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Discovering a trans-omics biomarker signature that
predisposes high risk diabetic patients to diabetic kidney
disease
I-Wen Wu1,2,3, Tsung-Hsien Tsai4, Chi-Jen Lo5, Yi-Ju Chou6, Chi-Hsiao Yeh2,3,7, Yun-Hsuan Chan4, Jun-Hong Chen4, Paul Wei-Che Hsu6,
Heng-Chih Pan1,2, Heng-Jung Hsu1,2, Chun-Yu Chen1,2, Chin-Chan Lee1,2, Yu-Chiau Shyu2,8, Chih-Lang Lin2,9, Mei-Ling Cheng5,10,11,
Chi-Chun Lai2,3,12✉, Huey-Kang Sytwu13,14✉ and Ting-Fen Tsai 6,15,16✉

Diabetic kidney disease is the leading cause of end-stage kidney disease worldwide; however, the integration of high-dimensional
trans-omics data to predict this diabetic complication is rare. We develop artificial intelligence (AI)-assisted models using machine
learning algorithms to identify a biomarker signature that predisposes high risk patients with diabetes mellitus (DM) to diabetic
kidney disease based on clinical information, untargeted metabolomics, targeted lipidomics and genome-wide single nucleotide
polymorphism (SNP) datasets. This involves 618 individuals who are split into training and testing cohorts of 557 and 61 subjects,
respectively. Three models are developed. In model 1, the top 20 features selected by AI give an accuracy rate of 0.83 and an area
under curve (AUC) of 0.89 when differentiating DM and non-DM individuals. In model 2, among DM patients, a biomarker signature
of 10 AI-selected features gives an accuracy rate of 0.70 and an AUC of 0.76 when identifying subjects at high risk of renal
impairment. In model 3, among non-DM patients, a biomarker signature of 25 AI-selected features gives an accuracy rate of 0.82
and an AUC of 0.76 when pinpointing subjects at high risk of chronic kidney disease. In addition, the performance of the three
models is rigorously verified using an independent validation cohort. Intriguingly, analysis of the protein–protein interaction
network of the genes containing the identified SNPs (RPTOR, CLPTM1L, ALDH1L1, LY6D, PCDH9, B3GNTL1, CDS1, ADCYAP and
FAM53A) reveals that, at the molecular level, there seems to be interconnected factors that have an effect on the progression of
renal impairment among DM patients. In conclusion, our findings reveal the potential of employing machine learning algorithms to
augment traditional methods and our findings suggest what molecular mechanisms may underlie the complex interaction between
DM and chronic kidney disease. Moreover, the development of our AI-assisted models will improve precision when diagnosing
renal impairment in predisposed patients, both DM and non-DM. Finally, a large prospective cohort study is needed to validate the
clinical utility and mechanistic implications of these biomarker signatures.
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INTRODUCTION
Diabetes mellitus (DM) remains a major medical challenge and
affects 463 million adults globally1,2. Diabetic kidney disease (DKD)
is the leading cause of end-stage kidney disease worldwide3,4.
These conditions are strongly associated with high rates of
cardiovascular disease and mortality5,6, as well as very high
medical expenditure7. DKD risk prediction via reliable biomarkers
is currently an unmet clinical need. Urinary albumin excretion and
serum creatinine are the common clinical biomarkers used for
diagnosis and staging of renal impairment among chronic kidney
disease (CKD) patients. However, abnormalities in these two
parameters often indicate existing kidney damage rather than a
predisposition of renal impairment in the future8. Their usefulness
when estimating glomerular filtration rate (eGFR) is subject to
several limitations due to various potential confounders, such as

age, sex, muscle mass, and changes in glomerular hemodynamics
due to hyperfiltration that is secondary to the patient’s
hyperglycaemia status9. Other biomarkers of kidney injury,
including cystatin C, kidney injury molecule 1, neutrophil
gelatinase-associated lipocalin, and liver fatty acid-binding pro-
tein, are not specific to DKD and also have disadvantages.
Furthermore, liver or thyroid dysfunction, an alteration in urine
volume, a change in creatinine concentration, and treatment with
various medications can also affect the levels of these biomar-
kers10–13. An approach that accurately predisposes high risk DM
patients to DKD remains urgently needed.
High-throughput omics approaches have revolutionized bio-

marker research and have helped to advance our understanding
of renal progression in DM patients14. Given the various
hemodynamic and metabolic disarrangements exerted by
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hyperglycaemia on kidney tissue, metabolomic analysis represents
a very useful way of addressing this clinical issue15. In addition,
genome-wide association studies (GWAS) have been able to
identify a number of potential genes, loci, and single-nucleotide
polymorphisms (SNPs) that are associated with DKD, which
implies that genetic susceptibility is part of the pathogenesis of
DKD16–18. However, up to the present, the development of
biomarkers focusing on the genomic-metabolomic signatures
specific to DKD has not taken place.
To fill this knowledge gap, we conduct a trans-omics study that

integrated high dimensional data collected from an extensive
clinical information dataset, an untargeted metabolomics dataset
and a lipidomics dataset, as well as genome-wide SNP genotyping.
We adopt a machine learning (ML) methodology to delineate the
complex biological processes associated with four health condi-
tions: control subjects, subjects with DM, subjects with CKD and
subjects with DKD. Furthermore, we performed protein connec-
tivity mapping of the genes containing the relevant SNPs in order
to determine their potential roles in the molecular pathogenesis of
CKD and DKD, specifically their functional connectivity and their
protein–protein interaction network.

