to facilitate the task of polyp detection. The AI intelligent device activates when a polyp is detected (2, CADe). At this stage, the endoscopist
examines the mucosa in order to characterize the lesion and decide on clinical action: if a polyp is framed consistently by the endoscopist, the
CADx activates automatically (3) and the histology prediction is added to the green box. After possible endoscopic resection of the polyp (4),
navigation is resumed (1) and CADx automatically disengages. These tasks are iterated as a loop until the end of the procedure.

Table 1. Experts, non-experts, and CADx performance metrics for optical characterization.

Accuracy Sensitivity Specificity Undetermined

Group experts 82.2% [80.1–84.2] 76.6% [72.8–80.1] 86.6% [82.7–89.7] 1.4% [0.6–2.5]

Group non-experts 74.9% [72.4–77.3] 72.4% [59.4–82.4] 80.9% [73.0–86.9] 1.9% [0.8–3.1]

CADx white light 84.8% [81.3–87.8] 80.7% [74.2–85.7] 87.3% [83.0–90.6] 6.2% [4.3–8.4]

CADx blue light 83.2% [79.0–86.7] 81.7% [74.5–87.2] 84.1% [78.8–88.3] 28.1% [24.2–31.8]

CADx output is provided separately for video frames in white light and video frames in blue light. Expert (10 reviewers) and non-expert (11 reviewers) assessed
both white light and blue light video frames. Accuracy, sensitivity, and specificity are calculated on the fraction of 513 polyps for which a prediction was
provided, using histopathology as the reference standard. The column labeled “Undetermined" displays the percentage of polyps for which the reviewers or
CADx failed to provide a prediction, respectively.
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In detail, CADx accuracy in WL was found to be non-inferior to
the accuracy of expert endoscopists (CADxWL/Experts; OR 1.211
[0.766–1.915]; p < 0.001) using histopathology as a reference
standard. Moreover, CADx accuracy in WL was found superior to
the accuracy of non-expert endoscopists (CADxWL/Non-experts;
OR 1.875 [1.191–2.953]; p= 0.003), and CADx accuracy in BL was
found non-inferior to it (CADxBL/CADxWL; OR 0.886
[0.612–1.282]; p= 0.003). Performances of individual reviewers
are reported in Supplementary Results 4.
Figure 2 shows the results of group comparisons using the

bootstrap method. In detail, the area under the curve (AUC) for
CADx in WL (AUCWL: 0.8653 [0.8304–0.8967]) was found non-
inferior to that of expert endoscopists (AUCExp: 0.8553
[0.8203–0.8881]). Moreover, CADx accuracy in WL was found
superior to the accuracy of non-expert endoscopists (AUCNonExp:
0.7769 [0.7356–0.8171]), and CADx accuracy in BL was found
non-inferior to it (AUCBL: 0.8545 [0.8141–0.8915]).

Reviewer/CADx/histology agreement
Figure 3 shows the agreement of expert and non-expert
endoscopists with ground truth, computed as the fraction of
endoscopists correctly predicting the polyp histology. Notably,
both experts and non-expert endoscopists were unanimously in
disagreement with the ground truth for nine non-adenomatous
polyps (five diminutive (≤5 mm), two small (6–9 mm), and two
large (≥10 mm)) and six adenomatous (all diminutive) polyps.
CADx classified the same nine non-adenomas and six adenomas
in disagreement with histology and in agreement with
endoscopists. Figure 4 shows example images of such polyps.

DISCUSSION
Compared to previous studies in this area, our study contributed
uniquely in the following aspects: we have developed for the first
time an intelligent medical device that can perform the task of OC
in real-time on unaltered conventional WL videos; the device does
not need additional technology such as virtual chromoendoscopy
on the endoscopy tower, that might slow down the clinical
workflow; we have validated the device using a prospectively
acquired dataset with a multi-reader design.
In clinical practice, the task of OC performed during live

