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Improving the repeatability of deep learning models with
Monte Carlo dropout
Andreanne Lemay1,2, Katharina Hoebel 1,3, Christopher P. Bridge1,4, Brian Befano5, Silvia De Sanjosé6, Didem Egemen6,
Ana Cecilia Rodriguez 6, Mark Schiffman6, John Peter Campbell 7 and Jayashree Kalpathy-Cramer 1✉

The integration of artificial intelligence into clinical workflows requires reliable and robust models. Repeatability is a key attribute of
model robustness. Ideal repeatable models output predictions without variation during independent tests carried out under similar
conditions. However, slight variations, though not ideal, may be unavoidable and acceptable in practice. During model
development and evaluation, much attention is given to classification performance while model repeatability is rarely assessed,
leading to the development of models that are unusable in clinical practice. In this work, we evaluate the repeatability of four
model types (binary classification, multi-class classification, ordinal classification, and regression) on images that were acquired from
the same patient during the same visit. We study the each model’s performance on four medical image classification tasks from
public and private datasets: knee osteoarthritis, cervical cancer screening, breast density estimation, and retinopathy of prematurity.
Repeatability is measured and compared on ResNet and DenseNet architectures. Moreover, we assess the impact of sampling
Monte Carlo dropout predictions at test time on classification performance and repeatability. Leveraging Monte Carlo predictions
significantly increases repeatability, in particular at the class boundaries, for all tasks on the binary, multi-class, and ordinal models
leading to an average reduction of the 95% limits of agreement by 16% points and of the class disagreement rate by 7% points. The
classification accuracy improves in most settings along with the repeatability. Our results suggest that beyond about 20 Monte
Carlo iterations, there is no further gain in repeatability. In addition to the higher test-retest agreement, Monte Carlo predictions are
better calibrated which leads to output probabilities reflecting more accurately the true likelihood of being correctly classified.
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INTRODUCTION
Deep learning is a popular technology to achieve high perfor-
mance for medical image analysis tasks. In the desire to achieve
higher classification performance, important aspects of the model
performance, such as test-retest variability remain overlooked, yet
not all deep learning (DL) models are equal with respect to their
repeatability. Consistency in the prediction of models is of utmost
importance for such models to prove their potential as reliable
and safe clinical support. However, DL models face substantial
repeatability issues1,2. Empirically, minor changes in an image can
lead to vastly different predictions by DL models. In clinical
practice, this repeatability issue could lead to dangerous medical
errors. Figure 1 illustrates this issue. Two cervical cancer screening
images from the same precancerous cervix that were taken during
the same visit led to completely different predictions. A binary DL
model (without dropout layers) trained to distinguish between a
normal cervix and one with a precancerous lesion (0: Normal, 1:
Pre-cancer) predicted a normal cervix on one image and classified
the second image as precancerous. This difference is represented
by prediction results at each extreme of the spectrum, i.e., 0.01
and 0.98, suggesting high certainty for both outputs.
Dropout is the process of randomly removing units from a

neural network during training to regularize learning and avoid
overfitting3,4. For inference, dropout is usually disabled to
leverage all the connections from the model. Gal et al.5 proposed
to enable dropout at test time as a Bayesian approximation to
sample multiple different predictions. From these Monte Carlo

(MC) predictions, it is possible to derive uncertainty metrics that
are indicative of model performance6 which has already been
explored for multiple medical image classification tasks7–9. The
final prediction is usually generated by taking the average
overall MC predictions. We will refer to these models utilizing
dropout as MC models.
Repeatability describes the variation between independent

tests taken under the same conditions. In this work, we focus on
repeatability of a single model using different images of the same
anatomical region from the same patient taken the same day. For
the public knee osteoarthritis dataset, only one image per knee for
a given time point was available, hence, a second image was
generated using minor data augmentation. To the best of our
knowledge, few studies focus on methodologies to increase
repeatability. However, some work notes the importance of
repeatability for medical image analysis by assessing the test-
retest reliability of their classification or segmentation mod-
els2,10–15. Kim et al.2 evaluated the test-retest variability for disease
classification on chest radiographs and obtained limits of
agreement (LoA) of ± 30% indicating variability within the test-
retest predictions. Various post-processing techniques such as
blurring or sharpening, which could naturally occur in real-life
settings and alter the appearance of images, caused higher test-
retest variability compared to positional changes. Multiple other
factors have been shown to impact repeatability such as inter-
rater variability in the labels, image quality, noise, or model
uncertainty due to lack of knowledge and limited number of
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images, i.e., epistemic uncertainty2,16. For instance, images leading
to high inter-rater variability among experts are likely to generate
similar variability, especially at class boundaries17, since the model
was trained based on the ratings of these experts. While some of
these factors leading to low repeatability cannot be eliminated in
practice (e.g., inter-rater variability), reliable DL models should be
robust to minor changes in position, lighting, focus, etc.
Calibrated models will output probabilities reflecting the

