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Localization-adjusted diagnostic performance and assistance
effect of a computer-aided detection system for pneumothorax
and consolidation
Sun Yeop Lee 1,11, Sangwoo Ha1,11, Min Gyeong Jeon1, Hao Li 1, Hyunju Choi1, Hwa Pyung Kim1, Ye Ra Choi2,3, Hoseok I4,5,
Yeon Joo Jeong6, Yoon Ha Park7, Hyemin Ahn8, Sang Hyup Hong8, Hyun Jung Koo8, Choong Wook Lee8, Min Jae Kim9, Yeon Joo Kim10,
Kyung Won Kim8 and Jong Mun Choi 1✉

While many deep-learning-based computer-aided detection systems (CAD) have been developed and commercialized for
abnormality detection in chest radiographs (CXR), their ability to localize a target abnormality is rarely reported. Localization
accuracy is important in terms of model interpretability, which is crucial in clinical settings. Moreover, diagnostic performances are
likely to vary depending on thresholds which define an accurate localization. In a multi-center, stand-alone clinical trial using
temporal and external validation datasets of 1,050 CXRs, we evaluated localization accuracy, localization-adjusted discrimination,
and calibration of a commercially available deep-learning-based CAD for detecting consolidation and pneumothorax. The CAD
achieved image-level AUROC (95% CI) of 0.960 (0.945, 0.975), sensitivity of 0.933 (0.899, 0.959), specificity of 0.948 (0.930, 0.963),
dice of 0.691 (0.664, 0.718), moderate calibration for consolidation, and image-level AUROC of 0.978 (0.965, 0.991), sensitivity of
0.956 (0.923, 0.978), specificity of 0.996 (0.989, 0.999), dice of 0.798 (0.770, 0.826), moderate calibration for pneumothorax.
Diagnostic performances varied substantially when localization accuracy was accounted for but remained high at the minimum
threshold of clinical relevance. In a separate trial for diagnostic impact using 461 CXRs, the causal effect of the CAD assistance on
clinicians’ diagnostic performances was estimated. After adjusting for age, sex, dataset, and abnormality type, the CAD improved
clinicians’ diagnostic performances on average (OR [95% CI]= 1.73 [1.30, 2.32]; p < 0.001), although the effects varied substantially
by clinical backgrounds. The CAD was found to have high stand-alone diagnostic performances and may beneficially impact
clinicians’ diagnostic performances when used in clinical settings.
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INTRODUCTION
Chest radiography is a widely used radiological examination for
the evaluation of various pulmonary and thoracic abnormalities.
Its low operating cost and low radiation dose compared to other
radiological exams make it appropriate for primary examinations
in diagnostic or screening settings. While an early, accurate
diagnosis is pivotal in prescribing an optimal treatment plan
among options such as symptomatic therapy, antibiotics, or
surgery, two-dimensional representations on chest radiographs
(CXRs) of a three-dimensional thoracic structure presents difficul-
ties in accurate diagnoses. Indeed, diagnostic performance by
radiography has been found to have high intra-reader variability
and inter-reader variability, especially by training backgrounds
and years of experience1–4, and has been considered to be
suboptimal compared to other examinations such as computer-
ized tomography and ultrasonography5–10. Moreover, access to
experienced radiologists and trained personnel for radiography
are often limited in rural areas or low- and middle-income
countries in general3,11,12.

A computer-aided detection system (CAD) for abnormality
detection in CXRs has been explored as a potential solution to the
challenges in CXR-based diagnosis13–15. Deep-learning-based
algorithms have been developed to detect a single disease such
as pneumonia16, pneumothorax17, tuberculosis18, and lung
cancer19, or multiple diseases at once20–22. Several commercially
available CADs for CXRs have been shown to achieve diagnostic
performance comparable to clinicians when used independently
(i.e., stand-alone performance)23–27 and improve clinicians’ diag-
nostic performances (i.e., diagnostic impact)20,24,28.
While potential utilities of the CADs seem to be promising,

recent reviews have found that multiple crucial aspects of model
evaluations have been often neglected, especially for commercial
CADs29–31. First, few attempts have been taken to evaluate model
interpretability, even though regulatory agencies for medical
devices require model interpretability measures such as localiza-
tion accuracy or explanations for algorithmic outputs32,33.
Localization accuracy serves as one such measure specifically for
radiology-related CADs because accurate localization indicates
that the model is concentrating on clinically relevant parts, not
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confounders, on an image to make a decision34,35. Inaccurate
localization, on the other hand, may induce biases that lead to
incorrect human diagnoses (e.g., automation bias)36. Despite its
relevance, localization accuracy is rarely reported in previous
evaluations of CADs. Lesion-level diagnostic performance (i.e.,
whether the model correctly detects a lesion in an image) has
been estimated to account for localization but the definition of
accurate lesion localization (e.g., any overlap or 20% overlap) is
seldom transparently reported20,22,28,37,38.
Second, most assessments of commercialized CADs have been

limited to detecting a single type of abnormality (e.g., pneu-
mothorax vs. normal)39–41 or any presence of abnormality (i.e.,
abnormal vs. normal)42–45. Efficacy for separately detecting
multiple types of abnormalities (e.g., consolidation vs. pneu-
mothorax vs. normal), rather than a simple binary screening for
any abnormality, needs to be assessed in one setting to mimic
real-world clinical practices. Third, the impact of incorrect CAD
predictions in the context of CXR interpretation is unknown as it is
rarely reported. Last, few studies on CAD evaluations provide
evidence for calibration (i.e., agreement between observed
proportions and predicted probabilities)46, despite the recom-
mendation by relevant reporting guidelines47–49. Calibration is
especially important for CADs that aim to support decision-making
because poor calibration can be misleading50.
In this study, we report findings from two clinical trials for a

commercial, deep-learning-based CAD that detects consolidation
and pneumothorax in CXRs. We used temporal and external
validation datasets to assess localization accuracy, localization-
adjusted discrimination (i.e., diagnostic performances by varying
definitions of accurate localization), and calibration. Furthermore,
in a separate trial for diagnostic impact, the causal effect of the
CAD assistance on diagnostic performances for six clinicians of
various backgrounds was estimated.