RESULTS
Clinical characteristics
The 618 subjects were split into training and testing cohorts with
557 and 61 subjects, respectively. The baseline characteristics of
the subjects are presented in Supplementary Table 1. Of the
subjects, 338 subjects (54.7%) were controls, 106 (17.2%) had type
2 DM, 73 (11.8%) had non-diabetic CKD, and 101 subjects (16.3%)
had DKD. The mean age of the study population was 63.8 ± 12.9
years old and included 287 males (46.4%). The median eGFR was
83.0 mL/min/1.73 m2. The DKD patients were more like to be
older, to have hypertension, to have a higher serum triglyceride
level, a higher level of calcium, and a higher level of insulin (Table 1).
The external validation cohort, which is independent of the
training cohort, consisted of 178 subjects (control 100, DM 26,
non-diabetic CKD 22, and DKD 30) with a mean age of 60.6 years
old and a mean eGFR of 84.1 mL/min/1.73 m2 (Supplementary
Table 1).

Artificial intelligence (AI)-assisted identification of multi-omics
signatures: discovery and validation
To categorize the biomarkers associated with DM and CKD, we
carried out an AI-based study that integrated three types of
features (metabolomics, SNPs and clinical information). The
analysis consisted of three parts: (1) an analysis of the
performance of metabolomics, SNPs and the clinical information
data associated with the four groups of subjects; (2) feature
selection; and (3) model derivation and validation (Fig. 1a and
Supplementary Fig. 1).
We used the identified defined features from the feature

importance list to derive the three models. Model 1 selected 20
features that differentiated DM (Supplementary Table 2); Model
2 selected 10 features that identified DKD (DM patients with CKD)
(Supplementary Table 3); Model 3 selected 25 features that
distinguished CKD in non-DM patients (Supplementary Table 4).
To carry out model derivation and validation, the subjects were
randomly assigned into 10 sets in order to carry out a 10-fold cross
validation as part of the second stage of model building (Fig. 1b).
To evaluate the performance of the three models, Area Under
Curve (AUC) and accuracy rate were used. Of the five ML models
tested in Model 1 (Fig. 1b), the extremely randomized trees (extra-
tree) model gave the best performance in terms of AUC and
accuracy rate (Supplementary Fig. 2a). The top 20 features
selected by AI gave the performance with an accuracy rate of
0.83 and an AUC of 0.89 when used to differentiate DM and

non-DM (Supplementary Table 5 and Supplementary Fig. 2a). In
Model 2 (Fig. 1b), the Ensemble model gave the best performance.
The top 10 features selected by AI gave the performance with an
accuracy rate of 0.70 and an AUC of 0.76 when used to
differentiate CKD and non-CKD among DM patients (Supplemen-
tary Table 6 and Supplementary Fig. 2b). In Model 3 (Fig. 1b), the
Extra-Tree model gave the best performance. The top 25 features
selected by AI gave the performance with an accuracy rate of 0.82
and an AUC of 0.76 when used to differentiate CKD and non-CKD
among non-DM patients (Supplementary Table 7 and Supple-
mentary Fig. 2c). The confusion matrix of the accuracy is
summarized in Fig. 1c. The Receiver Operating Characteristic
(ROC) analysis of the 10-fold cross validation for Model 1 (Extra
Tree; AUC 0.89), Model 2 (Ensemble; AUC 0.76), Model 3 (Extra
Tree; AUC 0.76) are presented in Fig. 1d. Furthermore, we used an
external validation cohort that had been collected independently
during 2019 and 2020 to carry out a rigorous validation of the
performance of the three models. Consistently, the various
analyses of the validation cohort revealed a similar result to
that obtained using the training cohort (Fig. 1e; Supplementary
Table 8).

A biomarker signature that identifies high-risk subjects
among DM patients who are predisposed to renal impairment
Among all the biomarkers that are potentially significant when
pinpointing the occurrence of DKD among DM patients (Model 2),
six features were selected by AI from all of the groups, namely
three metabolites and three annotated SNPs (Fig. 2a). The three
metabolites include one bioactive lipid mediator (resolvin D1), a
purine and pyrimidine metabolite (pseudouridine), and one
phospholipid (phosphatidylcholine C-30:0). Notably, the abun-
dances of resolvin D1 and of pseudouridine were significantly
higher in the DKD patients compared to the controls; by way of
contrast, the levels of the three phospholipids were significantly
lower in the DKD patients compared to the controls (Fig. 2b).
Among the three SNPs selected, two of them (rs1868138 and
rs117681509) are intron variants located within the ALDH1L1 and
PCDH9 genes, respectively; the other (rs184518892) is a synon-
ymous variant of the LY6D gene (Fig. 2c; Supplementary Table 3).
When these protein-coding genes were examined, we found that
the frequencies of AT genotype of the ALDH1L1 gene (rs1868138),
the AG genotype of LY6D gene (rs184518892) and the GT
genotype of PCDH9 gene (rs117681509) were significantly higher
among DKD patients compared to DM patients (p < 0.001; Chi-
square test; Fig. 2c). Notably, expression of all three of these
protein-coding genes is able to be detected in various major
organs associated with DKD, namely the kidneys, pancreas, liver,
adipose tissue, and heart19 (Supplementary Tables 9 and 10).
We conducted logistic regression analysis to further elucidate

the relationships between the AI-selected biomarkers and the
different disease groups. It was found that an increase in the
adjusted odds ratios (OR) was present for the occurrence of DKD
in relation to resolvin D1 (p < 0.001; Wald test), the PCDH9
genotype (p= 0.0016; Wald test), the LY6D genotype (p < 0.001;
Wald test), and the ALDH1L1 genotype (p= 0.0031; Wald test).
Conversely, a higher level of serine (p= 0.0024; Wald test)
appeared to be associated with a lower risk of the occurrence of
DKD (Fig. 2d). It should be noted that ALDH1L1 is highly expressed
in the kidneys, which supports the possibility that this gene may
play a role in the pathogenesis of DKD.

