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The health digital twin to tackle cardiovascular disease—a
review of an emerging interdisciplinary field
Genevieve Coorey 1,2✉, Gemma A. Figtree1,3, David F. Fletcher 4, Victoria J. Snelson 1,5, Stephen Thomas Vernon3,6,
David Winlaw 7, Stuart M. Grieve 1,5, Alistair McEwan8, Jean Yee Hwa Yang 5, Pierre Qian1,9, Kieran O’Brien10,
Jessica Orchard 5, Jinman Kim11, Sanjay Patel1,12,13 and Julie Redfern 1

Potential benefits of precision medicine in cardiovascular disease (CVD) include more accurate phenotyping of individual patients
with the same condition or presentation, using multiple clinical, imaging, molecular and other variables to guide diagnosis and
treatment. An approach to realising this potential is the digital twin concept, whereby a virtual representation of a patient is
constructed and receives real-time updates of a range of data variables in order to predict disease and optimise treatment selection
for the real-life patient. We explored the term digital twin, its defining concepts, the challenges as an emerging field, and potentially
important applications in CVD. A mapping review was undertaken using a systematic search of peer-reviewed literature. Industry-
based participants and patent applications were identified through web-based sources. Searches of Compendex, EMBASE, Medline,
ProQuest and Scopus databases yielded 88 papers related to cardiovascular conditions (28%, n= 25), non-cardiovascular conditions
(41%, n= 36), and general aspects of the health digital twin (31%, n= 27). Fifteen companies with a commercial interest in health
digital twin or simulation modelling had products focused on CVD. The patent search identified 18 applications from 11 applicants,
of which 73% were companies and 27% were universities. Three applicants had cardiac-related inventions. For CVD, digital twin
research within industry and academia is recent, interdisciplinary, and established globally. Overall, the applications were numerical
simulation models, although precursor models exist for the real-time cyber-physical system characteristic of a true digital twin.
Implementation challenges include ethical constraints and clinical barriers to the adoption of decision tools derived from artificial
intelligence systems.

npj Digital Medicine           (2022) 5:126 ; https://doi.org/10.1038/s41746-022-00640-7

INTRODUCTION
Cardiovascular disease (CVD) accounts for approximately one-third
of all deaths globally and is the leading cause of disability-
adjusted life years—the years lived with disability and years of life
lost due to premature death1. Further, ischaemic heart disease
(IHD) surpasses all other types of CVD as a cause of premature
mortality, with access to, and adoption of, proven treatments
being context-specific1. Attention to accurate and personalised
risk assessment with tailored prevention treatments remains
imperative. Currently, the risk of CVD and IHD is estimated using
risk algorithms incorporating a small number of traditional risk
factors. However, the substantial number of events occurring in
individuals considered low risk by traditional algorithms2 and
therapy resilience in those with risk factors3 highlight that many
questions remain to optimise the effective use of preventative
medicines, devices, and other therapies, from both health and
economic perspectives.
Precision or personalised medicine is an evolving field world-

wide and seeks to more accurately phenotype individual patients
with the same condition or presentation, allowing tailored
screening, diagnostics, and treatment4. Broad application of this
concept has been facilitated by biological databases (such as the
genome sequence)4 and use of bio- and other markers to stratify

patients for more targeted therapy5. For years, ‘omics’ technolo-
gies have measured the activities of thousands of genes
(transcriptomics), proteins (proteomics) or other molecular fea-
tures simultaneously from a mixed collection of cells that generate
high-dimensional complex data now termed ‘omics’ data, which
advance understanding of the genotype-to-phenotype relation-
ship6. The important premise is that genetic, microbial, proteomic,
metabolic, clinical, and behavioural pathways characterise patients
and their health4. Advanced computational techniques for large
data sets may overcome this inherent variability between
individuals for more precise clinical decision-making and choice
of interventions4. An approach to realising the possibilities of
precision medicine is the concept of the digital twin, whereby
patient-specific therapy is based on using a virtual replica (the
digital twin) to predict treatment outcome and to personalise
prognosis for a patient (the real-life twin).
The health digital twin has its origins in the established industry

practice of creating virtual models of physical systems or assets in
the field to enable planning decisions, risk assessment, testing,
and to anticipate maintenance7. Such feedback systems use new
technologies, such as cloud computing, 5G communication
networks, and prediction software, to enable a three-way
convergence of the virtual model, the physical asset, and the
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real-time data acquisition and exchange between them7, which
occurs via networking devices or sensors located in each twin8.
Analytical algorithms extract, store, and integrate the data
acquired from multiple sources to detect changes, trends and
patterns, predict and diagnose failures, test alternative decisions,
and overall optimise the performance of the real-life asset8. For
this reason, twinning a process or an object offers cost and time-
saving advantages over a model or simulation technique, and is
routinely used in rail, road, and maritime transport, supply chain
and plant operations, and civil engineering8,9. The manufacturing
sector, for example, uses virtual twins of machinery or factory
equipment8; also modern consumer products, such as smart cars9.
An aircraft’s digital twin is critical to maintaining its structural and
mechanical health over its lifetime8. At the healthcare facility and
department level, testable scenarios based on real-time data
inputs to a mirrored system are proposed to improve processes
for staff allocation, visitor/patient flow, waiting time, equipment
and other internal resource provision, emergency vehicle access
and other service-related operations10.
In a similar way, and drawing also on origins within the human