probability of the observed outcome (e.g., all the predictions of
0.9 from a perfectly calibrated model should have the positive
class as ground truth 90% of the time). Good calibration allows
robust rejection of low probability predictions as output
probabilities represent more truthfully the likelihood of being
wrong. Modern neural networks are poorly calibrated due to the
recent neural network advances in architecture and training18.
Multiple works have focused on developing methods for post-hoc
calibration of models18–20 usually taking the validation set to
adjust the test prediction. However, having an inherently more
calibrated output could mitigate the need for prediction re-
calibration. Brier score is a common metric to assess calibration as
it indicates how close the predicted probabilities are to the true
likelihood. A Brier score of 0 indicates perfect calibration.
Repeatability is an important and required characteristic of

medial image analysis tools as it reflects the ability of the model to
repeatedly generate a certain classification performance. More
repeatable models with the same accuracy provide smaller
variability in accuracy for a single measurement per patient.
Hence, repeatable models generate more consistent classification
performance leading to less variability.
While most works describing the development of DL models for

medical image classification focus on accuracy and classification
performance21–23, very few assess the repeatability of these
models. This study proposes Monte Carlo (MC) dropout at test
time as a method to improve repeatability and systematically
assess this approach on different tasks, model types, and network
architectures. All the selected medical tasks have an underlying
continuous scale of disease severity but are routinely binned into
binary or ordinal classes to simplify treatment decisions and
ratings. Although specifically training networks to assess disease
severity might be a preferred approach24–26, this is rarely done in
practice27–29. The methodology and analysis were chosen based
on the consideration that the underlying variable of interest, i.e.,
disease severity, of these medical tasks is better represented by a
spectrum rather than clear distinct categories. In this work, we
evaluate the model repeatability of four types of DL models,
binary classification, multiclass classification, ordinal classification,

and regression, each with and without MC dropout. We test the
repeatability of these models’ predictions on four different
medical image classification tasks: knee osteoarthritis grading,
cervical cancer screening, breast density estimation, and retino-
pathy of prematurity (ROP) disease severity grading. True test-
retest scenarios are studied with private datasets containing
multiple images per patient for a given time point and anatomical
region. Few public datasets exist with multiple images from the
same anatomical region taken during the same visit. As we
acknowledge the importance of reproducibility in research, a
fourth dataset that is publicly available, the Multicenter Osteoar-
thritis Study, was added to the study and a second image per
patient was generated by applying simple data augmentation to
the original image, i.e., horizontal flip, to simulate test-retest
reliability. Based on our results, we present recommendations for
model choices that can lead to improved repeatability. Finally, we
assess the calibration of regular models compared to MC models.

RESULTS
Repeatability and classification performance
The repeatability of each model was assessed on all available
images of the same patient during the same visit. MC dropout
models were associated with increased repeatability and accuracy
for all models and tasks excluding regression models (Table 1 and
Fig. 2). Bland-Altman plots for all the tasks and model types are
summarized in Fig. 2. An alternative way to compare the severity
score from the test and retest images is presented in Supple-
mentary Information. Ideally, all cases would lie near a horizontal
line crossing the y-axis at 0 which means the difference between
test-retest scores is low. For every task, the MC models showed
better test-retest reliability than their conventional counterparts
with the exception of the regression models. This is illustrated by
the narrower 95% LoA and the highest concentration of
differences near 0 on the y-axis. Model outputs exhibit higher
differences near class boundaries. However, this effect is
attenuated for MC models and almost absent for regression
models. The range of predicted values remained similar for MC
models, indicating that the effect of the MC model is not simply
regressing scores towards the mean. Moreover, the increase in
repeatability was in most cases associated with an improvement
in classification performance (Table 1).
Repeatability and classification metrics for each approach can

be found in Table 1. Repeatability of MC models for binary, multi-
class, and ordinal models showed statistically significant improve-
ments on at least one metric for all tasks. On average, across all