RESULTS
The CAD stand-alone trial
Among 2,484 radiographs screened for the stand-alone trial, six
with incorrect DICOM file information, 164 with visible artifacts,
and 188 duplicates were excluded. The final sample included 1050
radiographs (i.e., one radiograph per individual) as planned by the
sample size estimation procedure, and the rest were randomly
sampled out (Supplementary Figure 1). All included radiographs
were successfully evaluated by the CAD with no operational error
and therefore included in the following analyses. There was no
missing data in the demographic and clinical variables. The
analytic sample consisted of 300 consolidation cases, 250
pneumothorax cases, and 500 normal cases (Table 1). For the
consolidation cases, the pneumothorax cases, and the normal
cases, the mean age (standard deviation) was 57.1 (14.5), 37.6
(18.2), 48.5 (10.1), and the proportion of males was 69.3%, 86.0%,
55.8%, respectively. The median lesion size (interquartile range)
was 60.7 (31.4, 100.7) cm2 for consolidation and 69.0 (36.4,
127.2) cm2 for pneumothorax. Among the 300 consolidation
cases, 78 (26.0%) had more than one lesion annotated, and
among the 250 pneumothorax cases, 20 (8.0%) had more than
one lesion annotated.
For consolidation, the CAD achieved image-level AUROC (95%

CI) of 0.960 (0.945, 0.975), sensitivity of 0.933 (0.899, 0.959), and
specificity of 0.948 (0.930, 0.963) (Table 2). At the lesion-level,
sensitivity (95% CI) was 0.912 (0.879, 0.938), and about one false
positive lesion per every ten cases (0.104; 109/1050) was found.
Dice (interquartile range) was scored at 0.691 (0.664, 0.718). For
pneumothorax, the CAD achieved image-level AUC (95% CI) of
0.978 (0.965, 0.991), sensitivity of 0.956 (0.923, 0.978), and
specificity of 0.996 (0.989, 0.999). At the lesion-level, sensitivity
(95% CI) was 0.941 (0.906, 0.966), and about one false positive

Table 1. Sample characteristics for the two trials by data sources and
abnormalities.

The CAD stand-alone trial

Total BMC PNUH

Total

N 1050 500 550

Age 48.4 (15.4) 48.9 (14.5) 47.9 (16.2)

Male 702 (66.9) 318 (63.6) 384 (69.8)

Lesion size
(cm2)

64.6 [33.1, 112.1] 63.0 [35.7, 108.2] 66.0 [32.4, 114.4]

More than
1 lesion

98 (17.8) 56 (22.4) 42 (14.0)

Pneumothorax

N 250 100 150

Age 37.6 (18.2) 41.6 (18.2) 35.0 (17.8)

Male 215 (86.0) 81 (81.0) 134 (89.3)

Lesion size
(cm2)

69.0 [36.4, 127.2] 49.1 [27.3, 103.1] 90.7 [40.7, 142.4]

More than
1 lesion

20 (8.0) 10 (10.0) 10 (6.7)

Consolidation

N 300 150 150

Age 57.1 (14.5) 53.0 (15.7) 61.2 (11.9)

Male 208 (69.3) 106 (70.7) 102 (68.0)

Lesion size (cm2) 60.7 [31.4, 100.7] 71.0 [41.0, 118.9] 46.7 [21.5, 90.3]

More than
1 lesion

78 (26.0) 46 (30.7) 32 (21.3)

Normal

N 500 250 250

Age 48.5 (10.1) 49.3 (10.5) 47.7 (9.7)

Male 279 (55.8) 131 (52.4) 148 (59.2)

The CAD impact trial

Total PadChest CheXpert

Total

N 461 429 32

Age 53.1 (18.7) 53.8 (18.6) 44.3 (18.1)

Male 258 (56.0) 233 (54.3) 25 (78.1)

Lesion size
(cm2)

107.38 [60.4, 180.8] 107.4 [57.2, 186.7] 105.5 [62.5, 156.9]

More than
1 lesion

83 (31.8) 80 (34.93) 3 (9.38)

Pneumothorax

N 61 29 32

Age 43.6 (18.0) 42.8 (18.3) 44.3 (18.1)

Male 45 (73.8) 20 (69.0) 25 (78.1)

Lesion size
(cm2)

95.11 [56.8, 154.4] 80.7 [54.6, 145.5] 105.5 [62.5, 156.9]

More than
1 lesion

4 (6.6) 1 (3.45) 3 (9.38)

Consolidation

N 200 –

Age 61.2 (17.7) –

Male 137 (68.5) –

Lesion size
(cm2)

113.6 [61.3, 198.4]

More than
1 lesion

79 (39.5)