genome project4, an individual health digital twin receives a
variety of data parameters to assist decision-making and
predictive evaluations for a real-life patient. The overall construct
is centred on a population-based databank comprising two key
types of data. Firstly, deep phenotyping as sourced from electronic
health records, biological, clinical, genetic, molecular, and imaging
data. Secondly, the phenotyping of real-world data from the
person’s environment, using mobile data sensors and wearable
devices11. Assimilating these continuously acquired, multi-source
data into clinically meaningful knowledge occurs through an
automated, iterative process of data pre-processing, data mining,
and data integration, that produces more useful information than
is provided by any single data source8,12. In the cardiology
context, these phenotypic data for a digital twin are analysed in a
predictive framework comprising combined statistical and
mechanistic modelling that enables reasoning in the twin13. From
within the population-based databank, a real-life patient has a
digital twin selected that represents the average characteristics of
its closest cluster group11. The outcome of virtual interventions
subsequently given to the real-life patient then feeds back into the
databank to both modify the twin and add to the population data
pool11. This dynamic loop is crucial to expanding the databank
and ensuring its diverse physiological and demographic make-up.
The paradigm draws on bioengineering and computer sciences to
aggregate and analyse information from large patient cohorts.
Given the significant potential for the digital twin principle to

empower CVD research, fuller understanding of its scope will be
beneficial. Therefore, the aims of this review were to describe the
research designated ‘digital twin’, with a focus on uses of the term
and concept within CVD-related research; to summarise the key
concepts; to identify the disciplines contributing to the field; and
to describe the emerging challenges for the progress of digital
twin research within the wider context of precision medicine.

METHODS
Study design
We undertook a mapping review, modified to accommodate the
broad questions of interest. A mapping review is exploratory in
nature for the purpose of providing an overview about a topic, or
determining the volume and nature of literature within a field14.
Elements of systematic review methodology ensured a transpar-
ent and replicable search process, with adaptations in part
because the focus was on the breadth of information and
comprised heterogeneous research and non-research material.
Hence, a systematic approach was taken to literature searching,
but unlike a systematic review a mapping review excludes critical

appraisal of the methodological quality of the literature and
evidence synthesis15.

Database search strategy
Eligible papers from the peer-reviewed literature were identified from
Compendex, EMBASE, Medline, ProQuest and Scopus databases. The
search strategy was then adapted to each database. (Supplementary
Note 1) Reference lists, including the results of citation chaining (a
function within the Scopus database) were hand-searched to identify
further publications or grey literature. Papers were included if they
were published in English and if they were a research/experimental
report, commentary, narrative, descriptive paper, or a book chapter.
Letters, editorials, media articles and conference abstracts were
excluded. No limitations were set for the publication date.

Other data sources
Names of companies were identified from article reference lists
and internet searching. Websites were then reviewed to character-
ise the industry participants and their products in the CVD and
non-CVD digital twin fields. Publicly available patent information
was searched on the websites of the Canadian Intellectual
Property Office (www.cipo.ic.gc.ca); the European Patent Office
(www.epo.org/index.html); the United Kingdom Intellectual Prop-
erty Office (www.gov.uk/government/organisations/intellectual-
property-office); the United States Patent and Trademark Office
(https://appft.uspto.gov/); and the World Intellectual Property
Organization (https://patentscope.wipo.int/search/en/search.jsf).

Charting the data
The results that were charted (the step analogous to data
extraction in a systematic review14,15) were limited to five fields:
publication year; first author country; article type; the condition
targeted and first author academic discipline. Additional informa-
tion from the CVD-related papers was the purpose of the project;
key concept or methodology; status of the digital twin model; and
the databank used or created. Data from industry-related websites
included the target condition(s); the digital twin product or
databank; and availability of the product or development status.
Patents were searched for the applicant; the title of the invention;
and the application filing date. One author (GC) charted the data.

Data synthesis
Excel spreadsheets were used to chart the information from each
source, and to organise the descriptive information. A narrative
synthesis of the important underpinning concepts and challen-
ging issues of digital twin science was based on an iterative
scoping framework15 in which mapping key concepts and breadth
of available information is emphasised over the depth of
information from any one study.

RESULTS
Type and recency of digital twin research
The search of five electronic databases yielded 88 papers from 83
authors. (Fig. 1) Papers were original research (48%); reviews (24%);
narratives (8%); book chapters (7%); conference papers (2%);
commentary or viewpoint (10%) and position papers (1%). Overall,
the papers related to cardiovascular conditions (28%, n= 25), non-
cardiovascular conditions (41%, n= 36), and general aspects of the
health digital twin (31%, n= 27). (Supplementary Table 1) CVD was
the subspecialty with the majority of papers (n= 25); subspecialties
within the 36 non-CVD papers included diabetes (n= 3), critical care
(n= 4), cancer (n= 5), hepatology (n= 3), and multiple sclerosis
(n= 2). Most of the papers were published between 2016 and 2021,
underscoring the recency of health-related digital twin research.
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Geographically, the first author locations were worldwide: Europe
(n= 35), North America (n= 15), UK (n= 13), India (n= 6), China
(n= 5), Russia (n= 4), Australia (n= 3), Turkey (n= 1), and Morocco
(n= 1). First author affiliations were universities and research
institutes (n= 67), hospital centres (n= 4), private facilities or
companies (n= 10), or a combination of these settings. The breadth
of interdisciplinary sciences that converge in the field was evident in
the predominance of the non-clinical sciences, such as bioengineer-
ing, robotics and cybernetics, mathematics, biophysics, mechanics
and high-performance computing, suggesting their crucial influence
in driving health digital twin research.

