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The promise of machine learning applications in solid organ
transplantation
Neta Gotlieb 1,2, Amirhossein Azhie 1, Divya Sharma3, Ashley Spann 4, Nan-Ji Suo5, Jason Tran1, Ani Orchanian-Cheff 6,
Bo Wang7, Anna Goldenberg7, Michael Chassé8,9, Heloise Cardinal9,10, Joseph Paul Cohen9,11,12, Andrea Lodi9,13,
Melanie Dieude9,10,14,15 and Mamatha Bhat1,9,16✉

Solid-organ transplantation is a life-saving treatment for end-stage organ disease in highly selected patients. Alongside the
tremendous progress in the last several decades, new challenges have emerged. The growing disparity between organ demand
and supply requires optimal patient/donor selection and matching. Improvements in long-term graft and patient survival require
data-driven diagnosis and management of post-transplant complications. The growing abundance of clinical, genetic, radiologic,
and metabolic data in transplantation has led to increasing interest in applying machine-learning (ML) tools that can uncover
hidden patterns in large datasets. ML algorithms have been applied in predictive modeling of waitlist mortality, donor–recipient
matching, survival prediction, post-transplant complications diagnosis, and prediction, aiming to optimize immunosuppression and
management. In this review, we provide insight into the various applications of ML in transplant medicine, why these were used to
evaluate a specific clinical question, and the potential of ML to transform the care of transplant recipients. 36 articles were selected
after a comprehensive search of the following databases: Ovid MEDLINE; Ovid MEDLINE Epub Ahead of Print and In-Process & Other
Non-Indexed Citations; Ovid Embase; Cochrane Database of Systematic Reviews (Ovid); and Cochrane Central Register of Controlled
Trials (Ovid). In summary, these studies showed that ML techniques hold great potential to improve the outcome of transplant
recipients. Future work is required to improve the interpretability of these algorithms, ensure generalizability through larger-scale
external validation, and establishment of infrastructure to permit clinical integration.
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INTRODUCTION
There has been tremendous progress in the outcomes of solid-
organ transplantation in recent decades. Nonetheless, there
remain challenges at various levels of the transplant journey.
Organ allocation is a major limiting factor as there is constant
increased demand while the donor organ supply is limited1. In
addition, the increasing medical complexity of transplant candi-
dates with their advanced age, metabolic risk factors, and
cardiovascular comorbidities is associated with higher risks of
morbidity and mortality on the waiting list and after transplant,
resulting in higher risk of infections, malignancy, and medication-
induced side effects. As a result, allocating organs to appropriate
recipients who will benefit the most from transplantation with the
lowest possible risk is a significant challenge2–5.
The allocation algorithms must consider transplant outcomes

that depend on a complex combination of factors including
patient demographics, comorbidities, genetics, graft quality, and
more. Although short-term outcomes have markedly improved
secondary to better surgical techniques, optimization of immuno-
suppressive therapy and post-operative management, complica-
tions due to graft rejection and secondary to long-term use of
immunosuppressive medications can result in significant morbidity

and mortality6. To overcome these issues, protocols for optimizing
immunosuppression based on biomarkers are needed, but cannot
provide patient-level predictions7–9.
Machine learning (ML) is a branch of Artificial Intelligence (AI) in

which a computer algorithm learns from examples to generate
reproducible predictions and classifications on previously unseen
data10,11. Machine learning can be (1) supervised, referring to
manually mapping an observation’s characteristics to a known
outcome; (2) unsupervised, referring to the discovery of innate
patterns using unlabeled data; or (3) reinforcement learning, referring
to the training of ML models in an interactive environment to make a
sequence of decisions by employing trial and error through ongoing
feedback11. ML can analyze large, complex and heterogeneous
datasets, yielding sophisticated outcomes and predictive models. ML
techniques have been applied in different fields in medicine where
large datasets with complex data points exist, resulting in the
generation of important predictive models with the potential to
ameliorate clinical practice.
Novel applications of ML techniques in transplant medicine have

emerged and are constantly evolving. The prediction of post-
transplant outcomes is extremely complex and involves a large
amount of clinical, laboratory, genetic, immunologic, and metabolic
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data. Beyond waitlist prioritization and organ allocation, other areas
of application in transplant medicine include a better identification of
potential organ donors, prediction of overall survival, short- and long-
term complications, and pharmacokinetic analyses12.
In this review, we aim to provide an overview of recent

advances, potential power, and limitations of ML applications in
transplant medicine. Waitlist prioritization, donor–recipient match-
ing, and post-transplant outcomes are the three main sections of
this review. An overview of ML applications in solid-organ
transplantation is depicted in Fig. 1.

METHODS
A comprehensive search strategy was initially developed for
Medline (Ovid) using a combination of database-specific subject
headings and text words for the main concepts of solid-organ
transplantation, donation, and machine learning. The search
strategy was then customized for each of the other databases.
The following databases were searched on September 2020 and
limited to years 2015–2020: Ovid MEDLINE; Ovid MEDLINE Epub
Ahead of Print and In-Process & Other Non-Indexed Citations; Ovid
Embase; Cochrane Database of Systematic Reviews (Ovid); and
Cochrane Central Register of Controlled Trials (Ovid).
The queries retrieved 155 papers for initial review. The citations

were reviewed manually by NG, NJS, and AS. In all, 36 papers were
included in this review according to clinical significance and
relevance to machine learning, transplantation, and donation. The
relevant articles which were included in the review are presented
in Table 1. The flowchart of this process is illustrated in Fig. 2.