A biomarker signature that identifies subjects at high risk of
CKD among non-DM patients
Twenty-one features were selected by AI as being associated with
the renal impairment among non-diabetic patients; these were
age, body mass index, 15 metabolites, and five annotated SNPs
(Model 3; Supplementary Fig. 3a–c). The five SNPs selected by AI
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are all located within protein-coding genes (Supplementary Table
4). Interestingly, four of the above-mentioned genes, B3GNTL1,
CDS1, FAM53A and ADCYAP1, are expressed at significant levels in
the kidney19, which supports the hypothesis that they might play
roles in kidney pathogenesis. Specifically, significantly higher
frequencies of the TT genotype of B3GNTL1, the CT genotype of
CDS1, the AT genotype of CCDC182, and the CT genotype of
FAM53A were found in the non-diabetic CKD patients compared
to the other groups (p < 0.001; χ2 test). Conversely, a significant
decrease in the frequency of the AG genotype of ADCYAP1 gene
was found among non-diabetics CKD patients compared to the
other groups (p < 0.001; Chi-square test; Supplementary Fig. 3d).
Logistic regression analysis revealed that there was a significant

increase in the risk association of non-diabetic CKD patients with
the following five features: age (p < 0.001; Wald test), abundance
of mannose/inositolI (p < 0.001; Wald test), the FAM53A genotype
(p= 0.0026; Wald test), the CDS1 genotype (p= 0.0065; Wald test),
and the CCDC182 genotype (p= 0.0071; Wald test). On the other
hand, there was a significant decrease in the risk association of
non-diabetic CKD with the B3GNTL1 genotype (p= 0.0012; Wald

test), and the abundance of PC C30:2 (p= 0.0073; Wald test)
(Supplementary Fig. 3e).

The protein–protein interaction network of the genes
containing the AI-selected SNPs reveals linkage between DM
and CKD
We conducted a protein–protein interaction network analysis of
the various genes identified by Model 1, Model 2 and Model 3
(Supplementary Tables 9 and 10) using the BioGRID database20.
We found that RPTOR, which was selected in Model 1 as
identifying the occurrence of DM, is the main hub gene that
connects the various protein-coding genes selected in Model 2
(identification of DKD), and Model 3 (identification of CKD). Eight
of the protein-coding genes identified in Model 1 (RAPTOR and
CLPTM1L), Model 2 (PCDH9 and ALDH1L1), and Model 3 (FAM53A,
ADCYAP, B3GNTL1 and CDS1) are able to be connected to each
other and they form an obvious protein–protein interaction
network (Fig. 3). In addition, it can be seen that the HNRNPL
protein also acts as a hub and this gene connects the four proteins
identified in Model 3 with RPTOR (Fig. 3). This overall interaction

Table 1. Baseline characteristics of study population stratified by groups.

Normal control Diabetes Non-diabetic CKD Diabetic kidney disease P value

Parameters n= 338 n= 106 n= 73 n= 101

Age, years 60.4 ± 13.2 66.1 ± 10.9 68.6 ± 12.8 69.5 ± 9.5 <0.001

Male, No. (%) 153 (45.3%) 52 (49.1%) 29 (39.7%) 53 (52.5%) 0.35

Comorbidities

Hypertension, No. (%) 87 (25.7%) 71 (67.0%) 41 (56.2%) 69 (68.3%) <0.001

Obesity, No. (%) 173 (51.2%) 105 (99.1%) 64 (87.7%) 99 (98.0%) <0.001

Personal habits

Smoking, No. (%) 94 (27.8%) 30 (28.3%) 17 (23.3%) 26 (25.7%) 0.851

Alcohol drinking, No. (%) 151 (44.7%) 28 (26.4%) 23 (31.5%) 14 (13.9%) 0.002

Anthropometrics

Body mass index, kg/m2 26.1 ± 4.1 27.5 ± 4.1 27.2 ± 4.0 27.3 ± 4.0 0.003

Systolic BP, mmHg 129.8 ± 16.4 135.4 ± 16.4 142.1 ± 16.4 139.0 ± 18.4 <0.001

Diastolic BP, mmHg 76.8 ± 11.1 78.2 ± 9.8 81.6 ± 12.5 77.7 ± 10.3 0.059

Laboratory

eGFR, mL/min per 1.73 m2 89.8 ± 17.3 89.5 ± 20.6 66.9 ± 24.9 63.0 ± 22.1 <0.001

BUN, mg/dL 14.7 (7.1, 39.2) 15.4 (5.8, 33.1) 17.6 (8.4, 54.6) 19.0 (6.3, 75.4) <0.001

