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Integrating digital pathology and mathematical modelling to
predict spatial biomarker dynamics in cancer immunotherapy
L. G. Hutchinson 1✉ and O. Grimm 1

In oncology clinical trials, on-treatment biopsy samples are taken to confirm the mode of action of new molecules, among other
reasons. Yet, the time point of sample collection is typically scheduled according to 'Expert Best Guess'. We have developed an
approach integrating digital pathology and mathematical modelling to provide clinical teams with quantitative information to
support this decision. Using digitised biopsies from an ongoing clinical trial as the input to an agent-based mathematical model, we
have quantitatively optimised and validated the model demonstrating that it accurately recapitulates observed biopsy samples.
Furthermore, the validated model can be used to predict the dynamics of simulated biopsies, with applications from protocol
design for phase 1–2 studies to the conception of combination therapies, to personalised healthcare.
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INTRODUCTION
In 2018, 9.6 million people died of cancer despite huge and long-
standing efforts to develop a cure1. One challenge has been the
lack of predictive quantitative methodology that improves clinical
trial design, including the scheduling of on-treatment biopsies,
identifying the best combination treatments, and patient selec-
tion. In particular, during early phase oncology clinical trials one
aim is to verify the mode of action of the drug by investigating
treatment effects in the tumour tissue by histological methods. To
ensure meaningful conclusions regarding the mode of action, the
time point at which samples (i.e. tumour biopsies) are taken is
critical. Typically a single core-needle biopsy is taken at baseline,
and another during the treatment period. Given the ordeal for the
patient, the number of biopsy samples taken must be minimised,
and the time point needs to be chosen wisely. However, currently,
this time point is chosen by clinical experts based on ‘best-guess’
rather than being informed by quantitative scientific approaches.
Such approaches can also be used to identify appropriate
combination treatment partners as well as to select patients to
optimise the likelihood of successful therapy both during clinical
trials and routine medical procedures. The impact on and cost for
patients, drug developers and healthcare systems are obvious.
Here we describe a quantitative method that integrates digital

pathology and mathematical disease modelling to address the
issues mentioned above. We have developed a simulation model
that is capable of predicting a full-time course of spatial
biomarkers, which can be used to identify the most informative
time point at which to take an on-treatment biopsy sample in the
context of oncology clinical trials.
Spatial biomarkers derived from immunohistochemistry (IHC)

images have been shown to contain information that is predictive
of prognosis, tumour recurrence or response to treatment via
statistical analysis2–4, and more recently, machine-learning meth-
ods5,6. Here, we use a mechanistic modelling approach to utilise
the full spatiotemporal resolution of paired biopsy samples to gain
insights based on biological hypotheses and to perform predictive
simulations.

The underlying algorithm is an agent-based model implemented
in Matlab, based on that described by Kather et al.7. The model
comprises two populations of agents; tumour cells and immune cells
laid out on a grid, which behaves according to prescribed rules and
ultimately captures emergent spatial dynamics. There are several
examples of agent-based models representing tumour-immune
interactions which are capable of reproducing realistic spatial
features and were recently reviewed8. However, the validation of
these models has been mostly qualitative, i.e. visual assessment or
comparison of simulation results to images of tissue sections at a
single time point7,9,10. In one example, spatial distributions of cells in
simulated samples are quantitatively compared using the radial
distribution function11. In this work, we use paired clinical samples
that were taken at two timepoints for each patient: pretreatment
(baseline) and on-treatment, allowing us to validate the dynamic
components of the model using the spatial and temporal resolution.
We used data from phase 1 clinical trials for Simlukafusp, an

immunomodulatory molecule which localises in the tumour due to
its FAP binding, and stimulates the IL2beta/gamma receptors
expressed on immune cells. We note that inter-patient variability
is significant in such a dataset and that we do not have information
on previous treatments or the evolutionary status of individual
tumours. However, we assume from12 that even the small samples
from core-needle biopsies are representative of intra-tumour
heterogeneity for a given patient. Due to the lack of a widely
accepted comparative measure to compare the spatial distributions
of cells in sets of clinical images, we derived a spatial agreement
measure (SAM), which we used to optimise and test the model.
To this end, we have simulated the on-treatment immune cell

distribution using the baseline biopsies as input and compared
the predictions to the observed immune cell distribution from the
on-treatment samples, achieving a mean accuracy of 77%. It is
striking that a single baseline feature, the spatial distribution of
immune cells, is predictive of the on-treatment immune cell
distribution with such high accuracy.
Finally, we provide two examples for an application of this

method - clinical protocol design (choice of biopsy scheduling)
and assessment of potential combination therapy partners.
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RESULTS
In order to train the model to reproduce biopsy images that are in
spatial agreement with observed on-treatment biopsies, we
performed a local sensitivity analysis and parameter optimisation.
For quantitative comparison between the observed biopsy samples
and our model simulations at the corresponding time point, we
computed spatial summary statistics and designed an agreement
score called the spatial agreement measure (SAM). The model
optimisation step revealed the parameter values that performed best
according to the SAM. The performance of these parameter sets was
validated using a holdout set of patient samples which were not
used to train the model. Furthermore, we used the validated model
to show that samples taken at around 30 days would provide
information on maximum CD8 infiltration at a population level. We
also predicted the time course of tissue biomarkers based on two
different theoretical immunotherapy combination partners by
incorporating their modes of action into the model parameters.
Finally, we demonstrate how spatial features vary widely based on
initial conditions, i.e. the baseline biopsy. Therefore we propose that
the model can also be used in a personalised fashion to predict the
optimal time point for biopsy scheduling for individual patients.