Health digital twin: key concepts
Regardless of the disease or condition in which digital twin
research is applied, there are several shared, essential concepts
(Box 1). First, the defining field of the computer sciences is artificial
intelligence (AI). AI systems exploit processes that emulate human
reasoning by using advances in four key fields, namely computa-
tional power, ‘big data’ processing, machine learning, and pattern
recognition16,17. Second, the Internet of Things (IoT) refers to
facilitating data exchange (including so-called ‘big data’) between
different physical sources in a network8,18. IoT-enabled techniques
for AI systems, combined with cloud computing, facilitate the
creation of a digital profile of a real-world physical system8. Third,
a digital twin requires bidirectional data exchange between the
digital and physical twins on a continuous or at least periodic
basis, which creates the characteristic cyber-physical system
(CPS)8 (Fig. 2). The frequency of the data feed determines the
relative passivity or activity of twin sub-types19. Fourth, whilst a
digital twin can simulate a ‘what if’ scenario, the cumulative, real-
time, real-world data exchange within the CPS gives the twin the
further capacity for monitoring, diagnostics, and forecasting. This
is enabled by what is known as closed-loop optimisation, whereby

the constant synchronisation between the twins allows the virtual
twin to quickly reconfigure as it adopts the properties of its
physical twin, predicts problems, and tests potential solutions
before deployment8. These more operational, intelligent elements
differentiate a digital twin from a simulation-only model8,20.
The above capabilities—AI systems, IoT techniques and

bidirectional data exchange—combine to surpass those of
traditional data processing and improve the clinical utility of
data-driven predictive and prognostic AI models21. For example,
traditional data processing is typically associative, using epide-
miological and statistical models based on structured, descriptive,
retrospective data about a known population17,21. Such a data
pool is more static than dynamic, usually accumulating steadily
into local, centralised storage. Furthermore, data are often
fragmented and isolated rather than merged with data from
different sources, such as health records, wearable devices, and
digital models8,18. In contrast, within the digital twin paradigm is
the processing of high-dimensional, unstructured, decentralised
data that accumulate prospectively and exponentially from
multiple sources17,21, and contain (near) constant data flow from
the environment, known as context-awareness7. Using a techni-
que known as data fusion12, prescriptive- and predictive-type
analyses of big data encompass so-called supervised and
unsupervised machine-learning processes characterised, for
example, by exploratory pattern recognition and use of physio-
logic, clinical, and social causal pathways in disease21. A subset of
machine learning, known as deep learning and convolutional
neural networks (Box 1), is posited to fundamentally change
disease outcome prediction17,22. Taken together, the reasoning
capability achievable with these data-driven technologies goes
beyond both established processing with statistical techniques
(such as logistic regression and decision trees17), and numerical,
physics-based analyses as are used in haemodynamic models of
coronary vessels23 or heart valve mechanics24.

Fig. 1 Flowchart of the search process.
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Digital twin applications in cardiovascular disease. Research that
used the term digital twin to describe models for addressing
specific CVD-related clinical problems was detailed further
(Table 1). Common to the methods used were simulation and
modelling techniques from computing, bioengineering and math-
ematical sciences. The original research papers were best described
as proof of concept and model validation; none were fully integrated
into routine clinical practice, although seven were described as
precursors to either an active or semi-active digital twin (Fig. 3). Nine
discussion-type papers broadly examined precision cardiology in
terms of machine-learning-based applications, combined statistical
and mechanistic modelling techniques, clinical acceptability, transla-
tion, potential benefits, and limitations. In terms of scale, the digital
twin elements were mostly applied at the organ level, modelled
using one or more structural, biomechanical, and electrical
characteristics of the heart derived from echocardiographic, tomo-
graphic, magnetic resonance and other imaging; also, electrocardio-
gram (ECG) databases and mathematical models. Two twin models
using ‘human’ characteristics at the scale of a virtual patient
incorporated descriptive data from health records and prospective
biometric and behavioural data from smart wearables or other
devices. One of the studies25 created a databank of profiles from

existing electronic health records to derive multiple demographic
and clinical variables against which to test antihypertensive
treatment selection for patients. Using edge computing innovations
in the context of ischaemic heart disease, another study26 used both
an ECG database to train and test the AI dataset and smartphones
paired with other external sensor devices, known as a body area
network. Bluetooth connectivity and 5G network services commu-
nicated biometric data from the real twin’s smartphone to the digital
twin in which the data fusion and analyses occurred.

CVD digital twin: industry participants
Recognising the expanding number of companies with a
commercial interest in this fast-moving field, Supplementary Table
2 contains a listing that is illustrative of some of the available
health digital twin or simulation modelling products for managing
cardiovascular conditions, such as IHD, heart failure, and aneurysm
repair. These products are mostly two- and three-dimensional
computational models and software to assist device placement
and haemodynamic modelling, rather than the definitive contin-
uous bidirectional data exchange system of the physical and digital
twin pair. The patent search identified 18 applications from 11

Fig. 2 Concept of a cyber-physical-system, enabled by the convergence and synchronisation of physical and virtual systems8.

Box 1 Important terms used in digital twin science

AI, artificial intelligence Computer science systems that perform human-like cognitive tasks21.

Big data Data of large volume, high dimensionality, high heterogeneity, rapid acquisition and high value8.

Boundary conditions Constraints applied in differential equations to close a system, such as mass flow at the inlet and pressure at the outlet;
component of numerical modelling and CFD42.

CFD, computational fluid
dynamics

Modelling in which numerical methods simulate fluid flow; used in biophysics to simulate blood flow and anatomically
accurate vascular geometry54.

CNN, convolutional neural
networks

Feature of deep learning (AI) in which inputs from large databases pass through multiple layers of algorithms, increasing
the complexity of outputs from layer to layer21.