Serum creatinine, mg/dL 0.8 (0.4, 1.2) 0.8 (0.4, 1.2) 1.0 (0.5, 2.0) 1.0 (0.6, 6.9) <0.001

Serum albumin, mg/dL 4.6 (3.1, 5.5) 4.5 (3.7, 246.4) 4.7 (4.0, 5.5) 4.5 (3.5, 17.9) 0.913

Cholesterol, mg/dL 195 (99, 377) 166 (102, 262) 188 (96, 323) 173 (92, 339) <0.001

Triglycerides, mg/dL 106 (25, 457) 134 (43, 523) 134 (45, 433) 139 (52, 1225) <0.001

hs-C reactive protein, mg/L 1.1 (0.2, 46.7) 1.1 (0.2, 73.1) 1.1 (0.2, 67.4) 1.4 (0.1, 59.6) 0.036

Urine albumin/creatinine ratio, mg/g 6.0 (1.3, 28.2) 10.0 (2.4, 28.4) 66.5 (3.0, 3590.4) 51.5 (2.6, 3792.1) <0.001

Vitamin D, ug/mL 584.0 (179.8, 3442.0) 549.8 (114.0, 3266.0) 551.1 (119.0, 3374.0) 580.2 (22.3, 3295.0) 0.140

Intact parathyroid hormone, pmol/L 42.3 (6.0, 122.5) 39.8 (15.8, 121.0) 48.6 (20.5, 124.3) 38.1 (11.9, 199.0) 0.362

Serum calcium, mg/dL 9.3 (6.6, 10.3) 9.4 (8.1, 10.2) 9.5 (8.5, 10.2) 9.6 (8.0, 10.5) <0.001

Serum phosphate, mg/dL 3.6 (2.1, 5.7) 3.5 (2.1, 5.1) 3.6 (2.2, 4.8) 3.6 (2.1, 5.3) 0.407

Insulin, uU/mL 9.8 (0.5, 47.1) 11.9 (2.2, 84.9) 11.5 (4.7, 49.7) 14.0 (1.2, 84.3) <0.001

LDL-C / HDL-C, mg/dL 2.4 (0.7, 5.8) 2.2 (0.7, 5.1) 2.3 (0.8, 5.9) 2.2 (0.6, 5.1) 0.225

Urine urea, mg/dL 856.5 (359.7, 1923.3) 836.2 (343.5, 1762.7) 817.2 (281.7, 1612.0) 694.7 (117.6, 1685.9) <0.001

Glycated Hemoglobin, % 5.7 (4.5, 6.4) 6.7 (5.3, 10.2) 5.9 (4.6, 6.4) 6.9 (5.2, 14.4) <0.001

Glucose, mg/dL 96 (76, 125) 126 (84, 252) 100 (83, 124) 131 (69, 400) <0.001

The values are expressed as means ± SD or median (Min, Max) or n (%).
CKD chronic kidney disease, BUN blood urea nitrogen, eGFR estimated glomerular filtration rate, hs-C reactive protein high-sensitivity C reactive protein, LDL-C/
HDL-C low density lipoprotein-cholesterol/high density lipoprotein-cholesterol.
The p value was performed by F test in ANOVA and Chi-square test for comparison of the four groups.
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Fig. 1 Study flow chart, machine learning algorithms and their performance when using the three prediction models. a The scheme
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SNPs, and clinical data. b The two stage modeling workflow used to predict diabetes mellitus (DM) and chronic kidney disease (CKD). c The
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predicted label is predicted as Non DM in model 1 and predicted to be Non CKD in model 3. d–e The receiver operating characteristic (ROC)
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Support Vector Machine. The figure was created with BioRender.com.
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network suggests that, at the molecular level, there seems to be
an overlap between the pathogenesis of DM and the pathogen-
esis of CKD, and that these various interconnected factors might
be able to affect the progression of renal impairment among DM
patients.

DISCUSSION
The disease burden of DKD creates a tremendous worldwide load
both at the personal and at the national level. However, current
diagnostic methods are insufficient to provide good risk
stratification and have failed to reveal the various molecular
pathways that underlie disease in CKD or DM patients. Here we
have applied AI-based ML-algorithms to carry out vigorous feature
selection and to build three models; these are able to differentiate
DM and non-DM individuals (mode 1, Extra Tree; AUC 0.89), CKD
and non-CKD in DM patients (model 2, Ensemble; AUC 0.76), and
CKD and non-CKD in non-DM patients (model 3, Extra Tree; AUC
0.76) with good prediction performance. Additionally, we identi-
fied a biomarker signature made up of several phospholipids
(Phosphatidylcholine and Lysophosphatidylcholine), a lipid med-
iator (resolvin D1) and a purine/pyrimidine metabolism mediator
(pseudouridine) that are associated with DKD. Furthermore, the
findings related to specific genotypes of the annotated SNPs

associated with CKD or DKD highlight that there seems to be
genetic susceptibility in predisposed subjects toward renal
impairment. Intriguingly, analysis of the protein–protein interac-
tion network of the genes containing the SNPs identified by the
three models revealed that, at the molecular level, there seems to
be an overlap between the pathogenesis of DM and the
pathogenesis of CKD; it also identified various interconnected
factors that may affect the progression of renal impairment
among DM patients, namely the occurrence of DKD.
The ability to generate trans-omics big data makes machine

learning approaches suitable for obtaining both biological and
translational perspectives related to questions in kidney biology21.
These methodologies have been able to identify altered lipidomic
profiles associated with the risk of renal progression among CKD
patients22 and to uncover proteomics and metabolomics biomar-
kers associated with early vs. advanced stage DKD23. Here, we
have utilized AI-based techniques combined with traditional
approaches to select subsets of genomic and metabolomic
features that give the best performances and avoided overfitting
the training data24. Importantly, the performances of the three
models built in this study were verified using an independent
validation cohort and this cohort gave similar results that are
comparable to those obtained from the training cohort. Our
findings indicate that an AI-assisted approach is able to