Preprocessing of the images for model input, optimisation
and validation
From the two clinical studies, there were a total of 71 patients
from whom paired biopsies were available at the time of data

processing. Of these, 44 paired samples included enough tissue in
both the pre- and on-treatment biopsy samples to use as an input
for the model. These 44 patients were split at random into a
training set (n= 37) and a test set (n= 7). Each pre- and on-
treatment biopsy sample was processed using our purpose-built
algorithm, and tiles were selected to maximise fields of view and
minimise the inclusion of edges and overlaps, as illustrated in
Fig. 1. A summary of the training and testing datasets is presented
in Tables 1, 2.
Using the baseline tiles as the initial condition for model

realisations, the model simulates the behaviour of every cell on
the grid for a specified period of time-based on rules of
proliferation, migration, killing and death. Simulated biopsies are
generated and saved at 24 h intervals, creating a rich time course.
A schematic that indicates how the data were preprocessed and
used as an input to the model simulations and for model
optimisation and validation is shown in Fig. 1.

Derivation of a spatial agreement measure (SAM) based on
the radial distribution function
The spatial distribution of T-cells is critical for tumour-immune
interactions both in biology and in the computational model.
Given the stochastic nature of biological events, and indeed the
stochastic nature of the computational realisations, an image-to-
image comparison must be performed on derived spatial statistics,
rather than comparing images directly. Therefore, a comparison of
simulated biopsies to real on-treatment biopsies requires a
measure of spatial agreement. Since each observed or simulated
patient sample is represented by a set of tiles, we wish to compare
the spatial distributions of two sets of images to one another. To
this end, we developed a method based on the radial distribution
function (RDF) as shown in Fig. 2a. The spatial agreement measure
(SAM) is a spatial statistic that describes the agreement between
two sets of biopsy images, for example, simulated and observed
biopsies, by quantifying the overlap of the respective RDF ranges.
In order to capture the variability in the spatial distributions, we

provide extra weight to the observed cell density within a short
radius of any given CD8 cell, via the VarSAM. The VarSAM is
designed to identify artificially high SAM values that result from
RDFs that have a narrow distribution. The SAM and VarSAM are
summarised pictorially in Fig. 2b.

Cell detection
algorithm

Fig. 1 Integrating digital pathology and mathematical modelling. For each patient sample, tissue sections of pre- and on-treatment
biopsies were stained against CD8 and Ki67 and digitally analysed to extract the positions of CD8 cells and tumour cells. The image is
subdivided into tiles which are used as an input to the model. In the agent-based model, cells at each grid site follow rules regarding their
behaviours and interactions. The state of the model is recorded at each time step and the results can be visualised as timecourses and spatial
summary statistics and simulated biopsy images.

Box

Integration of digital pathology and mathematical modelling.
The input data to the model is a spatial map of CD8+T-cells (CD8: a cluster of
differentiation 8) which is derived from IHC slides from patient samples.
Specifically, using a machine-learning algorithm trained by a human expert to
detect cytotoxic CD8+T-cells, IHC stained tissue sections are analysed. This
algorithm provides the type (i.e. proliferating or non-proliferating CD8+ cell) and
spatial coordinates of each cell in the tumour tissue. This spatial map of CD8 cells
is mapped onto a grid and provided to the mathematical model as an input. In
mathematical model realisations, each cell on the grid can proliferate, migrate,
die or interact with other cells according to probabilistic rules initiated at each
time step. The likelihood for a cell to perform an action at any given time step is
calculated based on probability distributions and its local neighbourhood. For
example, in order for an immune cell to kill a tumour cell, it must be in physical
proximity. Thus, spatially resolved input data are key.
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Sensitivity analysis: an exploration of model sensitivity
As shown in Fig. 3, the parameters that displayed the highest
sensitivity were those related to the immune cell dynamics,
namely the probabilities of CD8 cell proliferation, death, and

killing as well as the randomness of CD8 cell migration and the
influx rate of immune cells (see Table 4 for the definitions of
model parameters). In contrast, several model parameters did not
appear to have a strong effect on the numbers of CD8 cells and

Table 1. Patient and sample information for patients in the training set and test set.