Fig. 1 Illustration of repeatability issues from deep learning models on different images of a cervix with precancerous lesions from the
same patient taken the same day. A binary model without dropout layers generated the following outputs. (a) Model prediction: 0.01
(Normal): The binary model predicts a normal cervix (severity score: 0.01). (b) Model prediction: 0.98 (Pre-cancer): The binary model predicts
pre-cancer (severity score: 0.98).
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tasks and classification models (i.e., excluding regression), the
disagreement rate improved by 7% points and the 95% limit of
the agreement by 16% points. Classification performance followed
the same trend as the repeatability and increased for all
classification MC models with the exception of the ROP task,
which was exposed to a domain shift (see Discussion). Figure 3
illustrates cases where multiclass models showed poor repeat-
ability while the MC multi-class was significantly more repeatable.

While there are minor differences between test and retest images,
we expect the model to be robust to changes in view, lighting, or
zoom, as the disease severity or breast density does not change
from one image to another. Adding MC iterations to regression
models did not lead to consistent improvement in classification or
repeatability performances. Regression models generally showed
better repeatability compared to the other multi-class models (i.e.,
n-class and ordinal).

Impact of number of MC iterations
Additionally, we evaluated the impact of increasing the number of
MC iterations at test time to compute the final prediction on
repeatability of MC models, i.e., 95% LoA, of multi-class models for
all tasks as illustrated in Fig. 4. This analysis was limited to the
multi-class models as they are the most commonly used for
medical classification tasks. All models suggest that training with
dropout, even without any MC iterations during testing, has better
test-retest performance than non-dropout models (Fig. 4).
Repeatability could be further improved by generating more MC
samples. After about 20 MC iterations, additional samples had
little to no impact on repeatability.

Architecture comparison
Figure 5 compares, for the same task (i.e., knee osteoarthritis
grading) and model type (i.e., multi-class), the DenseNet and
ResNet architectures with respect to repeatability. Regardless of
the model’s architecture, the behavior remains the same: the
test-retest variability is lower meaning repeatability is increased
when using multiple MC samples for the prediction. The
disagreement rate decreased of 9% and 15% points and the
LoA improved by 11% and 15% points for DenseNet and ResNet
architectures, respectively.

Calibration
Output probabilities are more calibrated for MC models than for
the regular models as depicted in Fig. 6. Brier scores associated
with MC models are lower for all tasks, i.e., average decrease of
0.031, and the calibration curves are closer to the identity line, i.e.,
the perfect calibration curve. Calibration curves of multi-class
model outputs were displayed for knee osteoarthritis, cervix and
breast density classification, while the binary models were chosen
for ROP as the impact of adding MC was greater for this task
compared with the multi-class models (see Table 1).

DISCUSSION
Our results demonstrate that MC dropout models lead to a
significant increase in repeatability, i.e., improvement of at least
one repeatability metric, while improving most classification
metrics for binary, multi-class, and ordinal models. Concretely,
this means higher class and score agreements between the test
and retest outputs. The repeatability increased regardless of the
disease imaged or the model architecture (DenseNet or ResNet).
However, MC iterations did not benefit all regression models and
even lowered classification performance for knee osteoarthritis
and ROP classification. Regression models showed higher repeat-
ability compared with non-MC multi-class and ordinal models, so
the potential gain was more modest. For the two datasets where
MC dropout did not improve repeatability on the regression
model, i.e., cervical and ROP datasets, the highest repeatability
was already reached by the regression model. Hence, in these
cases, the models might have reached a limit in repeatability
where MC dropout is of no extra help. While the lowest test-retest
variability was reached for the regression model on the knee and
cervical images, the model was associated with a lower quadratic
κ and/or accuracy. Both accuracy and repeatability need to be

Table 1. Model performance overview (MEAN ± 95% CI)a.