colonoscopy is not a static assessment of a polyp portrait, but
rather a fluid and dynamic process of decision build-up in the
endoscopist’s brain. This process is heavily affected by polyp
appearance and its morphological characteristics (i.e., location
relative to folds, level of cleansing, size, etc.). Thus, the time
needed to complete the assessment of a single polyp can vary
wildly, ranging from a fraction of a second to several minutes.
During this examination, it is very frequent for the endoscopist to
change opinion for a given polyp, possibly jumping from
adenoma to non-adenoma or vice-versa, whenever a particular
illumination or viewing angle highlights a feature of a specific
class. Consequently, the process of OC can be considered as a
weighted average of different features over time.
Previous studies on OC CADx failed to capture this dynamic

process and likely over-inflated reported performances for several
reasons. First, previous trials focused on the classification of single
images, with the physician asked to freeze the video during live
endoscopy, and subsequently submit the selected frame to the
image classifier21,22. This approach introduces a bias since the
physician, especially if non-expert, might not select the most
representative image of a polyp. Moreover, selecting a single
image would fail to represent the complex variability of observing

Fig. 2 ROC curves calculated using the bootstrap method. From left to right: CADx white light vs non-expert endoscopists, CADx white light
vs expert endoscopists, and CADx white light vs CADx blue light. The light band around the ROC curves represents 95% confidence intervals
derived by bootstrapping. Black dots represent individual reviewers' performances.

Fig. 3 Graphical visualization of agreement between reviewer predictions and histology. Results for polyps with non-adenomatous and
adenomatous histology are reported in left and right plots, respectively. In each box, the rightmost pair of bins reports polyps for which
70–100% of the endoscopists' predictions are in agreement with histology, while the leftmost pair of bins reports polyps for which less than
30% of the endoscopists' predictions are in agreement with histology. Each bin pair reports non-experts on the left and experts on the right.
The distribution suggests that most of CADx FPs and FNs are polyps where reviewers disagree with each other, or are unanimously in
disagreement with histology.
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a polyp from different viewpoints, zoom, or illumination angle. For
the very same reasons, assessing the performances of CADx using
the classification of human-chosen snapshot or short videoclips of
polyps20 is likely to over-inflate performances, since the CADx
would be trained and validated only on near-perfect images.
Second, previous studies required additional technologies such as
endocytoscopy21, or proprietary virtual chromoendoscopy illumi-
nations, preventing generalizability of results. Moreover, these
approaches require the physician to manually engage and
disengage the OC module, thus requiring additional steps during
the normal succession of tasks in real-life colonoscopy.
In order to be used in a real-world setting, an AI device should

integrate seamlessly into clinical practice. For this purpose, the
intelligent device in this work is designed to engage automatically
when a polyp is framed consistently, thus “interpreting” the wish
of the physician to know more about the imaged region (Fig. 1).
By using the very same mechanism, it disengages automatically
when normal navigation is resumed. This feature is possible
because in our device the image classification is a process of the
cascade to the detection process, thus it can “follow” the polyp as
it moves around the image frame. Other CADx algorithms that are
not linked to a detection module (CADe) are bound to output a
classification on the entire image. An additional benefit of this
design is the ability to track and characterize different polyps even
when these appear simultaneously on the image frame.
Another important finding of our study was the ability to reach

very high accuracies using conventional wide spectrum WL
illumination, indirectly showing that WL delivers all information
needed to be as accurate as experts who use BL technology.
A noteworthy result of this study was the disagreement

observed between a large panel of endoscopists with

heterogeneous expertise and histology (Fig. 3). A similar
phenomenon, although measured considering the output of a
single very expert senior endoscopist, has been reported
recently23,24. The reasons for this disagreement could be multiple
and related to specimen retrieval and subsequent processing,
rather than a misdiagnosis. This could explain our observation that
this effect is exacerbated for diminutive polyps (≤5mm) for which
manual handling is more difficult and thus more prone to error.
The observation led Shahidi et al.24 to question pathology as the
gold standard for assessing diminutive colorectal polyps. Although
this position could be questioned25, it suggests for AI a potential
arbitration role when endoscopist and pathologist assessments of
the same polyp diverge.
This work has limitations. First, the dataset acquired for