CPS, cyber-physical system A set of physical entities (e.g., devices, equipment, humans) that interact with a virtual cyberspace through a
communication network, culminating in the digital twin8.

Data fusion Technique to integrate massive volumes of data from multiple sources; comprises data pre-processing, data mining, and
data integration12.

Digital twin Virtual representation of a physical individual that dynamically reflects molecular status, physiology, and lifestyle33. Twins
may be active (receiving real-time data); passive (data are used to create an off-line model); or semi-active (a passive twin
with some animations and dynamic components)19.

Edge computing Computations occurring close to the data source device (e.g., a wearable or other IoT device); lowers bandwidth
demand26.

FEA, finite element analysis Numerical method to solve equations governing fluid flow or structural behaviour; used to create digital instances of
human organs50.

In silico models Simulation of cells or systems using mathematics and computers to construct virtual environments in which to test
hypotheses21.

IoT, Internet of things System of interrelated internet-enabled devices that transfer and converge data over network ecosystems without
requiring human-to computer interaction18.

Machine learning AI technique whereby computers construct algorithms from data to learn16.

ROM, reduced-order model Technique to lower the dimensionality of a complex system; reduces computing costs of high-fidelity simulations52.
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Table 1. Digital twin-related applications in cardiovascular diseases.

Author(s)/year/first author country
Target issue or overall aim

Research concept
Modelling methods or twinning elements used

Status

1. Endovascular repair

Auricchio et al. 2013 Italy51

AAA repair technique in a poor candidate for open
surgery.

Compared pre-operative patient-specific
simulation of the implant of a custom-made
endograft prediction with post-operative
outcomes.
Numerical analyses; FEA

Proof of concept;
Precursor of a DT

Biancolini et al. 2020 Italy52

High-fidelity surgical planning tool for thoracic aortic
aneurysm repair to visualise, interactively and almost in
real-time, the effect of various bulge shape parameters.

ROM framework to overcome the computing costs
required in CFD techniques that are needed for
blood flow prediction.
ROM, RBF, CFD

Proof of concept;
Precursor of a DT

Chakshu et al. 2020 UK19

Detection of AAA and severity classification using a virtual
patient database.

Applies an inverse analysis system to blood flow
prediction; and recurrent neural networks to
classify AAA severity.
Deep learning and neural networks, waveform
calculation/vessel dynamics, inverse analysis

Model validation;
Precursor concept for an active DT

Hemmler et al. 2019 Germany53

A DT for pre-operative selection of stent-graft size and
material to overcome late complications of infrarenal
endovascular repair versus open-surgical AAA repair.

Use of patient-specific pre-operative data and a
morphing algorithm to predict post-operative graft
configuration and wall stress; mechanical
modelling of the graft and the geometry of
aneurysms.
CFD, FEA

Model validation

Larrabide et al. 2012 Spain54

To improve selection, safety, and accuracy of intracranial
stent implantation for intracranial aneurysm using a novel
virtual stent deployment.

Use of a ‘phantom’ and a digital replica to compare
in vitro experiments with computational analysis of
stent configurations within patient-specific
anatomy and aneurysm geometry.
CFD, deformation models

Computational model

2. Ischaemic or occlusive disease and hypertension

Martinez-Velazquez et al. 2019 Canada26

Use of ‘edge computing’ means, e.g., body sensors,
Bluetooth, and 5G networks, to detect and aggregate bio-
signals into a DT interface for detecting dysrhythmias
caused by a myocardial infarction.

Multilayer platform proposed in which a pipeline of
AI-based analyses of ECG and biodata from the real
twin (the IHD patient) in real-time builds a DT
rendering of the heart. PTB Diagnostic ECG
Database55 was used to train and test the
CNN model.
Edge computing, AI, neural networks

Proof of concept;
Precursor concept for an active DT

Mazumder et al. 2019 India27

Training machine-learning algorithms with conventional
mathematically-derived synthetic bulk data requires an
alternative approach to improve the accuracy of simulated
‘what if’ scenarios for CAD with better pathophysiological
interpretability.

The DT is modelled with a two-chambered heart
and baroreflex-based blood pressure control to
generate synthetic physiological data in healthy
and atherosclerotic conditions. The MIMIC-II
database56 was used to develop the PPG signal
algorithm.
ROM of haemodynamics/ flow resistance; synthetic
PPG signal data generation for training machine-
learning algorithms

Model validation

Naplekov et al. 2018 Russia23

A DT of coronary vessels can give a visual representation of
the wearing process and progression of heart disease but
requires haemodynamic and shear stress modelling.

Numerical simulation of the mechanical
characteristics of the coronary vessel system, such
as laminar and turbulent blood flow, and the
impact of thrombus-induced vortex flow on load,
blood pressure, and valves.
CFD

Computational model

Semakova et al. 2018 Russia25

Data-driven DT profiles of real hypertensive patients can
be used to facilitate virtual clinical trials that predict blood
pressure variability and the effect of treatment.

Modelling of the annual average blood pressure
variability and treatment effectiveness of
antihypertensive drugs, based on diverse variables
obtained from actual EMR data (n= 4521).
Probabilistic modelling/stochastic methods

Clusters are precursors of a larger
dynamic population model
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Table 1 continued

Author(s)/year/first author country
Target issue or overall aim

Research concept
Modelling methods or twinning elements used

Status

Chakshu et al. 2019 UK57

Detection of carotid stenosis severity from a video of a
human face.