Normal

N 200 –

Age 48.0 (16.6) –

Male 76 (38.0) –

CAD Computer-aided detection system, BMC Boramae Medical Center,
PNUH Pusan National University Hospital, N The number of cases.
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lesion per every fifty cases (0.020; 21/1050) was found. Dice
(interquartile range) was scored at 0.798 (0.770, 0.826).
After adjusting for age, sex, hospital, abnormality type, and the

number of annotated lesions per case, cases with larger lesions
were more likely to be correctly diagnosed by the CAD compared
to cases with smaller lesions at the image-level (OR [95% CI]= 1.11
[1.07, 1.16]; p < 0.001) (Table 3). The association was consistent at
the lesion-level (OR [95% CI]= 1.11 [1.07, 1.14]; p < 0.001).
As an increasingly stringent definition of accurate localization

was applied, sensitivity decreased accordingly at both image-level
and lesion-level (Fig. 1; Supplementary Table 1). At dice thresholds
of 0, 0.2, 0.4, 0.6, and 0.8, image-level sensitivities were 0.913,
0.897, 0.883, 0.803, 0.463 and lesion sensitivities were 0.912, 0.899,
0.855, 0.767, 0.482 for consolidation. At the same dice thresholds,
image-level sensitivities were 0.956, 0.956, 0.956, 0.936, 0.792, and
lesion-level sensitivities were 0.941, 0.934, 0.923, 0.886, 0.742 for
pneumothorax (Supplementary Figure 2 for examples of predic-
tions at the dice thresholds).
For consolidation, the calibration plot suggested overall

moderate calibration (Supplementary Fig. 3). Predicted probabil-
ities were slightly overestimated on average (calibration inter-
cept=−0.249) (Supplementary Table 2). Calibration error (95% CI)
was 0.021 (0.013, 0.033) on average and 0.130 (0.068, 0.206).
Recalibration in the large (i.e., updating intercept only) was
sufficient for recalibration. For pneumothorax, the calibration plot
shows moderate calibration, but logistic calibration estimation
suggested that the predicted probabilities were also overesti-
mated on average (calibration intercept=−0.584) and overfitted
(calibration slope= 0.736). Logistic recalibration (i.e., updating
both intercept and slope) was required to improve the calibration
performance.

The CAD impact trial
Among 5,432 radiographs collected for the impact trial, 461 were
included as an analytic sample after excluding cases that had
artifacts or were random-sampled out. No cases had operational
error with the CAD and had missing data in demographic and
clinical variables. The analytic sample consisted of 200 consolida-
tion cases, 61 pneumothorax cases, and 200 normal cases
(Table 1). For the consolidation cases, the pneumothorax cases,
and the normal cases, the mean age (standard deviation) was 61.2
(17.7), 43.6 (18.0), 48.0 (16.6), and the proportion of males was
68.5%, 73.8%, 38.0%, respectively.
The CAD assistance increased six readers’ pooled accuracy (95%

CI) from 0.952 (0.943, 0.959) to 0.967 (0.960, 0.974) for consolida-
tion (p= 0.001) and from 0.988 (0.983, 0.991) to 0.992 (0.988,
0.995) for pneumothorax (p= 0.044) (Table 4). Out of six readers,
the CAD assistance increased accuracies for both consolidation
and pneumothorax for four readers (i.e., the thoracic radiologist,
the respiratory specialist, radiology resident, and general practi-
tioner) (Fig. 2; Supplementary Table 3). For consolidation,
unassisted and assisted pooled sensitivities were 0.931 (0.915,
0.945) and 0.980 (0.970, 0.987), respectively (p < 0.001), and
unassisted and assisted pooled specificities were 0.967 (0.957,
0.976) and 0.958 (0.947, 0.967), respectively (p= 0.104). For
pneumothorax, unassisted and assisted pooled sensitivities were
0.943 (0.914, 0.964) and 0.956 (0.930, 0.975), respectively
(p= 0.278), and unassisted and assisted pooled specificities were
0.995 (0.991, 0.997) and 0.997 (0.994, 0.999), respectively
(p= 0.069).
After adjusting for age, sex, dataset, and abnormality type, the

odds of an accurate diagnosis with the CAD assistance were 1.73
times (95% CI= [1.30, 2.32]; p < 0.001) the odds of an accurate
diagnosis without the CAD assistance (Table 5), suggesting that
the CAD was able to improve clinicians’ diagnostic performances
on average. Readers’ diagnostic performances were improved by a
large magnitude when the CAD prediction was correct (OR [95%Ta
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CI]= 4.84 [3.13, 7.49]; p < 0.001). The CAD corrected 69.39 percent
(102/147) of all cases where readers alone incorrectly diagnosed
(Table 6). The CAD corrected 20 cases among 43 false positives
(46.51%) and 82 cases among 104 false negatives (78.85%).
Among the unassisted false negatives, the average dice was 0.602
for those corrected and 0.366 for those not affected (d [95%
CI]= 0.236 [0.030, 0.442], p= 0.029). Incorrect CAD predictions
worsened readers’ diagnostic performances (OR [95% CI]= 0.29
[0.17, 0.52]; p < 0.001) (Table 5); but only 1.64 percent (43/2619) of
all cases for which readers alone correctly diagnosed was
misguided by the CAD (Table 6). The CAD misguided 6 cases

among 1462 true positives (0.41%) and 37 cases among 1157 true
negatives (3.20%).