Organ allocation and predictive modeling for waitlist
mortality
Many existing organ allocation policies hinge on a few criteria based
on recipient need for transplant and donor–recipient matching. An
optimal allocation system should incorporate important factors
affecting waitlist mortality by expansion of the data types
considered. ML may be a suitable tool for this task by identifying
variables of importance from both recipients and donors and be
utilized for the assessment of complex nonlinear interactions.
Random Survival Forest (RSF) approach is an Ensemble tree method
for analysis of right-censored survival data resulting in better survival
prediction and variable selection through bagging of classification
trees13. For example, the RSF approach was applied on a dataset of
33,069 patients waiting for heart transplant, and nine laboratory and
hemodynamic variables affecting waitlist mortality were identified14.
Two of these variables (eGFR and serum albumin) are not currently
considered in the United Network for Organ Sharing (UNOS)
allocation system (i.e., 6-tiered heart allocation system), and RSF
further identified nonlinear relationships between these variables.
Furthermore, RSF showed that the importance of each variable
correlated with their effect on other variables. For example, in
patients with eGFR >40mL/min/1.73m2, RSF found sex differences
as a predictor of waitlist mortality. The advantage of RSF is the
identification of predictive variables for waitlist mortality without
prior knowledge of parametric relationships. It can manage various
interactions and significant missingness unlike conventional statis-
tical methods such as Cox proportional hazards models. However,
the model was trained on the Scientific Registry of Transplant
Recipients (SRTR) database which only collects certain variables at
specific timepoints and has a certain degree of missingness.
Other ML studies have merged both donor and recipient

characteristics to optimize post-transplant outcomes rather than
waitlist mortality. Artificial Neural Network (ANN) models are used
for nonlinear modeling of the input features through a collection
of neurons that take input and, in conjunction with information
from other nodes, develop output without programmed rules. An
ANN-based model was developed to predict waitlist mortality,

post-transplant survival, and to simulate the heart allocation
process. The model was trained on both donor and recipient data
and was able to predict waitlist and post-transplant mortality with
significant accuracy (AUROC= 89% and AUROC= 66%, respec-
tively)15. This study showed that transplant allocation using ANNs
was able to utilize 124 more available hearts compared to the cox
regression model. Accordingly, ANNs have been shown to be
efficient in organ allocation where prognosis depends on the
complex interaction between multiple variables pertaining to both
donor and recipient.
In summary, ANNs and RSF models provide better accuracy and

deal well with nonlinear interactions in the data while predicting
waitlist mortality as compared to other conventional approaches.

Optimization of donor–recipient matching
Donor identification and matching. Potential organ donor identi-
fication relies entirely on timely identification of these patients and
their referral to Organ Procurement Organizations (OPOs). More
optimal identification of potential organ donors may be feasible
using ML. A recent study demonstrated that both ANN and logistic
regression models trained on 105 distinct laboratory test variables
from 19,717 ICU patients resulted in similar performance with an area
under the curve (AUC) of 0.950 (95% CI 0.923–0.974) and 0.947 (95%
CI 0.9169–0.9730), respectively16. However, in this study, the ANNs
accuracy was more consistent across different subgroups compared
to the logistic regression model which obtained lower AUC for non-
referred potential organ donors (AUC for ANN: 0.95 versus LR: 0.78).
ANNs benefit from automatically learning from high-dimensional
data and detecting complex nonlinear relationships between input
variables and ultimate outcome of interest17. However, ANNs require
large data to be trained on in order to estimate their predictive
parameters accurately. On the other hand, logistic regression method
benefits from a small number of hyperparameters in its modeling but
is not suitable to capture nonlinear relationships in its conventional
form, wherein it assumes linearity between the dependent variable
and the independent variables18.
Donor selection is a challenging and multifactorial decision

influenced by both donor and recipient factors as well as match
considerations. Risk models have been used in the heart, kidney, and
liver transplantation, to better assess the interactions between donor
and recipient factors and their overall impact on post-transplant
outcomes. Accordingly, ML and discrete optimization have been
used in the context of paired kidney exchange19. The aim of the
kidney exchange program is to obtain the maximum number of
donor–recipient matches in a pool of incompatible pairs19. For this
purpose, a stochastic-based ML algorithm (an algorithm that can
make use of randomness during learning) called Ant Lion Optimiza-
tion (ALO) using the bio-inspired technique was proposed, having
the advantage of requiring relatively small computing power in
consideration for the typical resources accessible by hospitals and
was successful in generating possible pair matches. Its performance
was on par with deterministic-based models such as integer
programming and outperformed other stochastic-based models
including Genetic algorithm19. This algorithm was also able to give
higher weight to patients who had lower chances of getting
matched by conventional model19.
ML tools have been used in the integration of specific donor