In vivo head vibrations are compared against
virtual vibration data generated from a coupled
computational blood flow and head
vibration model.
Principal component analysis

Model validation;
Semi-active DT model

Jones et al. 2021 UK58

Applies machine learning for the detection of stenoses
and aneurysms, adopting algorithms that learn patterns
and biomarkers from a labelled dataset.

Presents the ML methodology and metrics used for
quantification of arterial disease classification
accuracies using only pressure and flow-rate
measurements at select locations in the arterial
network. A freely available virtual patient
database59 was used to train the algorithms.
ML methods: Naive Bayes, logistic regression, support
vector machine, multilayer perceptron, random forests,
and gradient boosting

Proof of concept

Sharma et al. 2020 USA60

DT benefits are discussed in a hierarchy of AI applications
in diagnostic and prognostic imaging, e.g., apparent
superior diagnostic accuracy of coronary stenosis by
machine-learning-based CT-FFR over CTA alone.

n/a n/a

3. Heart failure

Hirschvogel et al. 2019 Germany61

DT model to demonstrate a personalised model of the
failing heart, vascular system, and BiVAD implant design.

Increasing ventricular augmentation is applied and
the effect on patient-specific ventricular wall
mechanics and geometry is modelled.
0-D and 3D geometry/echocardiography; deformation
elastodynamics

Proof of concept
in vivo porcine model (n= 11)

4. Electrophysiology

Pagani et al. 2021 Italy62

Reviews issues with integrating imaging, rhythm, and
other clinical data into numerical models for patient-
specific prediction in cardiac EP.

n/a n/a

Gillette et al. 2021 Austria63

Generating high-fidelity cardiac digital twins comprises
both anatomical (from tomographic data) and functional
(inferred from ECG) twinning stages. This study addresses
limitations for both stages that impede efficiency and
accuracy for clinical utility.

Describes and demonstrates methodologies
(parameter vector and fast-forward ECG model), to
improve the value of a biophysically-detailed
digital twin replicating ventricular EP.
Finite element analysis

Proof of concept

Camps et al. 2021 UK64

Investigates new computational techniques for the
efficient quantification of subject-specific ventricular
activation properties using CMR-based modelling and
simulation and non-invasive electrocardiographic data.

Describes a sequential Monte Carlo approximate
Bayesian algorithm to conduct the simultaneous
inference of endocardial and myocardial
conduction speeds and the root nodes; quantified
the accuracy of recovering these activation
properties in a cohort of twenty virtual subjects.
Bayesian computation-based inference method

Statistical method;
Precursor concept for a DT

Gerach et al. 2021 Germany65

Bidirectional coupling or strong coupling is required to
simulate physiological behaviour of the heart including
mechano-electric feedback; adaptation of this framework
allows personalisation from ion channels to the organ
level enabling digital twin modelling.

Provides parameterisations of a fully coupled multi-
scale model of the human heart, including
electrophysiology, mechanics, and a closed-loop
model of circulation; demonstrates model validity
using a simulation on personalised heart geometry
created from MRI data of a healthy volunteer.
Mathematical framework for geometry and deformation

Model validation;
Precursor concept for a DT

5. Precision cardiology (general)

Bende et al. 2020 India50

Machine-learning algorithms can be trained using data
from implanted devices, e.g., pacemakers, to create an
updateable virtual organ using simulation software.

Demonstrates the simulation method to create a DT
of the heart and tests the accuracy of the decision
tree obtained for classifying disease severity.
Finite element analysis; machine learning

Statistical method

Lamata P. 2018 UK40

Challenges with the use of machine learning to reason
from data within statistical models for CVD prediction.

n/a n/a
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applicants, of which 73% were companies and 27% were
universities. Three applicants had cardiac-related inventions and
one of these was an author of an included paper27.

Health digital twin feasibility and implementation
Within the included papers, important shared translation issues for
health digital twin research were illustrated by seven related
themes (Fig. 4).

Big data hazards. Methodological hazards were a noted chal-
lenge to using AI for inductive reasoning; for example, the
generalisability of findings necessitates external validation with
new patient cohorts, or cohorts from different centres or different
geographical locations, and across time28. Other risks could be
confounding biases, perhaps whereby a variable in the vast data
suggests a spurious association. Selection biases could affect
conclusions or result in models that exacerbate racial or other
societal biases and could be overcome by weighting, for example.
Overall, big data compels transparency, the plausibility of
computer-generated predictions, and external validation28.

Computational power needs. The Internet of Things as applied to
healthcare presents challenges for devices with processor,
memory and energy limitations. Computational power and the
costs of related infrastructure that supports the acquisition,
storage and processing of data are fundamental for big data sets.
Scalability requirements for compatibility with shared networks
are compounded by cybersecurity risks29.

Data sharing and intellectual property issues. Databank develop-
ment and data sharing within and between countries compels
compliance with data protection requirements around consent,

anonymizing data, data breach notifications and safe international
transfer. National and international data privacy laws safeguard
individual health information but demand vigilance against both
inadvertent and malicious breaches. The outputs of big data
processing and machine learning raise considerations for perso-
nal, institutional and commercial intellectual property30.

Cybersecurity. Transformational technologies present demands on
a medical CPS or digital twin software for confidentiality, reliability,
safety, and secure coding, with minimal requirements for patching.
Cloud computing systems are, like more conventional physical
media, subject to vulnerabilities in computational, storage, and
infrastructure resources. Third-party-related risks include eaves-
dropping, malware, and costly denial-of-service attacks29. As long
as commercial entities have an interest in personal and medical
data collection, storage, and analysis, research that requires data
harvesting attracts understandable public aversity to big data use,
misuse, breaches and theft that must be mitigated31.