Fig. 2 Selected features for identifying renal dysfunction in DM patients, namely DKD (Model 2). a Venn diagram of AI-selected features in
Model 2. b Box plot of AI-selected features of metabolites in Model 2. The statistical analysis with p-values was performed by ANOVA for
significant metabolites in the four groups. The t-test was used for multiple comparisons within the four groups test. Box plot: Box plot includes
a box and a set of whiskers. The lower line of the box is represented as Q1 (25th percentile). The upper line of the box is represented as Q3
(75th percentile). The middle and bold line in the box is represented as median. In general, the boundary of the lower and upper whiskers is
1.5 interquartile ranges (IQR, IQR=Q3−Q1) below the Q1 and 1.5 IQR above the Q3. The extreme values outside this boundary are
considered as outliers and plotted as black dots. If all data points are between Q1− 1.5 x IQR and Q3+ 1.5 x IQR, the boundary of the lower
and upper whiskers should be minimum and maximum of the data. The error bars in this figure represent the lower and the upper whiskers
defined above. c Pie charts indicating the genotype frequencies of SNPs using the SNP datasets obtained from the subjects. Number sign
indicates that the signal from the SNP array was lower than the calling rate. The χ2 test was used for comparisons of genotype frequencies
within the four groups. d Adjusted odds ratios of factors in backward logistic regression procedure associated with the occurrence of CKD
among DM patients. The Wald test was used to construct 95% confidence interval (CI) and test the significance of adjusted odds ratios of risk
factors. The error bars represent the lower bound and the upper bound of adjusted odds ratio of 95% confidence interval. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001. ALDH1L1 aldehyde dehydrogenase 1 family member L1, LY6D lymphocyte antigen 6 family member D, PCDH9
protocadherin 9.
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considerably improve the precision diagnosis of CKD and DKD and
this represents an important tool for providing insights into the
potential molecular mechanism(s) that underlies various renal
disease states.
The use of serum metabolites increases accuracy when

estimating kidney function during DKD compared to serum
proteins23. Our findings are consistent with previous reports
whereby there are perturbations affecting the metabolites
associated with glycerol-lipid metabolsm and oxidative stress25,
such as glycerol-3-galactoside23 and asymmetric dimethylargi-
nine26, as well as purine and pyrimidine metabolism, namely
pseudouridine27, in patients with DKD28. Diacylglycerol can
activate protein kinase C, which, in turn, affects various
inflammatory and growth-promoting pathways9. Conversely,
serine, glutamine and lysophosphatidylcholine C18:2 are asso-
ciated with a decreased risk of DM29. We also found an increase of

serum kynurenine levels in CKD patients. Kynurenine is derived
from tryptophan metabolism; it appears to play a role in several
biological processes, including energy metabolism, the pro-
inflammatory response, atherosclerosis and oxidative stress30,31.
Increased concentrations of kynurenine have been found to be
associated with acute kidney injury, CKD, DKD and cardiovascular
diseases32,33. Intriguingly, we also found an increase in the level of
resolvin D1 in DKD patients; this molecule is a bioactive lipid
mediator derived from omega-3 fatty acid. Previous studies have
shown that resolvin D1 seems to be able to promote the
resolution of the inflammatory response and has anti-oxidant
effects34,35. Accordingly, it is possible that the increase in resolvin
D1 is a compensatory effect in response to the elevated
inflammation and increased oxidative stress in DKD patients.
Additionally, some of the biomarkers discovered in the present
study may serve as mediators of the post-transcriptional and/or

Model 2
Features associated 

with CKD in DM

DKDDM

Model 3
Features associated with 

CKD in non-DM

CKD

Model 1
Feature associated with DM

RPTOR

CLPTM1L

ALDH1L1

PCDH9

FAM53A

B3GNTL1

CDS1

ADCYAP1

HNRNPL

KIAA1429

RNF4

KRAS

HSP90
AA1

USP9X

PSMA4

Fig. 3 The protein–protein interaction network of the genes containing the AI-assisted identified SNPs. The protein-coding genes
containing the SNPs identified by AI were used to build up a protein–protein interaction network. Ranking of the protein-coding genes in the
feature importance of the three models: Model 1, RAPTOR (rank 23) and CLPTM1L (rank 25); Model 2, PCDH9 (rank 9) and ALDH1L1 (rank 7);
Model 3, FAM53A (rank 19), ADCYAP (rank 16), B3GNTL1 (rank 10) and CDS1 (rank 13). The figure was created using the open-source software
Cytoscape. CLPTM1L cleft lip and palate transmembrane protein 1-like, RPTOR regulatory associated protein of mTOR complex 1, ALDH1L1
aldehyde dehydrogenase 1 family member L1, PCDH9 protocadherin 9, B3GNTL1 UDP-GlcNAc:BetaGal Beta-1,3-N-Acetylglucosaminyl-
transferase like 1, CDS1 CDP-Diacylglycerol synthase 1, FAM53A family with sequence similarity 53 member A, ADCYAP1 adenylate cyclase
activating polypeptide 1, RNF4 ring finger protein 4, USP9X, ubiquitin specific peptidase 9 X-linked, HSP90AA1 heat shock protein 90 alpha
family class a member 1, PSMA4 proteasome 20 S subunit alpha 4, HNRNPL heterogeneous nuclear ribonucleoprotein L.
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post-translational modifications involved in progression of injury-
repair processes in the kidney under hyperglycemia.
Genomics studies have identified several genetic variants

