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Representational ethical model calibration
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Equity is widely held to be fundamental to the ethics of healthcare. In the context of clinical decision-making, it rests on the
comparative fidelity of the intelligence – evidence-based or intuitive – guiding the management of each individual patient. Though
brought to recent attention by the individuating power of contemporary machine learning, such epistemic equity arises in the
context of any decision guidance, whether traditional or innovative. Yet no general framework for its quantification, let alone
assurance, currently exists. Here we formulate epistemic equity in terms of model fidelity evaluated over learnt multidimensional
representations of identity crafted to maximise the captured diversity of the population, introducing a comprehensive framework
for Representational Ethical Model Calibration. We demonstrate the use of the framework on large-scale multimodal data from UK
Biobank to derive diverse representations of the population, quantify model performance, and institute responsive remediation. We
offer our approach as a principled solution to quantifying and assuring epistemic equity in healthcare, with applications across the
research, clinical, and regulatory domains.
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INTRODUCTION
Medicine has always been personal, concerned with the individual
patient whose specific complaint the physician is asked to
address. Under pressure to render the underlying intelligence
explicit, objective, replicable, and cumulative, evidence-based
medicine has shifted the focus to large populations, guiding
clinical management by the parameters of simple statistical
models that discard individual variation as noise1,2. The resultant
gain in population-level fidelity may or may not be associated with
a loss at the individual level: we do not know, because the studies
that generate care policies and those that evaluate them adopt
the same inferential approach.
This blind spot extends to equity of care: the universal

obligation, rooted in Aristotle’s notion of epieikeia3, to seek the
best achievable outcome for each individual patient. The care
recommended by a model is inequitable as far as it fails to fulfil a
patient’s individual potential for recovery and health4. In neglect-
ing individuality, conventional evidence-based medicine conceals
our success or failure in maintaining such equity. This defect is all
the more important for being epistemic, of the upstream knowl-
edge from which all downstream clinical action derives.
Until the advent of machine learning, this major ethical problem

had no obvious remedy. But it is now clear that richly expressive
models of high-dimensional data can characterize populations
with greater fidelity to the individual5–8. Whether implicitly or
explicitly, such models describe patients in terms of more closely
individuating subpopulations identified by multiple interacting
characteristics, whose distinct structure may be directly material to
clinical care, interfere with our ability to determine its optimal
form, or both. By revealing differences between subpopulations,
machine learning casts a brighter light on epistemic equity than
crude population descriptions could provide, and enables us to
pursue our deep moral obligation to assure it.
Though a matter of intense study in other domains, there is no

accepted framework for defining, diagnosing, or quantifying

epistemic equity arising in the guidance of clinical care by
algorithmic models, whether simple or complex, traditional or
novel, and neither regulatory nor professional bodies currently
provide for it. Here we propose such a framework, termed
Representational Ethical Model Calibration.
Any quantitative framework here must operationalise the

notions of the epistemic equity of a model and the descriptive
identity of a patient. We define the former as equal maximisation
of model fidelity across the population: where the available
knowledge is plausibly invariant, equity means equality; where it
varies under some external constraint outside our power to
address, equity means equal departure from the attainable
maximum. We define the latter as any set of replicable
distinguishing characteristics material to the specific healthcare
context. For example, the equity of a classifier for detecting
ischaemic injury on a brain scan might be measured by balanced
accuracy evaluated as a function of age. Observing systematic
variation of accuracy with age raises the possibility of inequitable
performance across patients so identified.
Many quantitative indices of model fidelity and its variation