Repeatability metrics Classification metrics

Model Disag. rate ↓ 95% LoA ↓ κ ↑ Acc. ↑

Knee osteoarthritis classification

Binary 0.05 ± 0.01 0.27 ± 0.02 0.87 ± 0.01 0.95 ± 0.00

MC Bin. 0.02 ± 0.00 0.11 ± 0.01 0.89 ± 0.01 0.95 ± 0.00

5-class 0.25 ± 0.01 0.22 ± 0.01 0.88 ± 0.01 0.69 ± 0.01

MC 5-cl. 0.10 ± 0.01 0.07 ± 0.00 0.91 ± 0.00 0.72 ± 0.01

Ord. 0.15 ± 0.01 0.19 ± 0.01 0.84 ± 0.01 0.54 ± 0.01

MC ord. 0.08 ± 0.01 0.07 ± 0.00 0.85 ± 0.01 0.56 ± 0.01

Reg. 0.19 ± 0.01 0.16 ± 0.00 0.90 ± 0.00 0.70 ± 0.01

MC Reg. 0.14 ± 0.01 0.07 ± 0.00 0.88 ± 0.00 0.61 ± 0.01

Cervical classification

Binary 0.23 ± 0.05 0.68 ± 0.07 0.46 ± 0.07 0.73 ± 0.03

MC Bin. 0.13 ± 0.04 0.33 ± 0.04 0.51 ± 0.07 0.75 ± 0.03

3-class 0.38 ± 0.05 0.50 ± 0.06 0.34 ± 0.06 0.47 ± 0.03

MC 3-cl. 0.24 ± 0.04 0.22 ± 0.03 0.42 ± 0.06 0.52 ± 0.03

Ord. 0.37 ± 0.05 0.51 ± 0.07 0.38 ± 0.06 0.47 ± 0.03

MC ord. 0.28 ± 0.04 0.29 ± 0.03 0.41 ± 0.06 0.49 ± 0.03

Reg. 0.31 ± 0.04 0.29 ± 0.03 0.34 ± 0.05 0.44 ± 0.03

MC Reg. 0.19 ± 0.04 0.16 ± 0.02 0.35 ± 0.05 0.43 ± 0.03

Breast density classification

Binary 0.22 ± 0.01 0.58 ± 0.01 0.68 ± 0.01 0.84 ± 0.00

MC Bin. 0.19 ± 0.01 0.48 ± 0.01 0.69 ± 0.01 0.85 ± 0.00

4-class 0.54 ± 0.02 0.33 ± 0.00 0.71 ± 0.01 0.69 ± 0.01

MC 4-cl. 0.45 ± 0.01 0.30 ± 0.00 0.72 ± 0.01 0.71 ± 0.01

Ord. 0.52 ± 0.01 0.33 ± 0.00 0.70 ± 0.01 0.68 ± 0.01

MC ord. 0.44 ± 0.01 0.29 ± 0.01 0.72 ± 0.01 0.69 ± 0.01

Reg. 0.39 ± 0.01 0.21 ± 0.01 0.74 ± 0.01 0.70 ± 0.01

MC Reg. 0.40 ± 0.01 0.21 ± 0.01 0.75 ± 0.01 0.67 ± 0.01

ROP classification

Binary 0.31 ± 0.01 0.88 ± 0.04 0.50 ± 0.05 0.81 ± 0.02

MC Bin. 0.25 ± 0.04 0.55 ± 0.05 0.56 ± 0.05 0.85 ± 0.02

3-class 0.23 ± 0.04 0.48 ± 0.03 0.57 ± 0.06 0.85 ± 0.02

MC 3-cl. 0.23 ± 0.04 0.39 ± 0.03 0.55 ± 0.06 0.85 ± 0.02

Ord. 0.31 ± 0.04 0.40 ± 0.04 0.57 ± 0.05 0.82 ± 0.02

MC ord. 0.29 ± 0.04 0.34 ± 0.03 0.57 ± 0.05 0.83 ± 0.02

Reg. 0.16 ± 0.04 0.33 ± 0.03 0.58 ± 0.06 0.86 ± 0.02

MC Reg. 0.47 ± 0.05 0.33 ± 0.01 0.51 ± 0.05 0.79 ± 0.03

a Values in bold indicate the best model between MC and non-MC models
where a statistical difference (p value > 0.05) was observed. The two first
columns measure the model repeatability where smaller values indicate
better repeatability. The two last columns represent the model perfor-
mance and high values indicate better classification. Binary models were
trained with the following classes: Knee osteoarthritis: none and doubtful
vs. mild, moderate, and severe – Cervix: normal vs. pre-cancer/cancer –