DISCUSSION
In a series of the two trials, we validated the stand-alone
diagnostic performances of the CAD for consolidation and
pneumothorax, and estimated the causal effect of the CAD
assistance on clinicians’ diagnostic performances. In the multi-
center, stand-alone trial, the CAD had high AUROC, sensitivity,
specificity, moderate calibration at the image-level, and high

Table 3. Logistic regression results (image-level) and mixed effects logistic regression results (lesion-level) for associations between lesion
characteristics and diagnostic accuracy of the CAD.

Image-level Lesion-level

OR (95% CI) p-value OR (95% CI) p-value

Intercept 2.26 (0.33, 16.87) 0.414 2.22 (0.08, 2.72) 0.387

Age 0.98 (0.96, 1.01) 0.267 0.99 (0.99. 1.04) 0.201

Female (vs. male) 0.85 (0.34, 2.23) 0.732 0.83 (0.59, 2.41) 0.619

PNUH (vs. BMC) 0.60 (0.23, 1.50) 0.282 0.82 (0.61, 2.45) 0.586

Pneumothorax (vs. consolidation) 0.84 (0.30, 2.37) 0.736 1.22 (0.39, 1.78) 0.626

More than 1 lesion (vs. a single lesion) 0.55 (0.10, 4.33) 0.513 – –

Lesion size (cm2) 1.11 (1.07, 1.16) < 0.001 1.11 (1.07, 1.14) < 0.001

CAD Computer-aided detection system, OR Odds ratio, CI Confidence interval, PNUH Pusan National University Hospital, BMC Boramae Medical Center.

Fig. 1 CAD sensitivities by varying dice thresholds in the stand-alone trial. Sensitivities are presented at a the image-level and at b the
lesion-level. The 95% confidence intervals are drawn as error bars at each point. The black dashed line indicates the minimum threshold of
clinical relevance (i.e., dice= 0.2). Raw values are presented in Supplementary Table 1. CAD Computer-aided detection system.
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sensitivity at the lesion-level in the temporal and external
validation datasets. Expectedly, the diagnostic performances
decreased as we set the threshold for accurate localization more
stringently but remained sufficiently high at thresholds well over
the minimum level of clinically relevant localization for consolida-
tion and pneumothorax (i.e., dice of 0.2 set by K-MFDS). Using the
CAD, the clinicians were able to, on average, improve their
diagnostic performances for both consolidation and pneu-
mothorax, although the effect varied substantially by clinical
backgrounds.
In temporal and external validation, image-level and lesion-level

diagnostic performances of the CAD were higher than previously
reported performances of clinicians5–10 and comparable to other
deep-learning-based algorithms and commercially available CADs

in a range of metrics including AUROC, sensitivity, and specifi-
city21. Previous published studies on commercial CADs often
evaluated their diagnostic performances for consolidation-related
diseases23,27 or pneumothorax51 separately (e.g., pneumothorax
vs. non-pneumothorax). Or when targeting multiple types of
abnormalities, diagnostic ability for the presence of any abnorm-
ality (i.e., abnormal vs. normal), rather than a specific type, was
assessed42,43. The CAD used in the current trials achieved high
diagnostic performances for both consolidation and pneu-
mothorax simultaneously in one setting.
Previous evidence on CADs has not transparently defined what

counted as accurate localization. To gain trust as an interpretable
CAD, the CAD should offer not only correct classification, but also
clinically interpretable localization34. We showed that CAD

Table 4. Pooled accuracy, sensitivity, and specificity of six readers with and without the CAD assistance.

Consolidation Pneumothorax

Without CAD assistance With CAD assistance p-value Without CAD assistance With CAD assistance p-value

Accuracy (95% CI) 0.952 (0.943, 0.959) 0.967 (0.960, 0.974) 0.001 0.988 (0.983, 0.991) 0.992 (0.988, 0.995) 0.044

Sensitivity (95% CI) 0.931 (0.915, 0.945) 0.980 (0.970, 0.987) < 0.001 0.943 (0.914, 0.964) 0.956 (0.930, 0.975) 0.278

Specificity (95% CI) 0.967 (0.957, 0.976) 0.958 (0.947, 0.967) 0.104 0.995 (0.991, 0.997) 0.997 (0.994, 0.999) 0.069

P-values are from the comparison between readers’ sensitivity (or specificity) with and without the CAD assistance.
CAD Computer-aided detection system, CI Confidence interval.

Fig. 2 Individual readers’ diagnostic accuracy with and without the CAD assistance in the impact trial. The accuracies are separately
presented for a consolidation and b pneumothorax. The red circle represents accuracy with the CAD assistance, and the blue circle represents
accuracy without the CAD assistance. The arrow indicates a directional change in the accuracy when the CAD was used. Raw values are
presented in Supplementary Table 3. CAD Computer-aided detection system, TR Thoracic radiologist, RS Respiratory specialist, NTR Non-
thoracic radiologist, NRS Non-respiratory specialist, RR Radiology resident, GP General practitioner.

S.Y. Lee et al.