performance assessment originates from a single center, although
using different endoscope manufacturers. Second, the current
version of CADx characterizes polyps according to a two-class
model that includes sessile serrated polyps into the non-adenoma
class26, forcing the endoscopist to look for serrated features
likewise happens in WASP criteria27. Although identifying sessile
serrated polyps as a separate class could be beneficial, the current
size of the dataset used for training the CADx does not support a
three-class model with reliable accuracies. Future CADx releases
including this category as a separate output are warranted.
Real-time colonoscopy is a fertile area for developing intelligent

devices that are able to effectively allocate tasks between humans
and AI, thereby achieving a superior outcome by aggregating the
output of its parts. In this context, the medical device described in
this study may allow non-experts to leverage the predictive power
of AI while using their own knowledge to make a choice from the
predictions of the AI. In conclusion, this device offers the potential

Fig. 4 Exemplar images of polyps with disputed histology. Video frames of polyps for which both CADx and all reviewer predictions are in
contrast with the histology ground truth. These polyps are considered false negatives (top row—histology: adenoma, CADx prediction: non-
adenoma) or false positives (bottom row—histology: non-adenoma, CADx prediction: adenoma) in the reported accuracies.
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to standardize the practice of OC and to ensure in all
colonoscopies the same accuracy that can be met only by a few
very experienced expert physicians.

METHODS
CADx system
The CADx system comprises two online algorithms working on the outputs
of two convolutional neural network models. The first convolutional neural
network model is named Polyp Characterization Network and it has a two-
fold purpose: (1) to classify each detected polyp in a single video frame as
“adenoma” or “non-adenoma” polyp and (2) to provide a polyp image
appearance descriptor for each detected polyp in the current frame to be
used for polyp tracking. The second convolutional neural network, named
Polyp Imaging Quality Network, is responsible for providing an imaging
quality score to each detected polyp expressing how clearly the polyp
features are imaged in the current video frame. This second network is
needed since low-quality images can introduce noise in the spatial-
temporal reasoning of the CADx. The first online algorithm is responsible
for polyp tracking across multiple frames, while the second is an online
temporal aggregation algorithm that aggregates frame-by-frame classifica-
tion and imaging quality information for each tracked polyp and provides
a live decision based on a moving temporal window.

Polyp characterization network
Given an input frame I t at time t of a regular colonoscopy video and a set
of N polyp detections Bt ¼ bt;i

� �N
i¼1 as detected by any polyp detection

model on that frame, the first component of the proposed AI system is a
learning-based model that learns from data the mapping between the
image content of each bounding box bt,i to the histology hi of the polyp it
contains. We employ ResNet18, a deep convolutional neural network
commonly used for classifying histopathological images28, for this task. In
order to input the polyp images at an appropriate resolution while
providing some contextual information, the input of the characterization
network is an image X t;i resulting from the cropping of the input frame I t
around the bounding box bt,i plus a 50 pixels margin, which is rescaled to
512 × 512 size. The output of the characterization network is a score ct,i,
between [0,1], expressing the probability of the content of the bounding
box to be an adenoma (1) or a non-adenoma (0) polyp. By applying the
classification network to all the N detections in a frame, a set of
characterization scores Ct ¼ ct;i

� �N
i¼1 can hence be obtained. The

characterization model is trained using binary classification cross entropy
(CE) as a loss function and the ground-truth histology is represented as a
two-dimensional vector yt,i while its predicted value as softmax scores ŷt;i ,
T cl ¼ T CEðŷt;i ; yt;iÞ. Mixup training method was adopted to provide a
better-calibrated network and to reduce overfitting29.