Professional barriers. The credibility of virtual patient models to
predict disease risk and progression in a real patient, and the trust
required of the computational processes that deliver these,
presents a potential barrier to their uptake into a routine
workflow. Further, despite the centrality of patient care to the
role of a physician, fear of replacement or de-skilling of the
clinician specialist with software and other technology has been
mooted as an obstruction to translation32 to be balanced against
the promise of greater efficiency and individualisation16. Along-
side the technology-related reservations are concerns that AI
applications might jeopardise the important social interactions
between colleagues and between clinicians and patients, affecting
the central experience of both groups in medicine32.

Table 1 continued

Author(s)/year/first author country
Target issue or overall aim

Research concept
Modelling methods or twinning elements used

Status

Lamata P. 2020 UK28

Risks and benefits for the cardiac DT of mechanistic and
statistical models; strategies to improve how the latter use
patterns in big data for CVD prediction.

n/a n/a

Niederer et al. 2019 UK66

Describes biophysical models in cardiology and prediction
models for dysrhythmia and heart failure therapies;
outlines translational barriers to personalisation and
uptake into clinical decision-making.

n/a n/a

Niederer et al. 2020 UK37

Describes patient-specific cardiac models and how virtual
patient cohort models are developed and validated, and
how model uncertainty is quantified; also, potential and
future applications of virtual cohorts.

n/a n/a

Hose et al. 2019 UK42

Processes for cardiovascular models for clinical decision
support and uptake of DT-related disciplines and sciences,
such as AI.

n/a n/a

Corral-Acero et al. 2020 UK13

Discussion of DT concepts and applications in precision
cardiovascular medicine.

n/a n/a

Peirlinck et al. 2021 USA67

Historical development of cardiac modelling; future roles;
challenges for precision medicine.

n/a n/a

AAA abdominal aortic aneurysm, AF atrial fibrillation, AI artificial intelligence, BiVAD biventricular assist device, CAD coronary artery disease, CFD computational
fluid dynamics, CHF congestive heart failure, CMR cardiac magnetic resonance, CNN convolutional neural network, CT computed tomography, CTA computed
tomographic angiography, CT-FFR computed tomography-fractional flow reserve, DT digital twin, ECG electrocardiogram, EMR electronic medical record, EP
electrophysiology, FEA finite element analysis, IHD ischaemic heart disease, MIMIC-II Multiparameter Intelligent Monitoring in Intensive Care II, MRI magnetic
resonance imaging, PPG photoplethysmogram, RBF radial basis functions, ROM reduced-order model.
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Ethical barriers. Creating a digital twin of a patient for precision
medicine raises considerable ethical questions around its legacy,
privacy, and identity; and its termination when the real twin dies.
Practices around informed consent must adapt to allow access to
the electronic medical records of a large population, for example,
to develop a databank representative of that population and to
release it for research purposes. Questions of equity concern who
has access to the benefits derived from people’s biological data.
Unknown is whether health digital twin creation exacerbates racial
or other societal biases or discriminates against the least well off in
society, or against populations under-represented in model
cohorts that lack demographic and ethnic heterogeneity13. Who
misses out? Individuals already differ in strength, health, and
longevity—if these differences are quantified in a person’s digital

twin, and made available to the entire community will new issues
around discrimination or equality emerge33,34?

Governance and regulatory. All potential regulatory and legal
issues for a health digital twin are as yet uncertain but are likely to
be especially demanding for approval of devices associated with
medical cyber-physical systems that contain large amounts of
embedded software for sensing and monitoring people’s activ-
ities. The complexity and interconnectedness of such devices may
drive changes to how verification, scalability and evidence are
documented and submitted. The sophistication of databases that
need to be collated, curated and expanded to enable an active
digital twin for routine clinical decision-making may limit
submissions to regulators to more passive-type models that use

Fig. 3 Concepts in a digital twin model of the heart50.

Fig. 4 Translation issues in digital twin science.
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twinning concepts. Although the approval process of regulatory
bodies may differ in purpose, cost, timeline, and perceived rigour
between countries or regions35, products that use personalised
computational modelling and simulation for procedure planning
purposes are currently available in the market (see Supplementary
Table 2 for examples of products marketed for use in structural
heart disease, cardiac catheterisation, and aneurysm repair).
As this science becomes more visible in the marketplace the

requirements for certification and approval may drive changes to the
traditional processes used by national regulatory agencies. For
example, in aiming to accelerate and streamline the product
development process for device manufacturers, the United States
Food and Drug Administration recently commenced a programme of
pre-qualifying appropriate evaluation tools (such as a digital tool or a
computer model) for later use in the actual regulatory submission
stage (https://www.fda.gov/medical-devices/science-and-research-
medical-devices/medical-device-development-tools-mddt). This
aligns with recognition within its strategic priorities of both the
growing area of simulation software as a medical device and the
potential for computational modelling and AI tools to aid device
evaluation and reduce costs in the overall regulatory pipeline36.
Governance mechanisms needed to safeguard the rights of

persons with a digital twin could, for example, draw from existing
practices for how medical databases and biobanks are designed,
regulated, and inspected. Existing privacy safeguards may require
strengthening when genomics data are expanded with biological
and behavioural data29,33. Therefore, relevant legislation—timely and
harmonised across jurisdictions—must develop and adapt in step
with the adjustments made by other agencies responding to the
repercussions of technological change in this field. Collaborations
between academia, industry and government may benefit the
standardisation of methods and interoperability of software and
other protocols.