5

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)   107 



diagnostic performances can vary widely depending on what is
accepted as accurate localization, warranting future studies to
assess and transparently report diagnostic performances that
accounted for localization accuracy. The present CAD achieved
localization accuracy comparable to previously reported clinicians’
localization accuracy52 and high diagnostic performances at and
beyond the clinically relevant localization threshold determined
by K-MFDS. While dice was used as a measure of localization
accuracy in this study, other metrics may be more suited for
manifestations without clear boundaries, such as diffuse interstitial
opacities. Even for consolidation, the CAD tended to clump
together separate lesions if they were diffuse and closely located
(Fig. 3a). Such CAD prediction may be sufficient as a diagnostic
aid, but dice penalizes it. Based on a clinically appropriate
standard, localization accuracy of CADs should be routinely
assessed as inaccurate lesion localization may lead to automation
bias36, or worse, correct classification through localization of
confounders would erode trust in CAD predictions53,54.
Calibration was found to be moderate according to the

calibration plots, but the estimation of calibration intercept and
slope suggested slight indications of overestimation and over-
fitting, especially for pneumothorax. Simple recalibration by
updating intercept and slope seems to improve performances
and should be performed before the clinical implementation of
the CAD55,56.

The CAD detected lesions larger in size better than smaller
lesions, which is an expected (human-like) behavior and
consistent with reports on other CADs for CXRs17,51,52. The
diagnostic ability for small lesions needs improvement because,
unlike abnormalities like pleural effusion, small lesions of
consolidation or pneumothorax need to be detected as these
abnormalities can urgently need clinical attention. For example, if
small consolidation is missed in a CXR of a patient presenting
fever and cough, they may be erroneously diagnosed as the
common cold. An assistance from the CAD localizing consolida-
tion would help physicians appropriately diagnose pneumonia
and prescribe antibiotics. The CAD accurately detecting small
amount of pneumothorax on a CXR of a patient presenting cough
and chest pain would properly guide physicians for chest tube
insertion. In addition, for a small number of cases, the CAD falsely
identified dense bone structures such as the intersection of the rib
and clavicle or sternum as consolidation (Fig. 3b). Future
development of the CAD should aim to eliminate such error.
When the clinicians with various backgrounds were assisted by

the CAD, their diagnostic performances improved on average,
demonstrating the potential clinical impact of the CAD. The overall
effect may have been smaller in magnitude for pneumothorax
compared to consolidation because the pneumothorax cases from
the open datasets appeared to be easier than those encountered
in certain clinical settings, such as emergency depart-
ments5,7,42,57,58; the diagnostic metrics have upper bounds of 1.
Importantly, the CAD effects varied substantially by the clinicians’
expertise. The performance gain for the general practitioner was
apparent for both consolidation and pneumothorax. For the
radiology resident, the thoracic radiologist, and the respiratory
specialist, the effects were larger for pneumothorax, while for non-
pulmonary specialists, the effects were mixed. The benefits of the
CAD use may be maximized in lower-resource settings like
community health centers or primary care facilities, where trainee-
level or non-radiology clinicians often have responsibilities for
reading CXRs due to lack of radiologists, or emergency depart-
ments where the burden of diagnostic tasks on pulmonary or
respiratory specialists is heavy. Nonetheless, better understanding
of a source of heterogeneity in the clinician-specific effects is
crucial because not only radiologists, but also other clinicians in
primary care, internal medicine, or emergency departments may
be potential users of the CAD.
One important observation from the impact trial is that the

majority of the CAD effect was from correcting false negatives to
true positives, which is reflected in the CAD-induced increase in
pooled sensitivity for consolidation. Considering that generally
reported sensitivities of clinicians for consolidation and pneu-
mothorax are much lower than those observed for the open
datasets used in the impact trial5–10, more false negatives are

Table 5. Mixed effects logistic regression results for the causal effect of CAD assistance on readers’ diagnostic accuracy.

Overall CAD correct CAD incorrect

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

Intercept 84.18 (32.67, 216.91) < 0.001 85.79 (30.41, 242.05) < 0.001 85.00 (9.92, 728.35) < 0.001

Age 1.00 (0.98, 1.01) 0.548 1.00 (0.99, 1.01) 0.951 0.99 (0.96, 1.02) 0.417

Female (vs. male) 0.79 (0.56, 1.37) 0.349 1.14 (0.67, 1.94) 0.627 0.77 (0.28, 2.09) 0.611

CheXpert (vs. PadChest) 1.40 (0.38, 5.13) 0.608 0.56 (0.13, 2.40) 0.439 2.78 (0.08, 93.14) 0.569

Consolidation (vs. normal) 0.89 (0.52, 1.53) 0.670 0.37 (0.20, 0.69) 0.002 0.67 (0.10, 4.48) 0.677

Pneumothorax (vs. normal) 0.77 (0.28, 2.10) 0.609 1.13 (0.33, 3.91) 0.847 0.04 (0.01, 0.30) 0.001

CAD assistance 1.73 (1.30, 2.32) < 0.001 4.84 (3.13, 7.49) < 0.001 0.29 (0.17, 0.52) < 0.001

CAD Computer-aided detection system, OR Odds ratio, CI Confidence interval

Table 6. Details of the CAD effects.