Polyp re-identification algorithm
The task of OC is performed by a human by considering many subsequent
frames before expressing a decision. The proposed AI system aims at
mimicking this decision-making process by producing a frame-by-frame
temporally weighted decision for each detected polyp when enough
confidence about a prediction has been acquired. In order to achieve this,
an important milestone is to be able to follow a polyp across multiple
frames in a colonoscopy video.
In our system, we propose an online polyp re-identification algorithm

that both exploits single-frame polyp appearance and spatio-temporal
information for this task. In order to extract single-frame polyp appearance
information, we modify the characterization network so that an 8k-
dimensional feature descriptor ft,i for each input cropped image X t;i can be
extracted. Specifically, we make use of a multi-task learning approach by
attaching at the end of the characterization network encoder a second
convolutional neural network branch. In this way, the network learns how
to encode and reconstruct each input X t;i by only using its 8k-dimensional
descriptor ft,i and for each frame at set of bounding box image appearance
descriptors F t ¼ ft;i

� �N
i¼1 can be obtained. This second network branch is

trained end-to-end with the network classification network by means of a
reconstruction loss Lrec ¼ LMSEðX̂ t;i ;X t;iÞ, which is pixel-wise mean
squared error in the RGB space between the input image Xt,i and its
reconstruction X̂t;i . As a consequence, the overall loss for the classification
network becomes Ltot ¼ Lrec þ Lcl .
The proposed re-identification algorithm outputs at each time t a set

T t ¼ fLjgNat

j¼1 of Nat actively followed polyps. Each element Lj is a set

representing a polyp history by means of its bounding box coordinates
Bkf gKk¼1 and the corresponding appearance vectors F kf gKk¼1 and
classification scores Ckf gKk¼1 across all the time frames k in which the
polyp was found since it is actively followed. The set of actively followed
polyps T t is obtained by assigning the polyps detected at frame t, Bt , to
the set of actively followed polyps T t�1 of the previous frame by exploiting
the Hungarian (Kuhn–Munkres) algorithm30. In particular, the proposed
algorithm first tries to associate each polyp detection in Bt to each actively
followed polyp by means of a spatial assignment, then, in a second step,
by means of an appearance-based assignment. Both assignments are
obtained by solving an unbalanced linear assignment problem given the
corresponding cost matrices. The cost matrix of the spatial-based
assignment is computed by the IoU between each new detection and
the last detected bounding box for each active polyp, while the cost matrix
of the appearance-based assignment is computed using the cosine
distance between the appearance features F t .

Online temporal aggregation algorithm
The online temporal aggregation algorithm is responsible for printing live,
on each frame t, a characterization decision for each visible box Bt in the
list of the followed polyps T t . The algorithm is applied after having
computed ternary quality scores qi,t for the N detections in the current
frame via the Polyp Imaging Quality Network. Four types of different
predictions can be produced by the algorithm: “adenoma", “non-
adenoma", “no-prediction" or “analysing". “analysing" is printed near the
polyp to communicate to the endoscopist to keep imaging the target
polyp until the minimum number Nm of frames is reached. The value of Nm

was chosen so that the algorithm could take into account a sufficient
number of frames to produce an OC prediction while at the same time
causing only a short, affordable delay in the prediction from when the
polyp was first detected. When the minimum number of frames Nm is
reached, the number of non-adenoma and adenoma frame by frame
predictions are computed with the introduction of two hyperparameters
δlow and δhigh that define when a frame by frame prediction has low
confidence: Nna = ({ck,j∈ {Lj}∣(cj < 0.5− δlow) ∧ qi,t ≥ 1} and Na= {ck,j∈ {Lj}
∣(cj > 0.5+ δhigh) ∧ qi,t ≥ 1}. If Nna or Na is the majority of the total number of
valid frames the algorithm prints “adenoma" or “non-adenoma" on the
bounding box, otherwise “no-prediction" is printed.

CADx training
The Polyp Characterization Network and the Polyp Imaging Quality Network
were trained using data extracted from the study “The Safety and Efficacy of
Methylene Blue MMX Modified Release Tablets Administered to Subjects
Undergoing Screening or Surveillance Colonoscopy” (ClinicalTrials.gov
NCT01694966) a multinational, multicenter study that enrolled over 1000
patients. The study recorded lossless, high-definition, full-procedure colono-
scopy videos and complete information on polyp characteristics and
histology. The histopathological evaluation was based on the revised Vienna
classification of gastrointestinal epithelial neoplasia26. Polyps corresponding to
Vienna category 1 (negative for neoplasia) or 2 (indefinite for neoplasia) were
considered “non-adenoma”. Polyps corresponding to Vienna category 3
(mucosal low-grade neoplasia), 4 (mucosal high-grade neoplasia), or 5
(submucosal invasion of neoplasia), were considered “adenoma”. To avoid any
possible histology mismatch in the case multiple polyps appeared and were
biopsied in the field-of-view at the same time, we chose to exclude from the
dataset all polyps appearing simultaneously or in close succession. The video
dataset thus obtained was further split into training, validation, and test
subsets and frames containing a polyp were manually annotated by trained
personnel with patients/polyps/images distributed as follows: 345/957/63,445
(training), 44/133/8645 (validation), and 165/405/26,412 (test).