Patient ID On-treatment
sample time
(day since
first dose)

N tiles
baseline sample

N tiles on-
treatment sample

Mean CD8 count
cells in
baseline tiles

Standard
deviation CD8
count in
baseline tiles

Mean CD8 count
in on-
treatment tiles

Standard deviation
CD8 count on-
treatment tiles

10 63 12 7 19.25 10.98 85.86 34.60

11 49 13 8 84.38 33.13 136.13 26.38

12 49 11 8 293.18 214.96 274.00 148.19

13 49 9 9 46.22 40.67 170.78 95.52

14 113 4 5 60.25 33.39 511.40 217.10

15 48 4 9 146.25 123.17 422.89 99.46

34 57 6 4 157.00 43.25 127.25 7.93

36 48 7 12 85.86 34.60 127.58 49.95

38 62 6 15 219.83 78.20 275.13 97.79

39 57 6 22 239.67 61.29 94.36 38.94

46 49 18 10 165.61 56.71 755.80 153.14

47 57 8 8 9.00 4.57 520.00 149.72

48 50 28 19 139.61 38.11 776.79 147.85

49 50 14 9 68.93 42.00 39.00 38.65

50 50 19 6 63.00 26.93 437.83 130.01

18 42 8 12 221.00 93.15 849.00 307.09

21 43 12 29 23.92 15.44 100.86 106.87

24 26 65 36 51.20 51.58 88.56 54.18

25 17 15 5 312.53 168.81 219.40 86.23

29 15 9 12 22.11 23.96 5.75 9.33

31 24 29 20 60.90 92.49 56.20 50.17

32 17 10 15 124.70 35.39 48.60 67.78

33 15 28 42 118.71 148.46 123.29 153.31

53 49 10 5 1.00 1.70 10.80 8.29

54 57 12 10 20.67 24.96 43.50 34.12

56 42 38 18 59.61 49.76 289.72 170.82

59 43 14 12 70.00 33.56 30.50 17.55

62 52 11 11 59.18 41.43 52.09 29.64

64 48 12 16 124.25 165.33 15.31 9.55

65 44 11 16 163.82 51.69 177.88 81.16

69 16 5 4 17.20 13.55 5.00 5.29

19 49 13 10 50.46 23.34 79.10 91.38

63 42 18 20 5.50 5.11 92.85 102.06

67 30 33 12 64.42 52.15 300.33 95.74

57 44 9 14 101.11 62.76 219.64 102.49

58 45 33 13 8.91 8.97 6.23 9.13

44 50 10 5 11.90 6.21 100.40 43.54

101 23 16 26 62.50 43.31 167.04 113.64

102 23 37 25 58.46 37.46 119.12 76.81

103 22 8 4 84.13 12.12 64.00 20.12

104 23 49 37 180.92 114.69 196.68 93.97

105 23 43 9 188.70 141.22 106.11 40.42

106 21 7 13 149.00 72.93 132.15 71.20

108 23 53 4 22.02 33.37 106.00 57.24

Bold font rows indicate patients in the test set.
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tumour cells, for example, the proliferation, migration and death
rates of tumour cells. Moreover, we note that the number of CD8
cells at baseline influences the sensitivity of the model parameters. It
is worth pointing out that our sensitivity analysis is not exhaustive
since it is centred on one region of high dimensional parameter
space, and therefore does not capture co-dependencies between
model parameters. Supplementary Fig. S1 contains further visualisa-
tions of the sensitivity analysis results.

Model optimisation: a set of model parameters can reliably
reproduce spatial features of biopsy images
The model optimisation (summarised in Fig. 4) identified 12
parameter sets that met the criteria for spatial agreement, and
these were then used to test the model performance on the holdout
dataset and are hereafter referred to as the population parameters.
To capture inter-individual variability, we accepted all parameter sets
that met the criteria, rather than identifying one top-performing
parameter set. We note that the accepted parameters tend to
feature a low value for IMpdeath, the probability of spontaneous
CD8 cell apoptosis. In contrast, there does not appear to be a clear
trend in the values accepted for the other parameters.
The relationships between pairs of parameters and their

performance is shown in Fig. 4b. The definitions of model
parameters are provided in Table 4. We note that overall there is

no noticeable association between accepted parameter values.
We also note that a very small proportion of parameter values met
our criteria for acceptance (1.2%).

Null benchmark for predictive accuracy
In order to establish if the agent-based model does indeed add an
improvement in the prediction of spatial features compared to
predictions in the absence of an underlying model, we wish to
determine a reference value for predictive accuracy that the
model must exceed in order to be of incremental predictive value.
This reference value will be calculated using the last observation
carried forward method (LOCF). To this end, we computed the
RDFs for the baseline and on-treatment biopsies and calculated
the SAM and VarSAM for each patient in the dataset (n= 44).
Using the same thresholds that were used to accept or reject
parameter sets in the model optimisation, we found that for 41%
of patients (18 out of 44) the distribution of CD8 cells in the on-
treatment sample were well represented by the baseline sample.
Therefore in order for the agent-based model to be of predictive
value, the final parameter set must produce simulated biopsies
that agree with the observed biopsies in more than 41% of cases.