Breast density: fatty and scattered vs. heterogeneous and dense – ROP:
normal vs. pre-plus and plus. LoA Limits of agreement; κ: Quadratic
weighted Cohen’s κ; Acc. Accuracy; CI Confidence interval.
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(a) Knee osteoarthritis classification

(b) Cervical classification

(c) Breast density classification

(d) ROP classification

Fig. 2 Bland-Altman plots on multiple images from the same patient and visit. The y-axis of each graph represents the maximum difference
in model prediction for images of the same patient, while the x-axis refers to the mean of the predicted scores. (a) Knee osteoarthritis, (b)
cervical, (c) breast density, and (d) ROP classification. The 95% limits of agreement are presented with dashed blue lines. Repeatable models
are associated with differences and limits of agreement closer to zero which indicates a smaller difference between test and retest.
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Fig. 3 Repeatability comparison for multi-class vs. MC multi-class models for each dataset. These cases illustrate extreme cases where
multi-class predictions failed to be repeatable while MC multi-class performed decently. These examples were picked choosing images where
the repeatability difference between the continuous scores was the largest between multi-class and MC multiclass.

A. Lemay et al.

5

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)   174 



reported to thoroughly assess deep learning models, especially in
clinical settings.
The observed differences between test-retest images of the

same patient were not constant along the mean axis as seen on
the Bland-Altman plots in Fig. 2. Near the class boundaries, images
show more variability with only a few cases with a difference near
zero, which creates an arch-like pattern in the plots. MC dropout
models stands out by its ability to improve repeatability at the
class boundaries where non MC models display more oscillation
patterns between classes. Non-MC models tend to avoid
ambivalent class predictions to the benefit of choosing one class
creating poor repeatability at class boundaries. When the model is
equivocal about the class, MC dropout models have a better
ability to output the same prediction score. This phenomenon can
be partly explained by the training scheme of classification
models. During training, models are optimized to predict classes
with high certainty, discouraging the model from outputting
ambivalent predictions (e.g., predicting 0.5 for a binary model),
which leads to uncalibrated models18. Ideally, the output softmax
or sigmoid probability of a model should reflect the uncertainty of
the model between two or more classes. However, in practice, this
is not the case leading to high differences in the class boundaries
due to the misclassification of at least one of the images. This
effect is alleviated with MC models, leading to more calibrated
outputs and higher repeatability.
Fewer repeatability metrics showed a statistical difference

between MC dropout and conventional models for the ROP
disease severity classification task. Unlike knee osteoarthritis,
cervical, and breast density classification, the ROP models were
tested on views of the eye that the model has not seen during
training (section Retinopathy of Prematurity). This domain shift
might be adding variability in the model’s prediction impacting
the global performance and repeatability, effectively abating the
benefits of MC dropout models. Nonetheless, MC models still

showed higher repeatability under domain shift than no-
dropout models.
MC models are computationally more expensive than their

conventional counterparts as they require multiple forward passes
at testing time. Our results in Fig. 4 indicate that after approximately
20 MC iterations, there is no further gain in repeatability, and this,
for all tasks on multi-class models. For settings where time and
computational resources are limited, training with dropout layers,
even without sampling multiple MC, helps regularize the training
and reduces overfitting3.
Due to the high number of model types studied (8) and

datasets (4), each model was trained only once. Varying data
splittings for the training, validation, and test sets could help get a
sense of the variability of the metrics for each model type. The
analysis is limited to ResNet and DenseNet architectures for
classification. Other architectures could behave differently with
MC dropout. Future studies should focus on more extensive model
architectures for classification and segmentation tasks. Finally, all
the medical tasks studied in this work are prone to inter-rater
variability. However, not all labels from the knee osteoarthritis,
cervical, and breast density datasets were derived from multiple
experts, which can affect the models’ performance.
We evaluated the repeatability of four model types on four

medical tasks using distinct model architectures (ResNet18,
ResNet50, DenseNet121). We demonstrated that MC sampling
during test time leads to more reliable models providing more
stable, repeatable, and calibrated predictions on different images
from the same patient with or without a slight domain shift. MC
dropout models reduced test-retest variability at the class
boundaries where repeatability is the most challenging and crucial.
Only regression models did not show a constant improvement
when leveraging MC sampling. Repeatability metrics increased
with an increasing number of MC iterations; after around 20 MC
iterations, no further improvement of repeatability could be
reached. MC sampling is flexible as it is applicable to any model