associated with kidney disease; however, their functional effects
remain poorly understood36. Previous publications have reported
a variety of SNPs that are associated with DKD, including CNDP1,
FRMD3, RGMA-MCTP2 (rs12437854), AFF3 (rs7583877), ERBB4
(rs7588550), COL4A3 (rs55703767), and MUC737,38. However,
combination of SNPs does not improve discrimination of DKD or
CKD beyond traditional risk factors in a range of ethnic
populations39–41. In this study, several protein-coding genes
containing SNPs were selected by AI and used as important
features when distinguishing the various groups; this highlights
the importance of genetic susceptibility to renal dysfunction
among predisposed subjects. Among the SNPs associated with
DKD, ALDH1L1 encodes a protein that belongs to the aldehyde
dehydrogenase family and is associated with the NADPH pathway.
Furthermore, LY6D acts as a specification marker during the
earliest stage specification of lymphocytes during B-cell and T-cell
development. In addition, PCDH9 is responsible for encoding a
potential calcium-dependent cell-adhesion protein. On the other
hand, B3GNTL1, CDS1, ADCYAP1 and FAM53A SNPs are associated
with CKD among non-DM patients. Among these, B3GNTL1 is a
putative glycosyltransferase, CDS1 catalyzes the conversion of
phosphatidic acid to diacylglycerol and ADCYAP1 encodes a
secreted protein that is involved in the control of glucose
homeostasis and the regulation of insulin secretion in pancreatic
beta cells42. Intercommunication between these genetic factors,
which was revealed by the connectivity map, deserves further
functional investigation in order to decipher their roles in the
pathogenesis of DM and CKD.
There are several limitations to the present study in spite of the

meticulous application by us of a range of ML approaches to
leverage the big datasets associated with our multi-omics data in
order to gain insights into disease phenotype association. Firstly,
we used the levels of circulating biomarkers to identify disease
association. Analysis of multiple tissues, for example, kidney, liver,
and muscle, needs to be performed to clarify the sources of these
biomarkers. Secondly, renal biopsy was not conducted to ascertain
the histopathological definition of DKD in a community setting
due to its intrusiveness. Nevertheless, various clinical clues that are
indicative of superimposed glomerulonephritis, such as hematuria,
red cell cast or nephrotic range proteinuria, were minimal among
our participants. Thirdly, this is a cross-sectional study derived
from a single ethnic group. Although an external validation cohort
was used, our findings need to be verified on a larger scale and
using a number of ethnically diverse cohorts. Fourthly, questions
relating to the cause-and-effect relationship between the genes
identified in the present study need to be investigated using
transcriptional profiling, a cell platform system and/or an animal
model approach. Finally, longitudinal studies are needed to
validate the usefulness of our models when distinguishing renal
progression; this is essential so that the trans-omics signature can
become a biomarker profile that can be used for personalized
medicine on DKD patients.
In conclusion, our findings reveal the potential of employing ML

models to augment traditional methods and to help to identify
molecular mechanism(s) underlying the complex interaction
between DM and CKD; this was done via protein–protein
interaction network analysis. Knowledge of how various SNPs
and the interaction of metabolites are associated with the CKD
and DKD phenotype provides researchers with insights into
possible genetic predispositions for these diseases. Moreover, the
development of AI-assisted models in this study will advance the
ability to carry out precision diagnosis and the molecular
classification of DM, CKD, and DKD; this in turn will help the
prevention of these diseases and thus will benefit clinical practice
in general.

METHODS
Study participants and sample preparation
Between August 2013 and November 2019, 618 prospectively
recruited participants within the Northeastern Taiwan Community
Medicine Research Cohort (ClinicalTrials.gov: NCT04839796) were
enrolled in this study. Community members who were aged over
30 years old were included in the study after obtaining individual
informed consent. Subjects who were pregnant, who were
undergoing dialysis therapy, or who had undergone renal
transplantation, were excluded. At recruitment, all participants
provided a detailed personal history and received a clinical
examination. An independent cohort (178 subjects) that was used
for external validation was collected from individuals who
attended outpatient clinics at Chang Gung Memorial Hospital in
2019 and 2020; the same inclusion and exclusion criteria
mentioned above were used for these individuals. Demographic
information was collected by questionnaire. Fasting blood and
spot urine samples were collected for biochemistry analysis. This
study protocol conforms to the ethical guidelines of the 1975
Declaration of Helsinki and was approved by the Institutional
Review Board of Chang Gung Medical Foundation (IRB No:
201800802B0, 202000077B0A3, 201800273B0C602, 202002535B0).
Written informed consent was obtained from all subjects involved
in the study.