Model validation: the trained model accurately reproduces
spatial biopsy features
To test the model performance, we ran simulations on the unseen
hold-out dataset comprising seven patients using the population
parameter values identified in the optimisation step. The results
are shown in Fig. 5. Using the SAM to deduce whether simulated
biopsies were a faithful representation of the observed on-
treatment samples, we found that the population parameter sets
were able to reproduce spatial features of on-treatment biopsy
samples with a mean accuracy of 77% (and median accuracy of
100%) compared to 35% mean accuracy with randomly selected
control parameter sets and the 41% acceptance rate from the
LOCF method described above (note that the LOCF was calculated
using the full dataset to compensate for the lack of repeats using
different parameter sets). For one of the patients in the test set,
none of the simulations with the control parameters nor the
population parameters were accepted by SAM, which is likely due
to the small number of tiles in the on-treatment sample (4)
compared to the baseline sample (53). We consider our findings
robust to different sample collection times since the on-treatment
timepoints for the training set varied between 15–113 days after
the first sample was taken. Therefore we are confident that the
model is able to reliably predict a full time course of biopsy
images including spatial features. It is also noteworthy that a
single baseline feature (CD8 spatial distribution) is sufficient model
input to predict on-treatment biopsy samples. We note that there
is room for improvement for predicting CD8 cell numbers, and this
is to be expected since we optimised the model to reproduce the
spatial arrangement of CD8 cells rather than CD8 numbers per tile.
By performing stochastic repeats and simulations with all
accepted parameter sets, we believe we have included sufficient
variability to represent inter- and intra-patient variability that
arises from, for example, taking biopsy samples from different
locations.

Model application: the model predicts spatial CD8 dynamics
for monotherapy and hypothetical combination therapies
An example of the predicted CD8 cell time course for patients in
the test set is shown in Fig. 5c. For some patients, the model
predicts that the number of CD8 cells levels off or begins to
decrease after 30 days, whereas for other patients, the number of
CD8 cells continues to increase. Depending on the purpose of
biopsy collection, drug development teams may choose to
propose a cohort or personalised approach for biopsy collection.

Table 2. Indications and biopsy locations are represented in the
dataset.

Indication Training Test

RCC 16 0

Squamous cell carcinoma 3 5

Adenocarcinoma 1 0

Melanoma skin 2 0

Invasive ductal breast cancer 1 0

Breast adenocarcinoma 4 0

Melanoma 4 0

Adenocarcinoma of oesophagus 1 0

Adenocarcinoma of the cervix 1 0

Adenocarcinoma lung 1 0

Adenocarcinoma of prostate 1 0

Choroid melanoma 1 0

Lung carcinoma 1 0

Invasive breast carcinoma 0 1

Unknown 0 1

Location Training Test

Soft tissue 2 0

Lymph node 6 0

Peritoneum 1 0

Kidney 2 0

Stomach 1 0

Lung 5 0

Liver 12 1

Abdominal cavity 1 0

Skin 3 0

Unknown 2 1

Head 1 3

Prostate gland 1 0

Neck 0 2
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Simulations generated with this model can be used to inform the
optimal time point for biopsy collection in both cases.
We present two examples of hypothetical combination

therapies as shown in Fig. 6 compared to the monotherapy
example which was used to train the model. The first hypothetical
combination partner (scenario 2) increases the proliferation
probability of CD8 cells and the second (scenario 3) leads to an
increase in CD8 influx into the tumour. While both hypothetical
drugs lead to an initial increase in CD8 cell number compared to
the initial scenario, the molecule that increases the proliferation of
CD8 cells, perhaps counterintuitively, leads to a later decrease in
CD8 cell number. In contrast, the molecule that increases the
influx rate of CD8 cells leads to a sustained increase in CD8 cell

number. These emergent phenomena are a major reason to use
mathematical and computational models to explore complex
biological processes.
In many cases, the spatial distribution of CD8 cells may be a

more important biomarker than the total number of CD8 cells. In
Fig. 6b we illustrate how simulated biopsies and spatial metrics
can also be extracted from the simulations at any chosen time
point in order to inform decision-making.

DISCUSSION
In this article, we have described a predictive scientific approach
integrating mathematical modelling and digital pathology. The

Fig. 2 Development of a spatial agreement measure (SAM) for model optimisation and validation. a The radial distribution function
calculated on a grid is illustrated on the left. From each cell, the Chebyshev distance to every other cell is computed and a histogram is obtained
for the total number of cells at each radius. The values are normalised by the mean density of cells on the entire tile. The radial distribution
function is plotted as a function of distance as shown in the middle. The characteristics of the radial distribution function correspond to spatial
features as indicated. To compare the groups of radial distribution functions on simulated and observed tiles, the SAM is calculated.
b A conceptual outline of the SAM with examples of accepted and rejected simulations with their respective SAM and VarSAM scores.
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model has been optimised and tested quantitatively using a novel
spatial agreement measure and accurately (mean accuracy 77%)
predicts the spatiotemporal distribution of cytotoxic CD8+T cells
in tumour tissue. These results encourage us to apply this model

to address some of the challenges faced in clinical trials, namely
the scheduling of on-treatment biopsies. We view this model as a
tool to inform the human decision-maker for biopsy scheduling,
perhaps revealing some hidden features that may influence their

Fig. 3 Sensitivity analysis. a For six hand-selected tiles reflecting different CD8 numbers and distributions at baseline, and four model
parameters, the numbers of CD8 and tumour cells at the 20-day time point are recorded for the range of parameter values scanned. CD8
number is shown in blue and the tumour cell number is shown in red. b Summary plot of the sensitivity of 13 model parameters that govern
the behaviours of CD8 and tumour cells. The sensitivity was calculated as the change in cell count across the parameter range at day 20
divided by the parameter range scanned. CD8 sensitivity is shown on the left and tumour cell sensitivity is shown on the right.