Values

Distributions

Corrected cases when assisted / incorrect cases
when unassisted (%)

102/147 (69.39)

(FP to TN)/FP (%) 20/43 (46.51)

(FN to TP)/FN (%) 82/104 (78.85)

Misguided cases when assisted / originally correct
cases when unassisted (%)

43/2619 (1.64)

(TP to FN)/TP (%) 6/1462 (0.41)

(TN to FP)/TN (%) 37/1157 (3.20)

Dice

FN corrected (FN to TP) 0.602

FN not affected (FN to FN) 0.366

Difference (95% CI) 0.236 (0.030, 0.442)

CAD Computer-aided detection system, FP False positive, TN True negative,
FN False negative, TP True positive, CI Confidence interval.
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expected in many clinical settings, and potential benefits of using
the CAD may be larger. The CAD may be particularly beneficial in
screening settings to detect consolidation-presenting diseases
such as tuberculosis and pneumonia as they require prompt
evaluation and action. Moreover, the localization accuracy of the
CAD predictions was higher for the false negatives where the CAD
corrected the clinicians’ diagnoses compared to those not affected
by the CAD, suggesting that localization accuracy is an important
component of the CAD effect on clinicians’ decisions. Another
important observation is that while correct CAD predictions had a
large positive effect on clinicians’ diagnostic performances,
incorrect CAD predictions had a negative effect. In spite of that,
only 1.64 percent of correctly diagnosed cases at first were
misguided by the CAD, whereas 69.39 percent of incorrectly
diagnosed cases at first were corrected by the CAD, indicating that
overall, the negative effect was small. However, if the level of
diagnostic difficulty was higher in the target population, the CAD
stand-alone performance may be lower, and in turn, the assistance
effect would be lower. Nonetheless, the magnitude of the CAD
effect observed in the study suggests that the effect may
withstand such bias.
The unintended consequence of incorrect CAD predictions is

expected from any CAD, including the present one, due to
automation bias and is probably hard to avoid as long as there is
at least one incorrect CAD prediction. Such bias is a reflection
more of a human tendency in interpreting any CAD’s decisions
rather than mere idiosyncratic characteristics of a specific CAD.
Interestingly, a study on a CAD for a different disease using a
different modality found the effects of similar magnitudes on the
subset of cases with correct or incorrect CAD predictions,
suggesting that human may react similarly to automated decisions
across various types of CADs59. Therefore, one primary aim should
be to minimize the total number of incorrect CAD predictions.
Another aim could be to amplify the positive effect for cases with
correct predictions and to diminish the negative effect for cases
with incorrect predictions. One approach is to find optimal CAD
outputs and a graphical user interface for the ideal causative
mechanism of the CAD effect. For example, rather than simple
classification of abnormalities, well-calibrated predicted probabil-
ity outputs can help clinicians interpret the CAD assistance; CAD
predictions with high probability would increase the positive CAD
effect and CAD predictions with low probability would mitigate
the negative CAD effect.

Our findings have some potential limitations. First, data for both
trials were retrospectively collected. While a more rigorous
investigation on clinical effectiveness of the CAD requires a
prospective trial, such trial may bring risks on patients and require
high cost depending on the trial design, and therefore, demands
sufficient evidence on utility and safety before being conducted.
We believe the stand-alone trial supervised by the regulatory
agency and the pilot impact trial now established enough
evidence from retrospective data for the CAD to be tested in a
prospective trial. Second, the diagnostic performances and the
causal effect of the CAD may have limited generalizability. The
CAD is currently approved for use in South Korea, and additional
studies with data from different populations are needed before
using in other countries. It is also possible that diagnostic
performances vary within South Korea depending on geographi-
cal regions or clinical settings. To increase representativeness, in
the stand-alone trial, we included patients from two sources, one
large hospital in northern South Korea and the other large hospital
in southern South Korea, and in the impact trial, we included data
from Spain and the USA. Third, the impact trial utilized the two
open datasets. It did not use the stand-alone trial data because it
was planned after the stand-alone trial, and the CAD was only
recently approved. Nevertheless, both datasets come from reliable
sources and have information on demographic variables which
are essential in understanding the sample. Fourth, only six
clinicians participated in the impact trial, and results may have
been different if more clinicians were included. While six is not a
small number compared to previous studies40,57, it certainly
cannot reliably represent potential users of the CAD. We
attempted to increase representativeness by recruiting clinicians
of various backgrounds including pulmonary specialists, non-
pulmonary specialists, and trainee-level clinicians. Fifth, despite
the washout period and random ordering of CXRs, recall bias may
not have been eliminated completely. We believe that the bias
was trivial as the minimum of two-week-long washout period was
chosen based on clinical experiences, a sheer number of CXRs to
be read, the length adopted in previous studies on CXRs37,60, and
a guideline on diagnostic validation studies (though not on
CXRs)61. Furthermore, if a washout period is too long, a period
effect may take place, especially in a sequential design used in the
impact trial (e.g., gaining experiences or changes in diagnostic
criteria over time). Last, the sequential design itself may be prone
to recall bias, although we believe the bias is negligible as

Fig. 3 Examples of CAD predictions on chest radiographs. a Closely located and diffuse lesions are predicted as a single large lesion, and
b dense bone structures such as the intersection of the rib and clavicle or sternum were falsely identified as consolidation. CAD Computer-
aided detection system.
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explained above, and several recent studies have adopted the
sequential design24,57. A crossover design, in which images are
first randomized to two reading sessions then switch after a time
interval (“crossover”), is the other common design that reduces
recall bias and a period effect, but it does not reflect a clinical
practice (i.e., reading half CXRs alone and the other half with CAD
assistance).
In two trials, we temporally and externally validated the deep-

learning-based CAD for consolidation and pneumothorax by
assessing localization-adjusted, stand-alone diagnostic perfor-
mances and found the beneficial causal effect of the CAD
assistance on clinicians’ diagnostic performances. The CAD had
high diagnostic performances for consolidation and pneu-
mothorax. Localization accuracy was well over the minimum
threshold of clinical relevance, and the diagnostic performances
remained high at this threshold when localization accuracy was
accounted. The CAD, on average, had positive impacts on
radiological judgment on diagnosing consolidation and pneu-
mothorax, but the impacts varied widely depending on readers’
clinical backgrounds. Besides, when the CAD was able to correct
the clinicians’ diagnoses, the localization accuracy was higher
compared to when the CAD was not able to affect clinicians’
diagnoses. Assessment of location-adjusted diagnostic perfor-
mances should be a routine practice when evaluating CADs
developed to detect abnormalities in medical images. For the
present CAD, the impact on treatment strategies and ultimately
patient outcomes of the CAD should be assessed, moving beyond
the diagnosis impact.