DISCUSSION
This review explored the use of the term digital twin and its core
concepts, chief of which is the notion of a continuous real-time
multi-source data feed into the virtual twin, and the AI technologies
that optimise these data into useful information about the physical
twin. As intelligent systems that efficiently characterise, understand,
cluster and classify complex data, health digital twins are proposed
to augment, rather than displace, human intelligence in diagnostic
and prognostic decisions in disease8. Estimating and stratifying

risks, forecasting progression, choosing an intervention, and
predicting its outcome using data streamed and integrated from
many sources capture the role for digital twins in realising the
possibilities of precision medicine. Importantly, the interplay of
inductive and deductive reasoning underpins these operations
within the cardiovascular digital twin model.
For CVD management, the potential for AI systems to more

accurately phenotype patients with the same presentation or
condition and overcome limitations of current risk-stratification
algorithms could enable therapy selection that is based less on the
responses of an average person than on the responses predicted in
an individualised model33. Predictions about the best treatment for
an individual would shift from being based on their current or past
condition to being evaluated in the light of a future-facing
simulation37. However, being able to collect and integrate in real
time the multiple changeable molecular, physiological, behavioural,
and other attributes of an actual person into a twin, then extract
precise data for an intelligent digital representation is complex, and
many obstacles to translation must be resolved. Among these
challenges are computational power needs, cybersecurity concerns,
data sharing issues, myriad ethical constraints, and barriers to
adoption by clinicians of disease management decision tools
derived from artificial intelligence systems.
Importantly, the characterisation of an active health digital

twin as elucidated in this review is recent, relative to established
complex modelling science used to make treatment predictions
and inferences in disease, including CVD38,39. Use of the term
digital twin in mechanistic models may be restrained by the
absence of the definitive bidirectional data flow with a real
patient, due to the extreme complexity required of a model to
realistically be able to make such a claim. For example, the
iterative process by which imaging data and engineering
sciences combine towards an archetypal digital twin for clinical
translation (figure in Box 2) underscores that clean separation
between numerical modelling applications and the data-driven
twin concept as identified in this review may be unrealistic.
More compelling is the suggestion that synergistic mathematical
(deductive) and data-driven (inductive) modelling could overcome
limitations within, and build the links between, the information
derived from each approach13,40. For example, within the digital
twin construct and validation centred on a population-based
databank, complementary deductive and inductive data model-
ling processes are at play13. The deductive, mechanistic model
integrates clinical and experimental data to identify mechanisms

Box 2 Steps towards the construction of a digital twin for right ventricle to pulmonary artery conduits using in silico design and
computational analysis of flow

Pre-operative scans can now be used to reconstruct the patient’s anatomy in three dimensions. This model can be 3D printed to allow the surgeon to compare different
strategies for virtual surgery. Modern 3D graphical rendering means that the model could be projected in space and the surgeon could “step inside the heart and move
around”, facilitating discussion among clinicians. It is a short step to allow virtual surgery to be performed and the geometry modified.
In parallel, computational models are being used to study flow in the heart and through valves and stents. Currently, these models are too computationally demanding to
run in real time. However, simulations of the pre-operation flow can be made and then the geometry can be modified to simulate a post-operative state. This is the start of
the digital twin processes. Next, simulations for different levels of exercise and therefore blood flow rates can be made and used to develop a reduced-order model, the
engineering core of a digital twin.

(a) scan data (b) wall shear stress (c) von Mises stress

Process of right ventricle to pulmonary artery conduit design. a imaging of the heart to extract the shape of the right ventricle conduit; b, c results of simulations to
determine the wall shear stress and the stress in the conduit wall. The left-side image is for the existing conduit and the right-side image is for a modified shape that
improves the conduit performance. This article was published in JTCVS Open, 1, Ebrahimi, P. et al. Evaluation of personalised right ventricle to pulmonary artery conduits
using in silico design and computational analysis of flow. 33–48, Copyright Elsevier (2020).
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and predict outcomes based on anatomical and mechanical
knowledge of a physical system and hypothesised relationships13.
Furthermore, such extensive system knowledge presents a
descriptive advantage over an inductive or empirical model, and
avoids the need to re-train a predictive mechanistic model for
unseen data or new situations41. The advantages for clinical
interpretability of such simulations may be constrained by the
assumptions that are applied13, including the choice and impact
of boundary conditions (Box 1) for measurements required to
solve equations42. In contrast, the inductive, statistical pathway
trains, tests, and revises complex data using machine-learning
processes. It finds predictive relations, patterns and correlations
when mechanisms are poorly understood, too complex to model
mechanistically, or when missing data must be inferred13. An
advantage of such empirically derived models is the capacity to
efficiently process numerous multivariable data from, for example,
biologic databases, wearable sensors, and other external sources8.
Constraints may relate to the available volume and heterogeneity
of data variables with which to train machine-learning systems13,
and lower generalisation compared with mechanistic or physics-
based models43. Furthering digital twin science will therefore
likely continue to harness both data-driven and knowledge-based
mathematical modelling. At the scale of the heart, for example,
the feasibility of inductive-deductive model synergy for predicting
conduction abnormalities has been reported from a retrospective
study of aortic valve recipients44. In particular, use of machine
learning to classify anatomical, procedural and mechanistic data
augmented more traditional device-anatomy simulations to
expand and integrate the available variables for reliably predicting
new onset of bundle branch block or permanent pacemaker
placement44. Acknowledgement of the achievements to date and
substantial future challenges to integrate multiple physiological
body systems is described in the widely-cited international
initiative, the Virtual Physiological Human (https://www.vph-
institute.org/projects.html).
This review concurs with other observations that digital twin