characteristics with recipient ones to produce matches with maximal
post-transplant survival. In liver transplantation, a study of 822
donor–recipient pairs from King’s College Hospital (London, UK)
successfully validated an ANN model that originally had been
developed using multicentric Spanish cohorts20. This ANNmodel was
trained to help clinicians with donor–recipient matching to achieve
maximum graft survival at 3 and 12 months after liver transplant21.
The ultimate outcomes of interest were graft survival and non-
survival at three (AUC 0.94 for ANN) and twelve months (AUC 0.78 for
ANN). Finally, ANN achieved 20% higher AUC compared to Model For
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Fig. 1 Applications of ML in solid-organ transplantation. a Artificial Neural Networks (ANNs) benefit from automatically learning from high-
dimensional data and detecting complex nonlinear relationships between input variables and outcome of interest. ANNs report high accuracy
in optimal identification of potential organ donors. b Convolutional Neural Network (CNNs) are neural network models that are popular for
image classification tasks and help in efficient feature extraction through convolution operation and perform efficient segmentation of
donor's liver through input data in the form of MRIs. c Random Survival Forest (RSF) approach is an Ensemble tree method resulting in better
survival prediction and variable selection. Through RSF laboratory and hemodynamic variables affecting waitlist mortality can be identified
through interpreting nonlinear relationships between the variables. d Multilayer perceptions are neural networks that identify complex
nonlinear relationships in the data and can help in handling different data domains such as clinical and image features together to predict
Hepatocellular Carcinoma (HCC) recurrence with high accuracy. e In Liver transplant recipients, Random Forest (RF) classifier is a tree-based
classifier that generalizes classifications using decision trees and can efficiently identify important risk factors relevant to new-onset diabetes
after transplantation (NODAT). f Gradient boosting machines employ sequential decision trees which reduce the error by training on the error
residuals and can classify a subject into a candidate for risk of pneumonia, RBC transfusion etc. so that clinicians can efficiently filter patients
requiring immediate support. g Important risk factors for Delayed Graft function (DGF) can be provided to ANNS, Support Vector Machine
(SVMs) and tree-based models to identify patients at higher risk of DGF. ANNs can be applied on high-dimensional datasets, however, when
complexity is low, SVMs and decision trees can provide more interpretable modeling.
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End-Stage Liver Disease (MELD) score in predicting 3-month graft
survival21. The number of days on waitlist, underlying liver disease,
and MELD score were among most predictive variables from
recipient and cause of death, cold ischemic time, hypertension and
AST were among top-ranked features from donor side for predicting
3-month graft survival. Although the ANN model performed even
better using data from the English center compared to the original
Spanish cohorts, it is still necessary to optimize and fine-tune the
model when new data are available from other transplant units. Also,
using the same ML model in countries with different health care
systems may not achieve the same significant performance due to
the heterogeneity and different variables collected in various
programs21. In another study, an ANN-based algorithm trained on
data from seven Spanish hospitals and one hospital from the UK
correctly predicted liver transplant outcomes for 73% of the
population. The ANN algorithm was trained to predict the risk of
graft failure within 15 days, between 15 and 90 days, and over
90 days after transplant based on the features from both the donors
and the recipients. Compared to ANN (with 73% correct prediction),
logistic regression, and SVM models showed correct prediction only
for 50 and 66% of the population, respectively22. However, this
ordinal classification of post-transplant outcome resulted in imbal-
anced subgroups with more than 85% of recipients surviving more
than 90 days after LT. The authors solved this imbalance challenge by
giving dynamic weights to the minority classes by using a cost-
sensitive evolutionary ordinal artificial neural network and an ordinal
oversampling technique. This ANN algorithm can serve as a decision-
support system beside MELD score and other clinical risk scores for
transplant hepatologists to make more informed decisions based on
both donor and recipient characteristics.

Decision-support tools for organ donation. While there is a high
demand versus supply for donor organs, some organs are still
discarded in the process. Marginal grafts have unpredictable
acceptance rates which vary between centers but are offered to all
centers based on need and regardless of their capabilities to
perform transplant for hard-to-place organs. Decision-support
tools that identify deceased donor kidneys which may experience
placement difficulties and streamline this process may increase
donor organ utilization. To better assist in accept/decline decisions
for patients needing adult kidney donors, Natural Language
Processing (NLP) methods that tap into free-text data beside
structured data from donor information were studied23. Using this
method, both known and new key clinical terms holding
significant predictive value were discovered, producing a model
with a C-statistic of 0.75 for accept or decline decisions which is
comparable with the performance of traditional indices including
Reduced Probability of Delay or Discard (r-PODD, C-statistics=
0.80) and Kidney Donor Profile Index (KDPI, C-statistics= 0.77).
Intravenous drug use as well as some other keywords pertaining
to cardiovascular disease such as “stent”, “CHF”, and “cholesterol”
in the free text were found among predictive words for discarding
donor organs using the NLP method. However, these variables are
not documented in structured data from OPTN. Accordingly, a
combination of structured (from OPTN database) and unstruc-
tured data (from free text) can improve the performance of ML
models for this purpose. Another study of 75,350 deceased donors
from OPTN database comparing linear statistical models with ML
algorithms in prediction of organ yield from a deceased donor.
Organ yield was defined as the number of organs transplanted per
donor. This study showed that Bayesian Additive Regression Trees
(BART) had the highest yield with the lowest Mean Absolute Error
(P < 0.001) and highest resolution out of 13 models in predicting
deceased donor organ yield24. BART is a nonparametric Bayesian
regression approach that creates a binary tree by recursively
splitting the data on the predictor values using a statistical model
consisting of a prior and a likelihood. Advantages for BART include
easier pre-processing and visualization of data and capturingTa
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nonlinear relationships during prediction whereas, disadvantages
include high model complexity and instability in the tree in case of
small changes in data. Accordingly, these studies suggest how ML
can facilitate the identification/availability of potential donors.