(a) Knee osteorarthritis 5-class model (b) Cervical 3-class model

(d) ROP 3-class model(c) Breast density 4-class model

Fig. 4 Impact of number of MC iterations on repeatability. (a) Knee osteoarthritis 5-class model. (b) Cervical 3-class model. (c) Breast density
4-class model. (d) ROP 3-class model. The orange star represents a single forward pass of the model with dropout disabled at test time.
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type and architecture while being easily implementable. Future
work should assess the impact of MC models on repeatability for
other model architectures and other tasks such as segmentation.

METHODS
All images were de-identified prior to data access, ethical approval
for this study was therefore not required.

Knee osteoarthritis
Knee osteoarthritis is the most common musculoskeletal dis-
order30 and was the eleventh-highest contributor to global
disability in 201031. Osteoarthritis can be diagnosed with a
radiography, however, early diagnosis can be challenging in
clinical practice and is prone to inter-rater variability justifying the
emergence of AI models for osteoarthritis grading30. The severity
is typically measured using the Kellgren-Lawrence (KL) scale from
0 to 4 where 0 corresponds to none, 1 to doubtful, 2 to mild, 3 to
moderate, and 4 to severe32.
The publicly available longitudinal Multicenter Osteoarthritis

Study (MOST) dataset contains 18,926 knee radiographs from
3017 patients of one or both knees when including only grades
from 0 to 4 on the Kellgren-Lawrence scale32. Grades outside the
Kellgren-Lawrence scale were excluded from the dataset for this
work. 40% of the cases were labeled as grade 0, 15% as grade 1,
17% as grade 2, 19% as grade 3, and 9% as grade 4. The patients
were split into training, validation, and test sets representing 65%,
10%, and 25% of the images, respectively. The binary models were
trained to distinguish between knees with no or doubtful
osteoarthritis (negative class) and knees with mild, moderate, or
severe osteoarthritis (positive class). Images were center cropped to
a size of 224x224 pixels and scaled to intensity values of 0 to 1.
MOST does not include multiple images of the same during the
same visit. Model predictions were generated for all the original test
images, were then flipped horizontally, and retested to emulate a
test-retest setting. Hence, the repeatability was measured on the
same radiography from the same patient at a given time point with
and without the horizontal flip. Since flipping is applied as data
augmentation during training, we expect all models to be robust to
this affine transformation (see Section Classification model training
for details on training data augmentation).

Cervical
Cervical cancer is the fourth most common cancer worldwide and
the leading cause of cancer-related deaths of women in western,
eastern, middle, and southern Africa33. Vaccinations against high-
risk strains of the Human Papilloma Virus (HPV) have been proven
to prevent up to 90% of cervical cancers34. Until HPV vaccination
programs have not reached every eligible woman worldwide, and
in light of the high prevalence of high-risk HPV types, there will be
a great demand for effective screening at low costs to prevent the

development of invasive cervical cancer. In addition to HPV
testing, the visual assessment of the cervix using photographs can
help to detect precancerous lesions in low-resource settings35–37.
The cervical cancer screening dataset consisted of 3509 cervical

photographs from 1760 patients from two studies38,39. For most
patients, we had access to two cervical photographs taken during
the same session.
Each image was classified using cytological and histological

data from the patient as one of the following three categories:
Normal (1148 images, 33%), Gray zone, i.e., the presence of
precancerous lesions was equivocal, (1159 images, 33%), Pre-
cancer/cancer (1202 images, 34%).
The dataset was split into training (65%), validation (10%), and

test sets (25%) on a patient level, resulting in datasets containing
2283, 350, and 876 images (training/validation/test), preserving
the class distributions described above within each subset. All
images were de-identified before this study. All cervical images
were cropped using bounding boxes from a trained Retina net for
cervix detection, resized to 256x256 pixels, and scaled to intensity
values of 0 to 1. The cervigram classification models were trained
using all photographs for each patient in the training dataset. For
the binary classification models, we utilized only images that were
classified as either normal or pre-cancer/cancer. For all patients in
the test dataset for whom both images were available, repeat-
ability was assessed as the difference in predictions between the
two photographs.