METHODS
The CAD stand-alone trial was a multi-center clinical trial conducted as part
of a regulatory approval process for the CAD at the Ministry of Food and
Drug Safety in the Republic of Korea (K-MFDS; approved product number:
21-841). The stand-alone trial was approved by the institutional review
boards (IRB) of Seoul Metropolitan Government Seoul National University
Boramae Medical Center (BMC; IRB number: 10-2020-266) and Pusan
National University Hospital (PNUH; IRB number: 2011-016-097). The CAD
impact trial was a pilot trial conducted to establish preliminary evidence on
diagnostic impact, shortly after the K-MFDS approval of the CAD was
granted. The impact trial utilized de-identified, publicly available datasets
and did not require an IRB review. As the two trials were designed and
carried out separately, and used different datasets and analytic
approaches, the methodological details are described separately as below.
Details of the present study are reported according to the following
reporting guidelines: CONSORT with its AI extension62–64, STARD65,66, and
CLAIM47. All data analyses for the two trials were performed in R 4.0.367.

Computer-aided detection system
The CAD used in the two trials was DEEP:CHEST-XR-03 (version 1.0, Deepnoid,
Inc., Seoul, South Korea), a deep-learning-based artificial intelligence software
device. With the stand-alone trial results reported in this study, the CAD
obtained a regulatory approval for medical use. The CAD was designed to
assist physicians in detecting abnormalities (consolidation and pneu-
mothorax) in CXRs of individuals aged between 19 and 73. It takes a DICOM
(Digital Imaging and Communications in Medicine) file of a CXR as an input
and outputs a predicted probability and a contour around the suspected
abnormality lesion (Supplementary Figure 4). It was developed by training
approximately 454,000 CXRs from multiple institutions across multiple
countries. More details on the device can be found on the official CAD
website (www.deepnoid.com/deep-chest).

The CAD stand-alone trial
For the stand-alone trial, samples were retrospectively collected from BMC
(temporal validation) and PNUH (external validation), two university-
affiliated research hospitals in the Republic of Korea. We planned to collect
a total of 1,050 samples unused in the CAD development, of which 500
were normal cases, 300 were consolidation cases, and 250 were
pneumothorax cases. The sample size was calculated with the binomial
exact method to allow 80% power at the 5% significance level to precisely

estimate the diagnostic performance of the CAD with the expected
performances obtained from internal validations during the CAD devel-
opment process68,69. BMC patients were selected from January 1st, 2019 to
April 30th, 2021, whereas PNUH patients were sampled from January 1st,
2017 to April 30th, 2021. The sampling period was chosen by participating
radiologists of each hospital based on the availability of predefined sample
size at each hospital. Sampling procedures at the two participating
hospitals followed the same guidelines but were conducted independently
at each hospital. First, at each hospital, one radiologist reviewed the
hospital database to extract patients who were aged between 18 and 74,
underwent posteroanterior chest radiography, and were tagged with
normal, pneumothorax, or consolidation-related abnormalities. Second,
radiographs were sampled in a computer-generated random order and
examined to exclude 1) radiographs with artifacts (e.g., central venous
catheter, wires from sternotomy or thoracotomy), 2) duplicate radiographs,
and 3) radiographs with incorrect patient information in the DICOM files.
Third, when the predefined sample size was reached, remaining samples
were excluded to prevent unnecessary use of patient data and ensure
manageable workloads for participating clinicians.
A total of four radiologists, two per hospital, reviewed CXRs to ensure

that the initial diagnoses extracted from the hospital database were
correct. Using a web-based medical image annotation software70, each
radiologist independently labelled, or classified abnormalities for, each
radiograph as normal, consolidation, or pneumothorax and annotated, or
localized, the region of abnormalities with a freehand drawing tool. If the
two radiologists’ labels were discordant, they reached consensus by
rereading the CXRs or reviewing CT scans, if available. For localization, all
images were adjusted in consensus, using annotations from the
radiologist with more years of experience as the base. Consensus reading
is a common method of establishing reference standards for abnorm-
alities in CXRs because CT scans cannot be obtained for the retrospective
data, and limiting the study population to patients with CT scans reduces
generalizability.
A clinical research coordinator at each hospital, blinded to the reference

standards, operated the CAD after being trained with a user manual. After
the included radiographs were randomly shuffled, the CAD analyzed each
radiograph.
Data on patients’ age and biological sex were collected from the hospital

database. Lesion size and the number of lesions per case were calculated
from the annotations of the reference standards to quantify clinical
characteristics of each radiograph.
Sample characteristics were described for the total sample, by data