Strengths and weaknesses of machine-learning algorithms in pre-
transplant settings. ML models hold great potential in helping
clinicians with the prediction of waitlist mortality, organ allocation,
donor–recipient matching, and donor organ assessment. The main
strength of these models is their capacity to work efficiently with
large datasets, and to find complex hidden relationships between
donor and recipient characteristics, leading to better performance
compared to conventional statistical algorithms such as logistic
regression. However, the main limitation of ML models is their
dependence on the quality of input data especially in large data
registries which are susceptible to human error in data documenta-
tion. Moreover, heterogeneity and variations in collected data
between different transplant centers require clinicians to fine-tune
ML models using the variables from their local data registry.
Moreover, since these algorithms work better with large datasets,
they also require systems with high computing power for data
analysis which may not be accessible in every clinical setting.

Post-transplant outcomes
Prediction of post-transplant survival. Optimal decision-making
and management rely on prediction of patient survival on the
waiting list and after transplant, aiming to increase the number of
successful transplants and improve overall outcome. Several
survival models before and after transplant have been built using
deep learning techniques.
The International Heart Transplantation Survival Algorithm (IHTSA)

model was an ANN-based model derived and tested from a pool of
27,705 adult patients from the UNOS registry, utilizing both recipient
and donor variables. The model outperformed a conventional
logistic regression-based model (i.e., Index for Mortality Prediction

After Cardiac Transplantation (IMPACT)) in accurate prediction of
1-year mortality (AUC 0.654 vs. 0.608, P= 0.004) and long-term
survival (C-index 0.627 vs 0.584)25. The added capabilities of deep
learning in capturing nonlinear and hidden patterns resulted in error
reductions by 12% in prediction of short-term mortality and by 10%
in long-term mortality when compared with the traditional models.
This survival model consists of a flexible nonlinear generalization of
the standard Cox proportional hazard model, integrating ensembles
of ANNs with a prediction capability of more than 1 year. Although
the IHTSA model includes both donor and recipient variables
compared to the IMPACT model which only includes recipient
variables, IHTSA still showed significantly better performance even
after training using similar variables with the IMPACT model. This
also confirms that ANN-based models benefit from identifying new
patterns among the same input variables compared to conventional
models25.
Similarly, a decision tree ML algorithm including 53 donor,

recipient, and donor–recipient compatibility features for heart
transplant candidates resulted in improved prediction of survival
across all assessed time intervals of post-transplant survival
evaluation compared to risk-stratification score (RSS)26. The decision
tree algorithm predicted 3-year survival correctly for 14% more
patients compared to RSS after holding specificity at 80%. This ML
model overcame the challenge of heterogeneity in this patient
population by identifying clusters with similar features among the
whole patient population and finding the specific predictive
variables for survival for each cluster26. This suggested that ML-
derived methods may be better able to adapt and outperform
conventional models despite changes in clinical practice over time.
However, a separate study on survival prediction using pre-
transplant variables did not appreciate any improvement in 1-year
post-transplant survival prediction when comparing standard
statistical methods (C-statistic= 0.65) to a myriad of ML methodol-
ogies (C-statistic= 0.66 for ANN)27, despite adjusting for policy
changes in allocation over time. The handling of missing data within
the UNOS database differed between the two above studies,

Fig. 2 Flowchart of search strategy and selection of studies for inclusion. Database search retrieved 155 papers for initial review. In total, 36
papers were included in the final review according to clinical significance and relevance to machine learning, transplantation, and donation.
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suggesting that data quality and management could potentially
play a significant role in the resultant predictability of ML models.
In kidney transplantation, the use of a combination of Random

Forest (RF) classification and Cox regression with least absolute
shrinkage and selection operator (LASSO) for variable selection on
73 donor and recipient characteristics resulted in a model that
outperformed the standard Estimated Post-Transplant Survival
(EPTS) model for 5-year survival prediction (concordance index
0.724 vs. 0.697)28. They trained two separate models for recipients
below and above 50 years old and finally obtained two different sets
of predictive variables for these two cohorts28. Accordingly, this
study showed that developing separate ML models for different
cohorts of patients may improve their accuracy even further. LASSO
regression technique uses regularization to avoid overfitting but
leads to arbitrary dropping of the predictors when those are highly
correlated29. RF technique on the other hand, combines decisions
from multiple decision trees, making it highly flexible and accurate
while estimating nonlinear relationships in the data30. These survival
decision trees have also been used to predict kidney graft survival,
outperforming conventional statistical methods (such as cox
regression model and conventional decision tree model), as seen
in a study of over 3000 renal transplant patients31. These models
obtained a 3-month serum creatinine level as one of the most
important features for predicting graft failure. The survival decision
tree model was able to take advantage of censored patient data and
to add interpretable clinical information using survival statistics31.
ML methodologies are perhaps the most well studied in liver