L.G. Hutchinson and O. Grimm
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decision. We assert that such a model may also be used to
investigate combination therapy partners or novel targets for
immunotherapeutic drugs by exploring parameter regimes which
correspond to pharmacological interventions. In addition, we

believe that the spatial agreement measure (SAM) we have
derived to compare spatial biomarkers of simulated and observed
data has broad applications in the fields of digital pathology and
mathematical modelling.

Fig. 4 Model optimisation. a Heatmaps summarising the optimisation results. Left: normalised parameter values sorted by SAM score.
Middle: SAM score for each parameter set for each patient in the training set where green indicates a low SAM (low agreement between
simulated and observed samples) and yellow indicates high agreement. Black indicates that there were too few CD8 cells (<10) to make a
meaningful evaluation via the SAM. Rows are sorted by the SAM score across all patients. Right: VarSAM values sorted by the SAM score across
all patients. Green indicates that simulated biopsies did not capture the variability in the first 15 distance units of the observed RDFs, whereas
yellow indicates a good representation of the observed variability. b Two-dimensional projections in parameter space of the SAM votes for
each sampled parameter set, where one vote corresponds to one patient in the training set for which the SAM was above a threshold of 0.7
and the VarSAM was above a threshold of 0.3. Red circles with a red rim indicate parameter sets that were accepted according to the SAM
since they had more than 22 votes.

L.G. Hutchinson and O. Grimm

7

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)    92 



Although the mathematical model appears to reliably repro-
duce the spatiotemporal data on CD8 distribution, naturally it has
some limitations. These limitations fall into two classes: clinical
operations and model implementation. Given the number of
patients typically enroled in early phase clinical trials, the sample
size is necessarily small. Furthermore, the size of the tissue sample
obtained by needle biopsies is small and often fragmented, which
renders some of the datasets unusable. However, for the usable
samples, it has been shown that even these small tissue sections
usually provide a reliable representation of intra-tumour hetero-
geneity12. Relating to the model implementation, we found that
the simulations were heavily influenced by the number of CD8
cells present, and our optimisation process appears to be slightly
biased towards choosing parameter sets which lead to an increase
in CD8 number. This arises from using a measure to compare the
spatial distributions, which is dominated by noise in the case of
too few CD8s. In addition, due to computation time and memory
restrictions, we were only able to sample 1000 parameter sets for
the optimisation with 5 stochastic repeats per simulation. Finally,
for the development described in this article, the concentration of
the drug in the tumour and its effect on the model parameters
was out of scope due to lack of data, however, this is planned for a
future version.
Investigations into the dynamic behaviour of complex mechan-

istic models can reveal both expected and unexpected parameter

dependencies, which can be interpreted in terms of their
physiological meaning. In the best case, elucidating the effects
of physiologically relevant parameters on model outcomes can
lead to hypothesis generation for novel modes of action of new
drugs. For example, an expected outcome of a sensitivity analysis
such as the one performed in this article may be to find that the
rate at which CD8 cells kill tumour cells has a strong influence on
the numbers of tumour and immune cells. Indeed, there are
numerous molecules in development which are intended to
increase killing events. An unexpected outcome of our sensitivity
analysis was that the randomness of CD8 cell motility also has a
notable effect on the model outcome. Mechanistic models such as
the one presented here are a valuable tool for investigating novel
modes of action for new molecules alone and in combination.
Big data approaches in which labelled data is used to train a

machine-learning algorithm are a current trend in personalised
healthcare. The advantage of these approaches is, if sufficient data
are available, to be able to make a prediction of some future event
such as clinical response without mechanistic knowledge of the
underlying biological process. On the other hand, using mechan-
istic modelling one can obtain a full-time course of events (and
not just the time point on which the algorithm was trained) and
understand the mechanism by which the prediction is made. For
example, we have seen that a single feature, the spatial
distribution of CD8+T-cells, is sufficient to predict the ground

Fig. 5 Model validation. a Heatmaps showing the SAM and VarSAM of the population parameters applied to the test dataset of seven
patients. The first seven columns of the middle and right heatmaps correspond to the simulations using the population parameters and the
rest of the columns correspond to simulations using five independent control sets of randomly selected parameter values for comparison.
Colours are as in Fig. 4a. b Summary bar plot of the heatmaps in figure (a). Parameter sets were considered accepted if the SAM had a value of
>0.7 and the VarSAM had a value of >0.3. c Simulated timecourses of the numbers of CD8 cells using the test parameters with 50% (dark grey)
and 90% (light grey) quantiles for each of the patients in the test group. The blue * indicates the actual number of CD8 cells per tile in baseline
and on-treatment samples from each patient.
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Fig. 6 Use of model predictions for clinical trials. a Simulations of the CD8 time course for Simlukafusp monotherapy (scenario 1, shown in
blue) and two hypothetical combination treatments. The orange line (scenario 2) represents a treatment that would increase the proliferation
rate of CD8 cells by two times and the red line (scenario 3) represents a treatment that would increase the influx rate of CD8 cells into the
tumour by eight times. Shaded regions correspond to the 50% quantiles from simulations with the population parameters. b A full illustration
of how the model can be used to inform clinical planning for one example patient from the test set. At each time point, the spatial distribution
summary of immune cells, as well as simulated biopsy images, can be extracted, and these can inform drug development teams. In the spatial
summary statistics, all simulations are shown in grey and the black lines are the average spatial statistics for each parameter set across all tiles
and stochastic repeats. In the simulated biopsy images, red represents tumour cells, blue represents immune cells and black indicates non-
tumour tissue.
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truth with high (77%) accuracy. Machine-learning approaches
show a similar performance but the biological or mechanistic
interpretation of features is more challenging. The two
approaches can be complementary to one another such that a
mechanistic model like the one described here generates a full-
time course of biomarkers, and the accordingly enriched dataset
can then be used to train an ML algorithm.
Regarding the clinical utility of the described approach, a major