Breast density
Breast cancer is the second most common cause of cancer deaths
among women in the USA with an estimated number of more
than 41,000 deaths in 201940. The density of a women’s breast is
determined by the amount of fibroglandular tissue. It can be
classified (with increasing density) based on its appearance on
x-ray mammography as almost entirely fatty, scattered fibro-
glandular densities, heterogeneously dense, and extremely
dense41. Importantly, the risk of developing breast cancer rises
with increasing breast density42. Furthermore43, have shown that
women with extremely dense breast tissue benefit from additional
MRI screening. The development of AI models based on expert
labels for breast density assessment could help to mitigate intra-,
and interobserver variability and the inconsistency of current
quantitative measurements with expert raters28.
The Digital Mammographic Imaging Screening Trial (DMIST)

dataset consists of a total of 108,230 mammograms from 21,729
patients acquired at 33 institutions with an average of five
mammographs of different standard mammography views for
each patient44. Breast density labels were generated according to
the BI-RADS criteria41 by a total of 92 different radiologists. The
dataset consisted of 12,428 (11.5%) fatty, 47,909 (44.2%) scattered,
41,325 (38.2%) heterogeneously dense, and 6568 (6.1%) extremely
dense samples and was split into training (70,293), validation
(10,849), and test datasets (27,048 images) on a patient level

Fig. 5 Architecture comparison on multiclass model for knee osteoarthritis grading. The two first columns are the model trained with
Densenet121, while the two last ones were trained with ResNet50. The first and third graphs represent the regular model and the second and
fourth ones display their MC counterparts.
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preserving the label distribution of the full dataset. All images
were de-identified before this study. We cropped all images to a
size of 224x224 pixels. The breast density classification models
were trained using all available views for each patient in the
training dataset using either four labels or a simplified binary
labeling system of fatty and scattered as one class, and dense and
heterogeneous as the other class. Repeatability was assessed as
the maximum difference between all available views for each
patient in the test dataset.

Retinopathy of prematurity
ROP is the leading cause of preventable childhood blindness
worldwide45. It gets diagnosed based on the appearance of the
retinal vessel tree on retinal photographs and classified into three
discrete disease severity classes: normal, pre-plus, and plus
disease46. However, the disease spectrum is continuous26 and the
use of discrete class labels to train DL classifiers is complicated by
inter-rater variability particularly for cases close to the class
boundaries17,47. High interrater variability, an insufficient number
of ophthalmologists and neonatologists with the expertise and
willingness (e.g., due to significant malpractice liability) to manage
ROP, and the rising incidence of ROP worldwide motivate the
development of AI models for ROP classification and screening48.
The ROP dataset consists of 5511 retinal photographs acquired at

eight different study centers48. For each patient, retinal photographs
were acquired in 5 different standard fields of view (posterior, nasal,
temporal, inferior, superior). Only the posterior, temporal, and nasal
views were used in this study. Images were classified as normal,
preplus disease, or plus disease following previously published
methods49. The final label is based on the independent image-based
diagnosis by 3 expert graders in combination with the full clinical
diagnosis by an expert ophthalmologist. Of the 5511 images in the
dataset, 4535 (82.3%) were classified as normal, 804 (14.6%) as pre-
plus disease, and 172 (3.1%) as plus disease. The binary models were
trained to distinguish between normal and pre-plus/plus disease.
The dataset was split on a patient level into training, validation, and
test datasets containing 4322/722/467 images while preserving the
overall class distribution within each subset. Following48’s work, we
trained ROP classification models using normalized pre-segmented
vessel maps as input (size of 480x640). ROP classification models
were trained using only the posterior field of view as ROP refers to
arterial tortuosity and venous dilation within the posterior pole of

the retina50. However, it was shown that experts use characteristics
beyond the posterior view to assess ROP severity50. Hence,
repeatability was tested using the posterior, temporal, and nasal
views of all patients in the test dataset.