transplant recipients. Two studies utilizing preoperative UNOS data
from adult transplant recipients for the assessment of 90-day
mortality separately highlight the importance of feature selec-
tion32,33. Pre-selected variables of recipient age, BMI, MELD score,
history of preoperative renal replacement therapy and diabetes were
used to develop an ML-based scoring system with an AUC of 0.952
in identifying high-risk patients, defined as those with predicted
probability of death greater than 10%32. Similar studies using ANNs
and LASSO regression have been performed on smaller patient
populations to effectively predict post-transplant survival34–36. RF
predicted post-operative graft failure in the immediate post-
operative period up to 30 days with greater accuracy than Logistic
Regression and scoring indices such as the Donor Risk Index (DRI)
and the survival outcomes after liver transplantation (SOFT) score,
with AUROC= 0.818 (95% CI: 0.812–0.824)37. Furthermore, ANN
algorithm trained on the top 15 important pre-transplant features
outperformed RF (AUC: 0.835 vs 0.818), showing the importance of
feature selection to improve the model performance37.

Prediction of rejection. Several studies aimed to predict rejection
and identify those at greatest risk. These studies however have
been limited in their ability to accurately ascertain risk. Given the
often-large number of contributory factors to rejection, ML may
play a role in managing many data points, considering not only
readily available clinical data variables but also genetic, metabo-
lomic, and pathology-based variables that may not have been
previously utilized for model development to provide better
prediction capability. ANNs have consistently been proven to be
highly accurate predictive tools for graft rejection in both renal
and liver transplantation compared to standard modeling
techniques37–39.
In liver transplantation, ANNs outperformed logistic regression

models in predicting the risk of acute rejection in 148 recipients
using clinical and laboratory test data at 7 days after transplant,
with 90% accuracy, 87% sensitivity, and 90% specificity38.
In renal transplantation, sensitization defined as the formation

of antibodies against human leukocyte antigens (HLA) makes
successful transplant for highly sensitized candidates difficult.
Many desensitization processes exist; however, patients often
fail to respond to therapy, and it can be difficult to determine
which factors make one patient an appropriate candidate for

desensitization therapy. Through evaluation of various assays of
immune and gene expression profiles of highly sensitized
patients, a Support Vector Machine (SVM) model was able to
identify a distinguishing pattern for those likely to respond to
desensitization therapies40. SVM classification is based on
finding a hyperplane in a high-dimensional space representing
the largest margin that distinctly classifies the data points of the
two outcomes41. The dimension of the hyperplane depends
upon the number of features, if two the hyperplane is just a line
and if there are three features, then the hyperplane becomes a
2-D plane and so on. SVMs are robust to overfitting, however, do
not scale well to large datasets. Utilization of ML processes was
able to highlight variables of importance for classification and
also allowed for the identification of important patterns that
would have otherwise been difficult to ascertain with conven-
tional methodology.
ML methodology can also be advantageous in allowing for

boosted diagnostic performance through simultaneous assess-
ment of varied data types. In a study combining data obtained
from diffusion-weighted MRI images and clinical biomarkers
such as creatinine clearance and serum plasma creatinine, a
Convolutional Neural Network (CNN) was able to accurately
identify 92.9% of rejected kidney grafts regardless of scanner
type and differences in image collection protocols between
patients42. CNNs are neural network models that are popular for
image classification tasks and help in efficient feature extraction
through convolution operation when studies consist of clinical
imaging and radiomics features such as MRI data as input17.
Through this approach, deep learning tools combining medical
image analyses with clinical data highlight the opportunities for
early, noninvasive detection of rejection in solid-organ trans-
plantation as an alternative for graft biopsy.
The diagnosis of graft rejection is historically made by tissue

histopathology assessment. However, graft biopsy assessment is
usually limited by low reproducibility and inter-observer
variability. In attempts to mitigate the variability in interpreta-
tion of biopsy results, ML has been utilized to provide more
definitive, standardizable methods. Supervised learning meth-
ods have been used with endomyocardial biopsies of heart
transplant recipients to predict rejection using microarray
analysis43. Accordingly, molecular classifiers enabled better
molecular rejection prediction than histologic rejection (AUCs
>0.87 compared to AUCs <0.78, respectively). The authors also
utilized an automated RF model which was highly predictive of
corresponding expert diagnoses based on the molecular reports
suggesting that these algorithms could be utilized in lieu of
pathologist assessment so as to increase efficiency in diag-
nosis43. Similar microarray analyses have been utilized in lung
transplant recipients for molecular phenotyping of rejection
from both transbronchial and mucosal biopsies, for which
unsupervised learning methods were able to identify molecular
signatures correlating with patterns of rejection from samples
that would have been previously deemed unusable44,45.