Clinical definitions
Type 2 DM was defined as a fasting glucose of ≥126 mg/dL, a
glycosylated hemoglobin ≥6.5, or the use of hypoglycemic
medications. Blood pressure was measured using the average of
two seated measurements. Hypertension was defined if the
patient was receiving medical therapy for such a condition or if
their blood pressure was >140/90mmHg. A body mass index (BMI)
of 30 kg/m2 or more, which was calculated as weight divided by
height2, was defined as obesity43. CKD was defined using the
National Kidney Foundation: Kidney Disease Outcomes Quality
Initiative classification with a persistent proteinuria or an eGFR of
less than 60mL/min/1.73 m2, as determined by the abbreviated
Modification of Diet in Renal Disease equation44. Proteinuria was
defined if the individual’s urine protein to creatinine ratio was
≥150mg/g or the individual’s urine albumin to creatinine ratio
was ≥ 30mg/g. DKD was diagnosed if subjects fulfilled both DM
criteria and CKD criteria at the same time. Current smoking status
was defined as having smoked more than 100 cigarettes in their
lifetime and having smoked in the one month before enrollment.

Biochemical analyses of blood and urine
Peripheral venous blood was obtained after an overnight fast.
After centrifugation in 1000 g, the plasma component of the blood
was used for either immediate biochemistry analysis or for storage
at −80 °C for the subsequent measurements. Genomic DNA was
then isolated from peripheral white blood cells using the phenol/
chloroform (Sigma- Aldrich, 77607; J.T.Baker, 9180-01) DNA
extraction method after lysis of red blood cells. Finally, the DNA
from each subject was precipitated and washed using 95%
isopropanol (Merck, 1.01040.4000), followed by 80% alcohol
(Merck, 1.00983.2500); the resulting DNA was used as total
genomic DNA of each individual. Various clinical parameters were
determined, including complete blood cell count, liver biochem-
ical marker levels, renal biochemical marker levels, lipid profile,
fasting sugar level intact parathyroid hormone level and total 25
(OH) vitamin D level. Serum creatinine was assessed by spectro-
photometric analysis using a modified kinetic Jaffe reaction with
standardization of the creatinine calibration by an isotope dilution
mass spectrometry reference measurement procedure. Electrolyte
levels (sodium, potassium, chloride) and carbon dioxide level were
assessed using ion-selective electrode methods. Serum calcium
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and phosphate were measured by spectrophotometric methods
(cobas, 05061482190 and 03183793122). Serum albumin and uric
acid levels were assessed by colorimetric methods (cobas,
03183688122 and 03183807190). Blood urea nitrogen, was
measured conductometry (cobas, 04460715190). Serum intact
parathyroid hormone and vitamin D were measured by electro-
chemiluminescence immunoassay (cobas, 07251068190 and
07464215190). Lipid profiles were obtained by enzymatic methods
(cobas, 07005717190, 07528566190, 03039773190, 20767107322).
Hemoglobin concentrations were obtained by the cyanide-free
sodium lauryl sulphate-Hb spectrophotometric method (sysmex,
BJ350971). Urine protein and albumin levels were quantified by
colorimetric methods (cobas, 03183734190).

Untargeted metabolomics and targeted lipidomic analysis
The plasma samples were collected and then they were extracted
using methanol before there use in both the untargeted
metabolomics analysis and an analysis by commercially available
kit (targeted p180 lipidomic analysis, Biocrates, R043-WT20431).
For the untargeted metabolomics analysis using ultra-high

performance liquid chromatography-time-of-fly mass spectro-
metry (UPLC-TOF/MS), in total, 50 μL plasma and 200 μL of cooled
methanol were mixed to precipitate any protein present. After
centrifugation at 12,000 g for 15min, the supernatant after
transfer was dried using nitrogen gas. The residue was then
dissolved in 200 μL 50% acetonitrile for LC-MS analysis. Liquid
chromatographic separation was achieved on an ACQUITY UPLC
BEH Amide column (1.7 μm, 2.1 × 150 mm, Waters Corp.; Milford,
MA, USA) using an ACQUITY TM Ultra Performance Liquid
Chromatography (UPLC) system (Waters Corp.). The column was
maintained at 45 °C, and the flow rate was set at 0.4 mL/min. The
mobile phase A was 0.1% formic acid in water and mobile phase B
was acetonitrile containing 0.1% formic acid. Mass spectrometry
was performed on a Waters Q Tof-MS (SYNAPT G2S, Waters MS
Technologies, Manchester, UK) operated in ESI positive and
negative ion modes. The scan range was from 50 to 1000m/z.
The desolvation gas flow was 800 L/hr at 500 °C. The source cone
voltage was 25 V. The capillary voltage was 2.5 kV in the positive
mode and 2 kV in the negative mode. The lock mass was leucine
encephalin (m/z 120.0813 and 556.2771 for positive and m/z
236.1035 and 554.2615 for negative).
For the targeted lipidomic analysis using ultra-high performance