question during early drug development relates to the mode of
action (MoA) of the drug and if indeed it works as it has been
designed to do. Researchers investigating or wishing to confirm
the MoA of such a new investigational drug could use this model
to obtain quantitative guidance on the most informative time
point for biopsy collection. For example, the effect of molecules
aimed at increasing the number of T-cells in the tumour should be
assessed when the assumed effect has resulted in a measurable
increase in the latter. To this end, researchers could use CD8 maps
from baseline biopsies of the disease of interest and run
simulations on different baseline distributions. When additional
data becomes available as the clinical trial proceeds, the model
can be updated.
The vision we have for drug development is one where tools

and approaches such as the one described here are a routine part
of all steps in the drug development pipeline guiding human
experts in their decisions. As a result, decisions can be reached
earlier and more efficiently reducing the cost of drug develop-
ment and, most importantly, improving patient benefit. Regulators
have already begun to appreciate the value of computational
approaches and in the future, they may demand quantitative data
for decision support.

METHODS
Data
At the time of data curation, there were 71 patients enroled in two clinical
trials for Simlukafusp (NCT03063762 and NCT02627274) who had had
baseline and on-treatment biopsy samples. Of these, 44 biopsy pairs
contained enough tissue (at least four 100 × 100 cell width fields of view fit
within the tissue annotations for baseline and on-treatment samples) to
use as an input to the model simulations. In the NCT02627274 trial patients
enroled had advanced solid tumours, and in the NCT03063762 trial
patients had advanced renal cell carcinoma. Baseline biopsies were usually
collected within 7 days before the start of treatment. On-treatment
biopsies were obtained at a range of timepoints as described in Table 1.
IHC stained tissue sections (with antibodies against CD8, a marker of T-

cells, and Ki67, a marker of proliferation) are digitised and analysed with an
in-house developed machine-learning algorithm13. First, the colour of
images is deconvolved14. Next, candidate objects (i.e. parts of the image
that might conceivably be a tumour or T cell based on morphological,
intensity and colour criteria) are detected and then classified by an expert
(i.e. pathologist) trained classifier. To this end, the human expert reviews

images where candidate cells have been marked and either accepts or
rejects the suggestion. This generated training data is used to train the
classifier. In the last step, the performance of the trained algorithm is
tested on a hold-out set (unseen images of the same kind). The typical
classification accuracy is ~90%. The spatial coordinates (in a whole slide
coordinate system) of detected objects, CD8+T cells (proliferating and
non-proliferating based on the expression of Ki67) and proliferating
tumour cells, is stored in a database. The resulting spatial map of cells from
the whole sample is provided as an input to the preprocessing algorithm.

Technical details
The tumour cell detection algorithm described above only detects tumour
cells at a specific stage in their cell cycle (when expressing Ki67). Assuming
a typical diameter of a tumour cell to be comparable to that of a CD8 T-cell
(~5 µm), we populated empty space within the tumour annotations (which
were hand-drawn by a pathologist) with tumour cells up to a density of
70% of the maximum possible with tight packing of cells. The size of each
grid cell in our simulations is considered to be one cell width, which we
assume is on the order of magnitude of 5 µm. Although alternative grid
definitions are possible (such as off-lattice15 or hexagonal16), in order to be
consistent with the original model, we opted to work with a square lattice
and single occupancy of grid spaces. We did not observe any artefacts in
our simulations due to the lattice choice.
We subdivide each biopsy into as many minimally overlapping square

tiles (of dimension 100 × 100 cell widths) as possible. Each of these tiles is
passed to the model as an input. The tiling algorithm that we developed
selects tiles from the images while obeying the following rules: at least
90% overlap with tissue annotations and tile overlap of ≤10%.
As well as the positions of CD8 and tumour cells in the tiles, the model

requires physiological properties of the cells as an input such as
proliferation capacity and stem cell-ness. To this end, for each cell at each
position, a number of different properties are stored and updated with
each iteration of the model. Since there is no way to obtain these
properties from the real biopsy images, we assigned them according to
realistic estimations. The properties and our allocations at baseline are
listed in Table 3.
For each patient in the dataset, the input to the simulation model

consists of a stack of tiles extracted from the full pretreatment biopsy
image, each of size 100 × 100 cell widths, and a structure containing the
properties of the cells in each tile. Depending on the size of the original
sample, the number of tiles per patient ranged from 1–65 and the number
of tiles per patient are listed in Table 1. We excluded samples from which
less than four tiles were extracted to increase statistical confidence in our
results.