Post-transplant complications
ML and kidney transplant complications. In the context of kidney
transplantation, delayed graft function (DGF) is defined as the
need for dialysis within the first week after transplant, is associated
with a higher risk of graft loss in the long term, prolonged hospital
stays, and thus costs. ML algorithms can uncover potentially useful
prognostic indicators as well as targets for future diagnostic and
therapeutic studies.
The RF approach was used to identify urine proteins with

predictive value for DGF using targeted urine proteome assay46.
Data from 52 patients with intermediate, slow, and delayed graft
function and urine samples were collected within 12–18 h post-
surgery. Four key urine proteins were found to be changed in
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recipients with DGF, with a sensitivity of 77.4% and a specificity of
82.6% (AUC 0.89). Alternative ML strategies were used to
investigate how pre-transplant donor maintenance practices
contribute to the onset of DGF. This multicenter study used data
from 443 deceased donors. An initial multivariate logistic
regression model was not able to identify significant variables47.
In a post hoc analysis, predictive models that use ML tools,
including boosted Decision Tree (DT) using the C5.0 algorithm
(AUC 0.79), boosting ANN (AUC 0.88), and SVM with polynomial
kernel (AUC 0.78), were able to identify key donor maintenance
variables for DGF. The models were also able to recognize
nonlinear relationships between variables. This study showed the
importance of donor maintenance variables such as urine output
and mean arterial pressure which were not included in other
regression-based risk scores for predicting post-transplant DGF.
However, with its retrospective nature, the data collected were not
time-sensitive and may not represent the full picture in terms of
donor kidney maintenance. The RF approach was also used to
evaluate the health-related quality of life (HRQOL) and its
determinants within the first 3 years in 337 kidney transplant
recipients. This approach found a significant association between
HRQOL at 1 month after transplantation and HRQOL between 3
and 36 months after transplantation48. Also, in contrast to
conventional models, the ensemble of ML algorithms allowed
analyses of both quantitative and qualitative variables together
without limitation of the covariates tested48.
Another multicenter study applied probabilistic unsupervised

classification techniques called archetype analysis to risk-stratify
five distinct groups of patients (archetypes) with transplant
glomerulopathy although all of them had similar histological
morphology (double contour of the glomerular basement
membrane)49. The study consisted of kidney biopsies from 385
recipients with confirmed glomerulopathy. These archetypes were
classified based on post-transplant clinical, functional, immunolo-
gic, and histologic data, and were shown to have significantly
distinct graft outcomes. These were used to produce an online
application which can potentially be used in clinical contexts to
flag those kidney transplant recipients with glomerulopathy who
are at higher risk of graft failure. The study was successful in using
an unbiased approach to classify heterogeneous data, and further
studies should elucidate the driving mechanisms of the under-
lying pathology to understand the produced archetypes.

ML and liver transplant complications. Before a liver transplanta-
tion, one of the key features that can help surgeons with
predicting post-transplant graft function is the amount of graft
steatosis. Since biopsy and histological methods of steatosis
assessment are expensive and inefficient, physicians are left to use
donor clinical characteristics and visual analyses of the graft. The
subjectivity and variability of this process remains a challenge, to
which researchers employed ML tools on photographic data to
detect hepatic steatosis. Using a semi-supervised classification
approach on 40 liver images obtained by smartphone camera in
the operating room translating to 600 liver patches as well as
clinical variables and blood sample tests, an SVM model was able
to qualitatively assess grafts steatosis before transplantation with
an accuracy of 0.88, sensitivity of 0.95 and specificity of 0.81
considering liver biopsy as the reference method50. However, due
to the small sample size they used leave-one-patient-out cross-
validation for the evaluation of their algorithms which may lead to
overestimation of the performance.
Metabolic side effects of immunosuppressive medications

including diabetes mellitus compromise the long-term survival
of solid-organ transplant recipients. Accordingly, in a study for
the prediction of new-onset diabetes after transplantation
(NODAT) within the first year after transplant, a RF classifier was
able to robustly identify the most important risk factors for
NODAT using the SRTR database51. This study identified

sirolimus-based immunosuppression as a risk factor for NODAT.
However, since the SRTR database does not include data about
immunosuppressive medication serum levels and fasting glucose,
it was not possible to accurately evaluate the association of
sirolimus with hyperglycemia. Another common side effect of
long-term immunosuppression is de novo non-melanoma skin
cancers (NMSC) including basal cell carcinoma (BCC) and
squamous cell carcinoma (SCC). This elevated risk begs early
detection and prediction methods to allow for timelier adjust-
ments in care. A study conducted by Tanaka & Voigt adopted a
decision tree approach to stratify patients based on the risk of
developing NMSCs52. First, using a cox regression analysis, main
independent risk factors including BMI, not receiving sirolimus,
and recipient age was identified and fed into the decision tree
analysis. Then, these risk factors were ranked based on their
importance using decision tree analysis, and various value ranges
were defined to stratify patients from low to high risk (validation
set: R2= 0.971, P < 0.0001). This study showed that recipients with
BMI < 40 kg/m2 and over 47 years were at higher risk of NMSC
and may benefit from more frequent cancer screening compared
to other recipients who undergo annual screening for skin
cancers. As this study showed, compared to other ML methods,
decision trees are more interpretable; this model is able to
provide clinicians with guiding algorithms for their clinical
management based on the identified risk factors and their cut-
offs for different post-transplant outcomes.
Another study developed a novel scoring system using the