liquid chromatography-tandem mass spectrometry (UPLC-MS/MS),
the plasma samples were analyzed using a commercially available
kit (AbsoluteIDQ p180—BIOCRATES Life Sciences AG, Austria). The
targeted 184 metabolites included amino acids, biogenic amines,
glycerophospholipids, sphingolipids, acyl carnitines, and hexose
and all of these molecules were quantified. The samples were
processed as previously described (3). The biogenic amines and
amino acids were determined by LC-MS/MS, and the other lipid
species were quantified by flow injection analysis coupled with
tandem mass spectrometry (FIA-MS/MS). The analysis was per-
formed in positive electrospray ionization mode using a Waters
tandem mass spectrometer (TQS, Waters MS Technologies,
Manchester, UK). Chromatographic separation was performed on
an Acquity BEH C8 column (75mm× 2.1mm, particle size of
1.7 μm; Waters crop., Milford, USA) at 50 °C using a linear gradient
that ranged from 0.2% formic acid in water to 0.2% formic acid in
acetonitrile at a flow rate of 0.9mL/min. The capillary was set at
3.2 kV. The desolvation gas flow was 1200 L/h at 650 °C. The source
temperature was 150 °C and the cone voltage was 10 V. For FIA
analysis, 0.03 mL/min was used with a commercial solvent, and the
capillary was set at 3.9 kV; the desolvation gas flow was 650 L/h
and 350 °C, while the source temperature was 150 °C and the cone
voltage was 20 V. All data was processed and analyzed using MetIQ
software (Biocrates Life Science AG, Innskruck, Austria). During
further analysis, metabolites with >10% missing values, as well as

values below the limit of detection (LOD), were excluded. Data on a
total of 147 metabolites from five compound classes were
collected and these consisted of: 15 acylcarnitines, 21 amino acids,
9 biogenic amines, 88 glycerophospholipids and 14 sphingolipids.
All values were processed by median normalization and log2
transformation as appropriate.

Whole-genome SNP analysis
The genomic DNA was collected from peripheral venous blood
and each subject was genotyped using AxiomTM Genome-Wide
TWB 2.0 array plates (Thermo Fisher Scientific, 550976). After
excluding those with a minor allele frequency rate of 0 or SNPs
with a missing rate of more than 10%, a total of 392,885 SNPs
were available for further analysis.

AI-assisted discovery of candidate biomarkers
For the model training and testing, all machine learning analyses
were performed with R Version 4.2.1 (using the random Forest,
e1071, glmnet, rpart, caret, xgboost and cvAUC packages) and
Python 3.7.11 (scikit-learn and xgboost packages). First, we
defined three models (Model 1, Model 2 and Model 3) for
differentiating DM and CKD using two-stage model building.
Model 1 was used to identify DM based on metabolomes, SNPs
and clinical tests. Model 2 was used to identify CKD in DM patients
based on metabolomes and SNPs. Model 3 was used to identify
CKD in non-DM patients based on metabolomes and SNPs. We
carried out the same steps for each model using the following
feature selection methods.
Before feature selection, a correlation analysis of DM and CKD

based on the metabolomes and SNPs was tested by the One-Way
Analysis of Variance (ANOVA) or χ2 test (Supplementary Fig. 1).
During the feature processing, untargeted metabolites with
p-values < 0.05/13231 among the 13231 untargeted metabolites
were used for correlation analysis for DM and CKD; the p-values
were calculated by ANOVA and adjusted using the Bonferroni
correction. In a similar manner, targeted lipidomics information
(P180-metabolites) with p-values < 0.05/147 among 147 P180-
metabolites, and SNPs with p-values < 0.05/392885 and an odds
ratio (OR) >1 among the included 392885 SNPs were used for two
separate correlation analyses of DM and CKD (Supplementary Fig.
1a, b). Features were selected by AI-based methods using the
following three machine learning algorithms: (1) feature impor-
tance using the Random Forest (RF) approach; (2) weighted
support vector using the Support Vector Machine (SVM) approach;
and45 a shrinkage coefficient > 0 using the Least Absolute
Shrinkage and Selection Operator (LASSO) approach. Subse-
quently, the results obtained from these three algorithms were
integrated to produce feature importance ranking lists for the
three models, namely Model 1, Model 2 and Model 3 (Supple-
mentary Fig. 1c).
Then, we used three supervised algorithms to select important

features, namely the RF, SVM and LASSO methods, using an input
dataset having a train-to-validation split ratio of 80:20. The
metabolomes, SNPs and clinical tests were ranked based on the
summation of the selected counts using 100-time bootstrapped
random samples and the three machine-learning methods. The
three models (Model 1, Model 2 and Model 3) were used to extract
the minimum features required for highest performance in terms
of AUC and accuracy rate (Supplementary Figs. 2, 4). After this
process, we retained the known features with defined identity
based on their feature importance from the three models (Model
1, Model 2 and Model 3). Finally, we used 10-fold cross validations
(random sample with a train and test split ratio of 90:10) to carry
out two-stage model building using Extremely Randomized Trees
(Extra-Tree), RF, SVM, Logistic Regression (LR) and Extreme
Gradient Boosting (XGB). Furthermore, the validation cohort was
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used to valid our training model to avoid overfitting (Fig. 1e and
Supplementary Table 8).

Statistical methods
The ANOVA was used to compare differences between the
continuous variables that were derived from more than two groups.
The results are presented as medians (Min, Max) or means (standard
deviations). The χ2 test was used to examine the distribution of
categorical variables. The p-values of the ANOVA and χ2 tests were
used to determine the strength of the association of variables with
control status, DM, non-diabetic CKD and DKD; we also investigated
the distribution of these groups. Univariate logistic regression analysis
followed by backward selection multivariate logistic regression
analysis was conducted to determine the associations between a
given AI-discovered feature and the various different disease groups.
The statistical software used for this study was R (version 4.2.1).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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