CADx device
The proposed CADx feature was implemented for GI Genius v2.0
(developed by Cosmo AI, Ireland, and distributed by Medtronic, US), a
CADe device for the detection of colorectal polyps that received marketing
clearance in the United States from FDA in 202114. The new device, named
GI Genius v3.0, received CE clearance under the European Medical Device
Directive (MDD, 93/42/EEC) in 2021 as a class IIa medical device. The
performance assessment and results reported in this paper have been
obtained using GI Genius v3.0 on a prospective dataset, acquired
subsequently after approval and different from the dataset used during
the development of the device, as described in the following paragraph in
detail.
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Prospective dataset for performance testing: CHANGE study
description
The CHANGE study (“Characterization Helping in the Assessment of
Neoplasia in Gastrointestinal Endoscopy”, ClinicalTrials.gov NCT04884581),
a single-center, single-arm, prospective study acquired high-resolution
videos of colonoscopy procedures conducted using GI Genius CADx v3.0
from May 2021 until July 2021. The study was approved by the local
Institutional Review Board (Comitato Etico Lazio 1, prot. 611/CE Lazio 1)
and conducted in accordance with the Declaration of Helsinki. Before
participation, all participants provided written informed consent. The 165
patients screened in the CHANGE study were considered for the
Standalone CADx study (“Standalone Performances of Artificial Intelligence
CADx for Optical Characterization of Colorectal Polyps”, https://osf.io/
m5cxt), a study aiming at assessing the standalone performance of the
CADx and whose results are reported in this manuscript. A diagram
illustrating the collection of the prospective dataset used in this study is
shown in Fig. 5. All the colonoscopy videos considered in the study were
acquired in full length with unaltered quality, bearing no trace of the AI
used (no overlay). Patients' clinical data and polyp histopathological
information were saved in an electronic Case Report Form (eCRF). The
localization of each polyp in each patient was carefully annotated by
scientific annotation experts. This was confronted with data in the eCRF for
the same patient to avoid any possibility of erroneous correspondence
between polyp in the video and the related histology. Polyps for which
video recording failed or for which no histology could be obtained were
excluded. For each polyp, a short videoclip was prepared, starting a few
seconds before the first polyp appearance and ending with polyp
endoscopic resection. If multiple polyps were present in the same video
section, a separate clip was generated for each individual polyp. This
resulted in a total of 513 videoclips, 198 adenomas and 315 non-
adenomas.

CHANGE study polyps review by endoscopists
To assess the performance of the CADx against a panel of international
endoscopists, the study aimed at a minimum target of eight expert and
eight non-expert endoscopist reviewers. Reviewers with a colonoscopy
experience of at least 5 years and proficiency in optical biopsy with virtual
chromoendoscopy were considered experts, while reviewers that had
performed less than 500 colonoscopies at the time of study invitation were
considered non-experts. To reach the target, 20 invitations were sent
considering a 20% dropout. However, 10 additional invitations were
needed and a final number of 10 experts and 11 non-experts reviewers
was reached. Videos were shown in a randomized order to each
endoscopist via a dedicated secure website. Endoscopists were blinded
to histology and CADx results and a green box was manually drawn
(overlaid) around the target polyp in each videoclip frame to remove any
ambiguity in the identification of the region of interest.