LASSO regression method to predict the risk of sustained alcohol
consumption post-transplant for patients with alcohol hepatitis
using to prioritize those candidates with lower risk of relapse for
early transplantation. This study used data from 134 liver
transplant recipients and the resulting model had a C-statistic
of 0.76, after internal cross-validation53. Four objective pre-
transplant variables including greater than ten drinks per day at
initial hospitalization, history of illicit substance abuse, history of
any alcohol-related legal issues, and history of multiple rehabi-
litation attempts were identified as the main predictive risk
factors for sustained alcohol consumption after transplant.
Accordingly, the LASSO regression method was shown to work
well when the number of events is low. More importantly, this
model can be used for building risk scores based on the provided
coefficients, leading to easier and more explainable implementa-
tion of this algorithm in clinical practice. This model is simple to
implement and has the potential to open up organ access for
those traditionally restricted, however larger and prospective
studies would be needed for validation.
Some studies have also directly compared how traditional

statistics perform against ML methods. In the context of
predicting acute kidney injury (AKI) after liver transplantation,
one study compared Logistic Regression to several ML and neural
networks models54. Models were developed using pre- and
perioperative factors from a single-center dataset of 1211 cases
with both living and deceased donors. Gradient Boosting yielded
the best AUC value (0.90, 95% CI 0.86–0.93) in predicting stages
of AKI and performed better than logistic regression methods
(AUC 0.61, 95% CI 0.56–0.66). Gradient Boosting builds a
sequential series of decision trees, where each tree corrects the
residuals in the predictions made by the previous trees. This ML
technique is robust when the data contains correlated features,
however, this methodology requires tuning of many hyperpara-
meters therefore, rendering model development slower55.

ML and lung transplant complications. Among lung transplant
recipients, chronic lung allograft dysfunction (CLAD) affects more
than 50% in the first 5 years post-transplant, and negatively
impacts long-term survival. Bronchiolitis obliterans syndrome
(BOS) is an obstructive form of CLAD due to chronic immune-
mediated rejection. BOS can lead to decreased airflow
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represented by reduced forced expiratory volume in the first
second (FEV1). Early diagnoses can pave the way for future
research in interventions. To this end, an SVM to analyze
quantitative CT imaging data from 71 patients was investigated
as a diagnostic tool for early CLAD detection56. Using quantitative
CT scan at first post-transplant visit, SVM algorithm was able to
identify those recipients who are at higher risk of developing BOS
in near future while pulmonary function tests did not show any
significant changes in early stages. The model resulted in an 85%
accuracy rate using three features from patient images. SVM
model identified smaller lobar and airways volumes, smaller
airways surfaces, and higher airways resistance as predictive
factors for BOS at early quantitative CT scan. Earlier identification
of these patients can guide clinicians with appropriate manage-
ment to avoid further progression of this pathology.

Strengths and weaknesses of machine-learning algorithms in post-
transplant settings. For post-transplant complications, ML tech-
niques such as SVMs, Random Forests and ANNs have the ability
to model evolving and heterogeneous patient-level data over
time, identify predictors of poor outcomes, and inform care. Uses
of ML in predicting post-transplant complications have numerous
applications including decision-support systems and even the
development of data-driven assessments. CART and LASSO
regression models can guide post-transplant patient management
by providing clinicians with transparent algorithms that can be
easily understood and explained from a clinical perspective.
Moreover, recent research also strives to make ML models more
interpretable in terms of identifying features playing a key role
during the prediction tasks. Some recent methods including
SHapley Additive exPlanations (SHAP) as used for evaluating
feature importance and explain the predictions made by ML
algorithms toward post-LT AKI57, Local Interpretable Model-
Agnostic Explanations (LIME) used to assess relative impact of
key predictors in post-transplant patient survival58, and integrated
gradients used to identify important predictors in diagnosing
allograft rejection59, make ML models more explainable. However,
further validation of their results using multicenter prospectively
collected data is important before wider application of these
algorithms in daily clinical practice.

LIMITATIONS OF ML IN TRANSPLANT MEDICINE
While studies show promise for ML; data quality, small sample size,
inconsistency regarding the number of cases adequately power-
ing these models and inter-center variability may affect model
generalization. Inconsistent data collection, recording and classi-
fication included in models can potentially lead to the wrong
features being used for predictions and a potential bias. There is
often no inherent benefit to ML models as a tool, especially when
the number of predictors in a setting is low.
In addition, there is still a lack of prospective and external

validation for these models. The anticipated improvement in
outcomes improvement to traditional methods is marginal in
some aspects of transplantation such as predicting graft
pathologies after liver transplantation. Therefore, clinical integra-
tion and post-deployment monitoring of these algorithms in real-
time will be necessary to evaluate the true impact of algorithms in
clinical practice. In external validation studies, reductions in the
predictive accuracy of models (relative to their original perfor-
mance in development studies) is expected. Therefore, given the
additional complexities introduced by ML algorithms, it should be
ensured that models undergo rigorous but fair external validation
in cohorts or simulated data. As a result, there is a potential lack of
generalizability and the performance of these models should be
assessed with caution before considering their application in daily
clinical work, as well as more multicenter studies with distinct

demographic variables, should be used as input while creating an
ML model to increase it robustness on varied datasets.
For more equitable systems, studies should also consider non-

clinical variables of transplantation like geographic disparity,
physical compatibility between donor and recipients, and resource
availability, all of which may significantly impact transplant
outcomes. Depending on the ML model development, representa-
tion of the key population (by sex, age, and ethnicity) can influence
the predictive accuracy of the algorithm in different subgroups,
thus, creating inequities. Hence, methodologies to ensure fairness
evaluation should be employed.
Another potential challenge with ML algorithms is that they are