Model extension
The mathematical model is based on that from ref. 7, which we extended
to suit our purpose. Specifically, since we are using tiles from real biopsy
samples as an input to the model we replaced the original no-flux
boundary conditions with periodic boundary conditions which better
reflect the physiological scenario. In addition, we increased the resilience
of tumour cells such that several attacks by immune cells were necessary
to lead to tumour cell death based on in vivo imaging data17. A description

Table 3. Assigned properties of the tumour cells and immune cells in the preprocessing script.

Property Cells Distribution Interpretation

Proliferation
capacity

Tumour cells U(0,10) integer Tumour cells each have between 0 and 10 proliferation cycles left before death. Proliferating
tumour cells were assigned a capacity of 9 and others were assigned per the distribution.

Stem cell-ness Tumour cells Assigned with 20%
probability

20% of cells are stem cells

Engagement
capacity

Tumour cells U(1,2) integer Some tumour cells have undergone one T cell interaction event

Engagement status Tumour cells 0 No tumour cells are currently engaged with a T cell

Proliferation
capacity

Immune cells U(0,8) integer Immune cells have between 0 and 8 proliferation cycles left before death. Proliferating
immune cells were assigned a capacity of 7 and others were assigned per the distribution.

Killing capacity Immune cells 100 Set to a high value to allow essentially unlimited killing

Engagement status Immune cells 0 No immune cells are currently engaged with a tumour cell
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of the cell properties assigned for simulations is provided in Table 3 and
the model parameters with descriptions are provided in Table 4.

Spatial agreement evaluation
In order to evaluate the agreement between real and simulated biopsy
samples, we developed a spatial agreement measure (SAM). The spatial
distribution of CD8 cells on a given tile is summarised by the normalised
RDF, defined in18 as the square taxicab paired correlation function. This
normalised RDF, which comprises a vector of relative cell densities at each
possible inter-cell distance, can be derived from any simulated or observed
tile. We assess agreement between collections of tiles from simulated and
observed biopsies using these RDF vectors (see Fig. 2a). At each possible
inter-cell distance, the relative cell density values in observed and
simulated biopsy tiles are compared. Specifically, the proportion of relative
cell densities in simulated tiles that fall within the range of relative cell
densities from observed tiles ±20% is calculated and compared to a
threshold value (threshSAM) at each possible inter-cell distance. The
calculation is performed for all possible inter-cell distances and the SAM is
defined as the proportion of inter-cell distances for which the threshold
was met.
Specifically, the SAM is calculated according to the following four steps.

1. Consider the matrices Ro and Rs such that the rows of Ro represent
the normalised RDFs for each observed tile of the on-treatment
biopsy for a given patient and the rows of Rs represent the
normalised RDFs for all stochastic repeats for simulated tiles for the
same patient at the appropriate time point. The number of rows of
Ro is the number of tiles identified on the on-treatment biopsy
sample and the number of rows of Rs is the number of tiles
identified on the pretreatment biopsy sample multiplied by the
number of stochastic repeats. Both Ro and Rs have the same
number of columns, which is defined by the length of the RDF, M, in
this case, half of the computational domain length, equal to 50
distance units. To summarise Roij is the normalised paired
correlation function at distance j for the ith tile from the observed
on-treatment biopsy and Rskj is the normalised paired correlation
function at distance j for the kth simulation of the baseline biopsy.

2. Identify the upper (u) and lower (l) threshold vectors for RDF
acceptance from the RDFs of observed tiles Ro such that

uj ¼ max
i

Roj þ 0:2 ´ range
i

Roj ;

lj ¼ max min
i

Roj � 0:2 ´ range
i

Roj ; 0

� �
:

3. For each RDF distance j, find the number of RDFs from simulated
tiles Rs that lie within the bounds defined by u and l and divide by
the total number of simulations, N, to obtain the vector of a

proportion of accepted simulated RDFs for each distance, A:

Aj ¼
P

k lj < Rskj < uj
� �

N
:

4. Find the number of RDF distances for which the proportion of
simulated RDFs that fall within the accepted range is at least
threshSAM and divide by the maximum distance M to obtain the
SAM.

SAM ¼
P

j A>threshSAM

M
:

The distribution of CD8 cells in the immediate vicinity provides
important information regarding the size and frequency of CD8 clusters18.
To ensure that the vicinity is given appropriate weight, we perform a
second SAM step to quantify the agreement between the ranges of RDF
values within the first 15 distance units. The VarSAM is the ratio of the
ranges of the RDFs of simulated and observed biopsies in the first 15
distance units. Figure 2a summarises the SAM and VarSAM.
Mathematically, the VarSAM is defined as

VarSAM ¼ min
range Rs i < 16ð Þð Þ
range Ro i < 16ð Þð Þ ;

range Ro i < 16ð Þð Þ
range Rs i < 16ð Þð Þ

� �
:

Sensitivity analysis methodology
For the model sensitivity analysis, simulations were performed using
parameter values within realistic physiological ranges, sampled either
linearly or logarithmically as summarised in Table 4. In light of the
computing power available, the parameters were varied independently.
The simulations were performed for a hand-selected set of six tiles from
different patients which had different numbers of CD8 cells at baseline,
covering a range between 7 and almost 800 CD8 cells per tile. Every
simulation was repeated five times with different random seeds, and an
average of the simulation results was calculated. The sensitivity of CD8 cell
number and tumour cell number to changes in the parameter values was
calculated at the 20-day time point of the simulations according to

CD8 sensitivity ¼ ðCD8ðmaxÞ � CD8ðminÞÞ=CD8ðbaselineÞ
ðparðmaxÞ � parðminÞÞ=parðmidÞ

such that par(max) and par(min) are the maximum and minimum values of
the explored parameter range and CD8(max) and CD8(min) CD8 cell
number are the corresponding CD8 cell number for simulations using
those parameter values. The CD8 cell number is normalised by the number
of CD8 cells at baseline and the parameter range is normalised by the
midpoint of the range scanned (par(mid)). An analogous expression was
used to calculate tumour cell sensitivity.