sources, and by abnormality types. Discrimination was measured by
abnormality type at the image-level and the lesion-level. For image-level
performance, the area under the receiver operating characteristic curve
(AUROC), image-level sensitivity and specificity were estimated. For the
lesion-level performance, lesion-level sensitivity, and the mean number of
false positive lesions per image were estimated. Lesion-level specificity
could not be considered as the total number of non-lesion areas did not
exist. Probability thresholds for sensitivity and specificity were prespecified
based on internal validation results (consolidation: 0.40; pneumothorax:
0.70). As a metric of model interpretability, localization accuracy was
measured by dice similarity coefficient71, an overlap-based index
commonly used in medical image segmentation studies72,73. Dice was
chosen as most consolidation and pneumothorax cases had visible
boundaries on CXRs. Subgroup analyses were performed by hospitals to
explore potential heterogeneity in the discrimination performance.
Calibration performance was visualized in calibration plots and measured
by calibration intercept, calibration slope, maximum calibration error, and
average calibration error with 95% confidence intervals based on 500
bootstrap samples. Two recalibration methods were explored: 1) updating
the intercept only (i.e., recalibration in the large) and 2) updating the
intercept and slope (i.e., logistic recalibration)74.
In addition, associations between lesion characteristics and accuracy of

the CAD were assessed while adjusting for demographic variables (i.e., sex,
age, hospital) and abnormality type. At the image-level, a logistic
regression was fitted to regress a binary indicator for an accurate
prediction on the number of lesions per case and the lesion size. At the
lesion-level, a mixed effects logistic regression was fitted to regress a
binary indicator for an accurate prediction on the lesion size with images
specified as random effects, adjusting for clustering at the image-level (i.e.,
a two-level random intercept model). Although a guideline for pneu-
mothorax size calculation suggests a binary classification for simple
application in clinical settings17,75, calculating lesion size on a continuous
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scale is simple with a computerized algorithm, and avoiding unnecessary
dichotomization would be more methodologically appropriate76.
While dice of 0.2 was confirmed by K-MFDS as a minimum level of

clinically relevant localization (i.e., localizations with lower dice lack
clinical usefulness), image-level sensitivity and lesion-level sensitivity
were estimated in a range of dice thresholds to check whether diagnostic
performances were robust to various definitions of accurate localizations.
Only predictions that exceeded each dice threshold were considered
accurate predictions. Unlike sensitivities, specificities could not be
considered because dice calculation required a reference standard lesion
annotation (i.e., radiographs without abnormalities did not have lesions
to annotate).

The CAD impact trial
For the impact trial, CXRs were collected from two commonly used open
datasets with reliable data sources and demographic information,
PadChest77 and CheXpert78. The PadChest dataset consists of all available
CXRs at the Hospital Universitario de San Juan, Alicante, Spain from
January 2009 to December 2017. The CheXpert consists of CXRs performed
between October 2002 and July 2017 in both inpatient and outpatient
centers from Stanford Hospital, USA. PadChest was used first to collect
CXRs, and CheXpert was added later exclusively to reach the sufficient
number of pneumothorax cases. A total of 461 radiographs consisted of
200 normal cases, 200 consolidation cases, and 61 pneumothorax cases.
Two radiologists with 15 years of experience, who did not participate in
reading sessions, selected radiographs in a computer-generated random
order. If publicly available classifications of radiographs were discordant
with the radiologists’ classifications, they were excluded. Radiographs with
artifacts were also excluded.
Consensus reading was adopted as in the stand-alone trial. The two

radiologists who selected radiographs from the open datasets indepen-
dently labelled the radiographs and reviewed once again to reach
consensus for the radiographs with discordant pairs of labels.
For the impact trial, six readers (thoracic radiologist, respiratory

specialist, non-thoracic radiologist, non-respiratory specialist, radiology
resident, general practitioner) with years of experience (mean= 6.5,
range= [1, 12]) were included to cover a wide spectrum of potential
users of the CAD. They completed two reading sessions, one without and
the other with the CAD assistance, with an interval of two- to four-week-
long for each reader. The minimum of a two-week-long interval was
determined by the readers as the length long enough to remove recall bias
between two sessions. The order of radiographs was randomly shuffled for
each reader and each session. At both unassisted and assisted reading
sessions, the readers were requested to classify radiographs into
consolidation, pneumothorax, or normal cases with no information other
than the images. The AiCRO system, a clinical trial image management
software, was utilized for viewing the radiographs79.
Data on age and biological sex were available in the open datasets.

Lesion size and the number of lesions per case were calculated from
the radiologists’ annotations to quantify clinical characteristics of each
radiograph.
Sample characteristics were described for the total sample, by data

sources, and by abnormality types. Pooled accuracy, sensitivity, and
specificity of the six readers were compared across the unassisted and
assisted reading sessions by performing a mixed-effects logistic regression
with radiographs and readers specified as random effects (i.e., a three-level
random intercept model). Another mixed-effects logistic regression was
performed to estimate the causal effect of CAD assistance on the six
readers’ pooled accuracy while adjusting for age, sex, dataset, and
abnormality type. The equivalent regression was also separately fitted to
the subset of cases for which the CAD prediction was correct and the
subset of cases for which the CAD prediction was incorrect to examine the
effect of CAD assistance in each subset. The distribution of cases
influenced by correct CAD predictions was described as those corrected
from false positives to true negatives and from false negatives to true
positives. The relationship between localization accuracy of CAD predic-
tions and the CAD effect was assessed by comparing dice coefficients for
the false negatives that were corrected by the CAD and the false positives
that were not affected by the CAD. For incorrect CAD predictions,
distribution of cases influenced was described as those misguided from
true positives to false negatives and from true negatives to false positives.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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