computationally complex and time-intensive, whereas some
models like neural networks require more computational
resources and higher number of iterations for better training.
Hence, an ML model should be chosen for analysis after carefully
estimating whether the ML model is better able to address key
clinical questions, in a scenario where there is marginal gain in
implementing a complex ML solution as compared to traditional
statistical methods. Also, each ML approach has pros and cons
associated with it and should be employed after careful analysis of
the nature of the data and clinical questions at hand.
Another limitation of ML modeling is that they are perceived

as black boxes, therefore in-depth analysis to improve the
interpretability of machine-learning-based outcome predictions
should be done to make ML models more clinically relevant and
explainable. As supported by recent methodologies such as
Local Interpretable Model-Agnostic Explanations (LIME), SHap-
ley Additive exPlanations (SHAP), and Integrated gradients,
there have been significant efforts to improve the interpret-
ability of ML models60–62. How to effectively incorporate an ML
algorithm in clinical care is an additional frontier to be
overcome. Whereas a few key parameters can be input into
biostatistical models online (online calculators including the
MELD Na), ML models involve multiple clinical and laboratory
values that will need to be fed into an algorithm to generate an
output. Future potential of ML also lies in integrating data from
various omics sources such as genetics, proteomics, and
metabolomics which are high-dimensional datasets appropriate
for ML to investigate nonlinear relationships as well as which
have a great application in disease prediction, patient
stratification, and delivery of precision medicine in the area of
solid-organ transplantation.
Although ML approaches are usually evaluated in terms of their

accuracy and precision which is aimed at being 100%, many factors
such as the incompleteness of data sample, noise in the data and
stochastic nature of the modeling algorithm can reduce the
accuracy. Therefore, while application of ML approaches, the aim
should be to achieve the maximum potential for the prediction
ability using the dataset at hand and also tune the parameters
adequately and compare to other baseline approaches to establish
generalizability and robustness.

FUTURE DIRECTIONS
Training ML algorithms using multicenter data and with larger
databases can decrease the risk of overfitting and provide the
opportunity to examine the generalizability of these models.
Therefore, larger international databases for organ transplant
populations will be essential for future research in this field. Also,
applying ML algorithms to molecular, genetic, and radiological data
as well as their combination could inform a more personalized
approach to patient management.
ML techniques hold tremendous potential to further improve

the outcomes of transplant recipients, given the complexity and
diversity of factors that impact health in transplant medicine. With
the increasing amount of data available, and the ability of ML
algorithms to uncover hidden interrelationships, these tools hold
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great promise in informing a precision medicine approach to
transplant and improving overall outcomes.

Summarized recommendations
● The performance of ML algorithms significantly correlates with

the quality of the input data. Therefore, organizing data registries
with low missing rates is imperative to the development of
robust ML algorithms. Accordingly, large clinical datasets might
lack the accuracy and granularity needed for ML algorithms to
uncover hidden nonlinear associations.

● Training ML and DL algorithms usually require systems with high
computing power which may not be accessible by hospitals.
Therefore, developing models which require lower computing
power and time could result in more universal application of
these models in clinical settings.

● Due to heterogeneity and variation in the variables collected by
different transplant data registries, it is important to fine-tune ML
algorithms using new data available at every transplant center to
optimize the model’s performance.

● By using ML algorithms such as Natural Language Processing
(NLP), clinicians can take advantage of non-structured data (such
as free texts from patient medical records and progress notes)
along with structured organized data to improve organ
allocation and post-transplant outcome.

● Routinely used ML algorithms may not be able to work efficiently
with imbalanced datasets. Therefore, applying more recent
methods such as weighted LSTM or ordinal oversampling
techniques can improve the performance of ML models trained
on imbalanced datasets which are very common in medical
research.

● Advantages of Bayesian Additive Regression Trees (BART)
compared to logistic regression models include easier pre-
processing and visualization of data, as well as capturing
nonlinear relationships during prediction, whereas disadvantages
include high model complexity and instability in the tree in case
of small changes in data.

● ANNs require large data to be trained on to estimate their
predictive parameters accurately. On the other hand, the
conventional logistic regression method benefits from a small
number of hyperparameters in its modeling but is not suitable to
capture nonlinear and complex relationships among them.

● Training ML models using identified important predictive
features can improve the performance of these algorithms
compared to developing models using all the available variables

● Although ML models especially ANNs used to be considered as
“black box”, recent methods including Local Interpretable Model-
Agnostic Explanations (LIME), SHapley Additive exPlanations
(SHAP), and Integrated gradients have improved the interpret-
ability of these algorithms by providing a list of the most
important predictive variables for ultimate outcomes, enabling
clinicians to assess the performance of ML algorithms based on
the clinical perspective.

● Compared to other ML methods which are usually perceived as a
black box, decision trees are more interpretable providing a tree-
like structure distinguishing the key features from the feature set
used to split the tree at each node; this model requires basic
clinical variables for input to produce an algorithm guiding
clinicians with their patient management.

● The CART and LASSO regression models can be used for building
risk scores based on the provided coefficients, leading to the
easier implementation of this algorithm in clinical practice.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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