Table 4. Parameter names, descriptions and ranges scanned for the sensitivity analysis and optimisation steps.

Parameter Description Default valueValues sampled for sensitivity
analysis

Values sampled for
optimisation

IMpprol Immune cell proliferation probability 0.049 log scale 0.01–0.15 log scale 0.01–0.4

IMpkill Immune cell killing probability 0.1 log scale 0.001–0.3 log scale 0.001–0.5

IMpdeath Natural death probability of immune cells 0.0147 log scale 0.001–0.076 log scale 0.001–0.2

IMrwalk Randomness of the biased random walk of
immune cells

0.8 linear scale 0.5–1 linear scale 0.7–1

TUpprol Tumour cell proliferation probability 0.5 linear scale 0.05–0.5 na

TUpmig Tumour cell migration probability 0.35 linear scale 0–0.35 na

TUpdeath Tumour cell natural death rate 0.12 linear scale 0.01–0.12 na

TUpmax Tumour cell proliferation capacity 10 linear scale 6–15 na

TUintmax Tumour cell interaction capacity 2 linear scale 1–10 na

IMpmax Immune cell proliferation capacity 6 linear scale 3–12 na

IMpmig Immune cell migration probability 2 linear scale 0.05–0.7 na

IMinfluxProbImmune cell influx probability 0.2 linear scale 0.01–0.5 na

IMinflRate Immune cell influx rate 1 linear scale 1–10 na
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Longitudinal plots of cell numbers against time for the sensitivity
analysis simulations are provided in Supplementary Fig. 1.

Optimisation methodology
For the model optimisation, we selected 1000 sets of the four chosen
parameters (IMpprol, IMpdeath, IMrwalk and IMpkill) from uniform or
logarithmic distributions within realistic physiological ranges, as indicated in
Table 4. Model simulations were performed using each parameter set for
every tile, for every patient in the training set, and the simulations were
repeated five times to allow averaging over stochastic runs. The end-time of
the simulation was set according to the real time-point of the on-treatment
biopsy sample for each patient. The spatial distribution of CD8 cells from
observed biopsies was compared with that of the simulated biopsies via the
SAM, providing a score between 0–1 for every parameter set, for every patient
as summarised in the heatmap in Fig. 4. There are several circumstances in
which there are exceptions to this method which are handled as follows:

1. In cases where the simulations ended before the prescribed end-
time (usually due to the tumour being eradicated), the last
simulated time point was used to calculate the SAM.

2. In cases where there are very few CD8 cells on either the simulated
or observed biopsy sample, the RDFs are dominated by noise and
the SAM is no longer considered representative.

a. Whenever the majority of tiles from the observed on-treatment
biopsy for any given patient contained less than ten CD8 cells,
we excluded these samples from the SAM calculations.

b. In the case that there were less than 10 CD8 cells in the majority
of simulated tiles for any given parameter set, the SAM was not
calculated and a NaN was recorded. In these cases, rather than
comparing the spatial distribution of CD8 cells in collections of
tiles, the number of CD8 cells per tile is compared instead.
Specifically, the two-sample t-test was calculated to evaluate
whether the total CD8 cells per tile in observed and simulated
tiles could belong to the same underlying distribution, and
therefore whether the parameter set should be accepted.

In order to identify parameter sets that generated realistic on-treatment
biopsies across the population, we ranked the parameter sets by the mean
SAM across all patients and accepted all parameter sets where the SAM
was >0.7. From the selected parameter sets, we excluded those that would
not yield sufficient variability as measured by the VarSAM (explained
above). The threshold for VarSAM was 0.3. The resulting final population
parameter set contains 12 parameter combinations that we consider to
produce the most realistic biological behaviour.

Model validation. For the model validation, we used the 12 population
parameters identified through the model optimisation, along with the
baseline CD8 distributions for the unseen holdout dataset of seven
patients to perform simulations (with five stochastic repeats per parameter
set). As a control, we repeated this exercise five times with 12 randomly
chosen parameter sets. To compare the simulated spatial distributions of
CD8 cells with the observed distributions of CD8 cells for the test patients,
we calculated the SAM as described in the previous section. We consider
the model accuracy to be defined as the percentage of accepted
simulations according to the same thresholds that were used for the
optimisation, (SAM > 0.7 and VarSAM > 0.3).

Ethics statement. All participants provided written informed consent to
take part in the study and the study was approved by the ethics committee
of Hoffman-La Roche.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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and how to request access to related clinical study documents, see here:
https://go.roche.com/data_sharing.
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