Measurement variables, study endpoints, and sample size
considerations
The CADx decision could assume a three-classes output for each polyp
videoclip: “adenoma”, “non-adenoma” and “undetermined”. A polyp was
classified as “adenoma” if the number of frames where CADx outputs the
label “adenoma” was greater than or equal to the number of frames where
CADx outputs “non-adenoma”, and classified as “non-adenoma” if the
number of frames classified as “non-adenoma” was greater than the
number of frames classified as “adenoma”. A polyp was considered
“undetermined” if the CADx failed to output either the label “adenoma” or
“non-adenoma” for the entire polyp videoclip. A decision in WL and BL was
retrieved by operating the CADx only on the frames in WL and BL,
respectively.
Reviewers were asked to classify each polyp videoclip into five classes:

“adenoma”, “hyperplastic”, “SSL”, “carcinoma” or “uncertain”. A reviewer
decision was considered as “adenoma” if the reviewer selected either
“adenoma” or “carcinoma”, “non-adenoma” if “hyperplastic” or “SSL” were
selected and “undetermined” if “uncertain” was selected. If not “uncertain”
the reviewer was asked a four-level level confidence class: “very high
confidence”, “high confidence”, “low confidence” and “very low
confidence”.
The primary endpoint of the Standalone CADx study was that CADx

accuracy in WL resulted non-inferior to the accuracy of expert
endoscopists, having histopathology as the reference standard. The
exploratory endpoints were that (1) CADx accuracy in WL was superior
to the accuracy of non-expert endoscopists and that (2) CADx accuracy in
BL was non-inferior to CADx accuracy in WL.
A previous pilot study involving GI Genius CADx on 60 patients reported

an accuracy of 85%. The sample size for Standalone CADx study was
calculated assuming that experts can perform OC with an accuracy of 87%.
Using a one-sided alpha level of 0.025, a total of 480 lesions is required to
achieve 80% power, which is increased by 5% to account for dropouts. The
minimum number of polyps needed for Standalone CADx study was
therefore determined to be 504. Since CHANGE study collected a total of
513 polyps with a valid video recording and a valid histopathology
outcome, all these polyps were included in the Standalone CADx statistical
analysis.

Statistical analysis
The analysis for the primary endpoint was to assess if the lower bound of
95% confidence interval (CI) for the difference in accuracies (CADxWL –
Experts) is higher than −10%. The analysis for the first exploratory
endpoint was to assess if the lower bound of 95% CI for the difference in
accuracies (CADxWL–Non-Experts) is greater than 0. The analysis for the
second exploratory endpoint was to assess if the lower bound of 95% CI
for the difference in accuracies (CADxBL–CADxWL) is greater than −10%.
The main analysis of the primary and exploratory endpoints was carried
out using log-binomial regression. As the primary and the first exploratory
endpoints are involving repeated measures carried out by different

Fig. 5 Colonoscopy videos of 165 patients screened in the CHANGE study were considered for the Standalone CADx study. A total of 544
polyps videoclips from 130 patients was obtained after discarding dropout patients and patients with no polyps. This number was further
reduced to 513 polyp videoclips (198 adenomas, 315 non-adenomas) after polyps with no recorded histology or missing videoclips were
discarded by scientific annotation experts.
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readers, reader was considered as a random effect (random intercept) to
account for intra-reader correlations.
A second analysis on performance comparisons was carried out using

area under the receiver operating characteristic (ROC) curves. Both non-
inferiority and superiority were evaluated using 95% two-sided CI
calculated using bootstrap resampling for the paired difference in AUC.
Success for non-inferiority was claimed when the lower bound of CI for the
difference in AUCs was greater than –10%. Success for superiority was
claimed when the lower bound of CI for the difference in AUCs was greater
than 0. Non-expert and expert group ROC curves were obtained by
transforming the survey confidence output assigned by each reviewer to
each polyp into an eight-level score. CADx ROC curves were obtained by
associating with each polyp the ratio between the number of polyp frames
classified as “adenoma" and the number of frames on which a prediction
was given by the CADx. For each bootstrap iteration, we randomly
sampled with replacement all the 513 polyps to obtain new CADx ROC WL
and BL curves, and subsequently, for the same set of sampled polyps, we
randomly sampled at the reviewer level to compute expert and non-expert
reviewers' ROC curves. We repeated this 10,000 times to define the 95% CI.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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