research applications comprise elements, rather than all compo-
nents, of the archetypal synchronised cyber-physical system
supported by IoT connectivity13. Consequently, comparison of
research and implementation would be aided by greater
consensus about the digital twin definition45. Another important
priority is to focus research into intuitive accessible ways for non-
technical end-users to interact with digital twin systems in their
field45. Future innovations include refining the visualisation
methods by which non-expert users of a mirrored, networked
system interact with the AI-derived information about the physical
twin45. Augmented reality45,46, multidimensional holographic
projections10,29, and 3D avatars8 are available methods; however,
standardisation between multiple potential digital twins in a
system would facilitate both their seamless interaction in the
network connecting the virtual and physical twins, and the
participation of human non-experts of data science45. The industry
sector is expected to drive the key advances in the technologies
that enable digital twin systems, for example, big data analytics
platforms that favour localised over centralised storage, and
parallel over serial processing of structured and unstructured
data43. Improving IoT technologies will include developments in
communication infrastructure such as wider availability of 5G
mobile and internet, lower-cost sensor devices and flexible cloud
and edge computing environments to meet the storage and
processing needs of these networked services43. Further chal-
lenges are to ensure the timely and accurate update and
replication of data derived from complex components of a
physical twin (such as a human organ) into the digital twin to
avoid delaying critical intervention in the physical twin29. Multiple
digital twins within a shared interaction (such as the human body)
need to exchange and synchronise information, requiring
advancements in application programming interfaces that

optimise consistent and predictable software-to-software inter-
operability29,45. Important developments within physics-based
modelling involve improved affordability and fidelity of computa-
tional hardware to enable the equations governing a physical
system (e.g., how vessels deform or interact with turbulent blood
flow) to be solved faster; to improve the quality of 3D
visualisations; and to accelerate the availability of training data
sets for machine-learning models that are needed to create the
digital twin43.
In the evolution of model-based personalisation for decision

support, at least two socio-technical considerations of how such
innovations flow into practice are essential for the clinical end-
user: first, the accuracy, reproducibility, and consistency of data;
and second, that measurement uncertainty is introduced into the
data assimilation within the model42. Model-based applications
lacking details of the effects of uncertainties within the clinical
data that underpin the model can make the so-called black-box
nature of AI feel uncomfortable and unrelatable to clinicians42.
Therefore, among the challenges surrounding adoption is to
optimise transparency around the evidence supporting the
development and validation of a digital twin solution to aid
treatment decisions or prognostic conclusions47. The progressive
integration of AI-enabled platforms into traditional approaches to
patient care will likely require the collaborative expertise from
technological, biomedical, and behavioural sciences to cultivate
conditions for uptake and routine use48. As models are validated
in terms of an initial concept, a crucial step is extending the model
to a more general patient cohort, with less controlled physiolo-
gical and demographic characteristics13. The challenge of acces-
sing large populations and their detailed information requires the
development of so-called mega cohorts—prospective digital
health ‘data lakes’; and big data infrastructure (including the
techniques characterised as data fusion [Box 1]) to phenotype
volunteers enrolled in these initiatives and to optimise the use, re-
use, and sharing of these data13,49. Several established databanks
supply anonymised data to researchers worldwide (National
Institutes of Health, www.allofus.nih.gov/; UK Biobank,
www.ukbiobank.ac.uk).
Among the strengths of this review is that its mapping intent

enabled use of internet-sourced material alongside at least six
types of scholarly publications, thus giving a fuller picture of the
variety of disease conditions where digital twin science is being
applied, and of the academic and non-academic stakeholders
within this multidisciplinary field. Within an exploratory review of
the term digital twin, several limitations should be noted. In taking
a pragmatic approach to isolate work termed a digital twin, the
search process may have excluded relevant papers describing
predictive models but without explicit use of the term. Thus, the
extent of digital twins for CVD in the published literature may be
understated. We used a systematic search strategy within a
mapping style of review; future studies of the field could
alternatively conduct a systematic review of a narrower question
and a smaller pool of papers of more uniform study design. The
methodology assessments within that type of review would
produce other perspectives on the topic. Material obtained from
electronic databases and websites represents information avail-
able on the search date, risking that the review under-represents
all available information on a rapidly advancing subject. The use of
only English language sources potentially under-recognises all
relevant literature in the field. One author charted the information
from the various sources, risking that screening decisions could
have resulted differently with multiple reviewers. Further, the
potential has been mooted for AI and digital twin technology to
gather ‘intelligence’ from vast volumes of patient data for
optimising the patient experience, care coordination, scheduling,
and other service-oriented operations at healthcare facility level7,8,
but was not reviewed. The included papers did not evaluate any
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hypothesised economic benefits of digital twins applied to CVD
management and this is an important area of future study.
In conclusion, digital twin research for CVD overall encompasses

proof-of-concept studies illustrating the use of the data-driven
approaches that typify the goals of precision medicine. The
promise of an active digital twin of either the human heart or the
human organism for clinical decision-making remains futuristic. Its
advancement holds feasibility and implementation challenges
that are not unique to CVD, namely that although grounded in AI
it hinges on many human factors: citizen populations willing to
prospectively contribute biodata towards mega cohorts of
patients; an adaptive, agile ethical and regulatory landscape;
and multidisciplinary scientific expertise. Review of the health
digital twin term, concepts, and uses offered important contextual
insights to the field in general and for CVD in particular for the
recent collaborative workshop of clinicians, (bio)engineers, data
scientists, and others required to advance research pathways for
CVD, hosted by the University of Sydney Cardiovascular Initiative.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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