Classification model training
For each dataset, we trained binary, multi-class, and ordinal51

classification models, as well as regression models each with and
without dropout, resulting in a total of 8 models per dataset. We
used the following ImageNet pretrained models for each dataset
based on which performed the best for the conventional multi-
class classification model: DenseNet121 (cervix), ResNet50 (knee
osteoarthritis, breast density), and ResNet18 (ROP). Models were
trained using binary cross-entropy, cross-entropy, CORAL51, and
mean squared error (MSE) losses for binary, multi-class, ordinal,
and regression models, respectively. Affine transformations, i.e.,
rotation ± 15 degrees and random horizontal flips with 50%
probability, were applied as data augmentation during training.
The code was implemented using the MONAI framework (version
0.5.2)52 based on the PyTorch library (version 1.9.0)53.
Models with dropout were trained using spatial dropout with a

dropout rate of 0.1 for cervical images and DMIST, and 0.2 for knee
osteoarthritis and ROP. The dropout rates were determined based
on preliminary explorations to optimize the model’s classification
performance and values from the literature54–56. Channels are
independently and randomly zeroed for each dropout layer and
forward pass, following the dropout rate from a Bernoulli
distribution. For the DenseNet121 architecture, the dropout layers
were applied after every dense layer, while for the ResNets the
dropout layers were applied after each residual block. At test time,
the dropout was enabled to generate N= 50 slightly different
predictions and the final prediction was obtained by averaging
over all the MC samples5. The choice of the number of MC
predictions was based on values commonly found in the
appropriate literature and experience; however, the optimal
number of predictions to reach maximum repeatability was
assessed in the results section (see Fig. 4).
This section enumerates the training parameters associated

with the different datasets. These parameters were obtained by
referring to previous work on these datasets29,57,58 or by initial
dataset exploration. All models were trained with an Adam
optimizer59 and a learning rate scheduler reducing of a factor 0.1

(a) Knee osteorarthritis 5-class models (b) Cervical 3-class models

(d) ROP binary models(c) Breast density 4-class models

Fig. 6 Calibration curves. (a) Knee osteoarthritis 5-class models. (b) Cervical 3-class models. (c) Breast density 4-class models. (d) ROP binary
models. Brier score quantifies model calibration: 0 indicates a perfectly calibrated model. The horizontal bars represent the predicted value
distribution (95% CI) for every bin.

A. Lemay et al.

8

npj Digital Medicine (2022)   174 Published in partnership with Seoul National University Bundang Hospital



with a patience of 10 epochs. Table 2 enumerates the main
training parameters that were different from a dataset to another.

Evaluation
For direct comparison of a model’s predictions, we summarized
each model’s outputs as a continuous severity score. For the
binary and regression models, the output of the models was
directly used without further modifications. For the multi-class
model, we utilized the ordinality of all four classification
problems and defined the continuous severity score as a
weighted average using softmax probability of each class as
described in Equation (1). For knee osteoarthritis (5 classes), the
values lie in the range of 0 to 4, for breast density (4 classes) in
the range of 0 to 3, and for cervical and ROP classification (3
classes), in the range of 0 to 2.

score ¼
Xk

i¼1

pi ´ i � 1 (1)

with k being the number of classes and pi the softmax probability of
class i. For the ordinal model, the classification problem of k ranks
(i.e., class) is modified into a k− 1 binary classification60 leading to
one output unit less than for the traditional classification model. For
instance, for a 3-class problem, the ground truth would be encoded
as followed: class 1→ [0, 0]; class 2→ [1, 0]; class 3→ [1, 1]. The
continuous prediction score for ordinal models is obtained by
summing the output neurons. Similarly to the multi-class models,
values range from 0 to 2, 0 to 3, and 0 to 4, for 3-class, 4-class, and
5-class problems, respectively.
Repeatability was evaluated using the classification disagreement

rate and the 95% LoA from the Bland-Altman plots. Since normality
was not reached for the differences for the LoA, non-parametric LoA
were calculated using empirical percentiles61. The LoA was
presented as a fraction of the possible value range. The classification
disagreement rate corresponds to the proportion of patients with
different classification outcomes for different images acquired
during the same session over the total number of patients. The
classification accuracy and quadratic weighted Cohen’s κ were also
reported. For the regression models, thresholds to binarize
predictions for accuracy and Cohen’s κ calculation were computed
by splitting the range of predictions equally (e.g., 3-class problem:
s ≤ 0.67→ class 1; 0.67 < s ≤ 1.33→ class 2; s ≥ 1.33→ class 3). Model
calibration was assessed using the Brier score.
Statistical difference between models was determined using a

two-sided t-test and metric bootstrapping (500 iterations). Models
with a p value smaller than 0.05 were considered significantly
different. The normality of the distribution was verified using the
Shapiro-Wilk test (α= 0.05).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
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