exist: the optimal choice will vary with the specific application. The
appropriate criteria of identity, however, are not so easy to
determine. The use of simple descriptors such as age, sex, and
ethnicity, taken in isolation, presupposes that they are sufficiently
individuating. But, as we have seen, a patient will typically belong
to a distinct, replicable – and therefore learnable – subpopulation
defined by the interaction of multiple characteristics. The under-
performance of a model in such a subpopulation may not be
evident from examination of single characteristics alone. Any
principled notion of equity obviously cannot exclude groups
whose defining identity eludes simple description. Indeed, there is
increasing evidence that it is precisely those falling in the
intersectional faultlines between traditionally recognized groups
that may be most vulnerable9–13. Moreover, neither the total
number nor the nature of the relevant identifying characteristics
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may be limited a priori. If a social, environmental, demographic,
physiological, pathological or any other replicable distinguishing
characteristic – whether self-assigned or externally measured –
has a systematic impact on clinical outcomes, we have a moral
duty to examine it. Naturally, the wide descriptive space so
defined may not be easily navigable. But we can employ
representation learning14 to derive rich yet succinct descriptions
of the population that render its diversity surveyable.
Our proposed framework therefore combines the evaluation of

model performance against identifying descriptors – ethical
model calibration – with the derivation of descriptors through
representation learning that optimally capture the diversity of the
population. In relating observed to ideal performance, it is kin with
statistical model calibration15. It enables the epistemic equity of a
model to be judged against identities defined as richly and
comprehensively as available data allow.
Application of the framework is illustrated in Fig. 1. In brief, the

fidelity of a given model, quantified by the metric most suited to its
task, is evaluated against a succinct description of the population
derived from learnt representations of the same (primary) data or
other (secondary) data drawn from the same domain. Systematic
differences in performance across the population identify potential
inequities, and trigger remediation – action to correct the disparity

or limit its downstream impact – by any applicable mechanism,
such as acquiring more data, modifying the model, or limiting its
application. The cycle of calibration and remediation may be
repeated until a result satisfactory on some agreed criterion is
obtained. Extending the foregoing example, an ischaemic stroke
classifier may be found to perform poorly within a distinct
subpopulation with a characteristic age interval and spectrum of
co-morbidities. Identifying this subpopulation directs action on the
data, the model, or the scope of application, until calibration shows
equity has been achieved. Where the representations are based on
a generative model of the primary data, it enables immediate
remediation by augmenting model retraining with synthetic data
from the under-performing subpopulation.
This approach is applicable to any model, whether conventional

or machine learning-based, any metric of performance and its
disparity, and any method of representation learning16–19. It leaves
the nature of the remediation open, to be chosen as specific
circumstances dictate, and distinguishes remediation from the
calibration used to guide it. Here we demonstrate its use, end-to-
end, in the context of predicting glycaemic control – as indexed
by glycated haemoglobin (HbA1c) concentrations20 – from large-
scale, high-dimensional data in UK Biobank21. We choose
glycaemic control owing to the importance of glucose intolerance
and complex patterns of its susceptibility. We employ deep
representation learning based on autoencoders owing to their
architectural simplicity and expressivity, and established applica-
tions in healthcare5.
We show how the framework can be used to detect the

systematic epistemic inequity of a model with respect to
subpopulations concealed by the richness of their identity, and
guide remediation in pursuit of more equitable model perfor-
mance. Although model epistemic equity is only one aspect of
equity, itself only one aspect of medical ethics, the position of
models at the apex of evidence-based clinical decision-making
lends the highest ethical significance to the equity of their
performance. Our results are relevant to the domains of
quantitative ethics, multidimensional fairness, and the regulation
of mathematical models in healthcare22.

Fig. 1 The Representational Ethical Model Calibration Frame-
work. The fidelity of a candidate model with respect to subpopula-
tions identified by representation learning (performed on either
primary or secondary data) is quantified in an ethical calibration
step that informs appropriate remedial action, within an iterative
process repeated until an agreed criterion of model equity is
reached.

Fig. 2 Diabetes prevalence by variable. Higher prevalence was seen in males (a), smokers (b), those with high blood pressure (c), certain
ethnicities (d), those with higher body fat % (e), and the more deprived (f).

R. Carruthers et al.

2

npj Digital Medicine (2022)   170 Published in partnership with Seoul National University Bundang Hospital

1
2
3
4
5
6
7
8
9
0
()
:,;



RESULTS
Associations of impaired glycaemic control
We evaluated a random selection of UK Biobank records split into
150,000 training and 50,000 validation sets, including a range of
demographic, social, lifestyle, physiological, and morbidity
features potentially relevant to glycaemic control (see Methods).
The commonest cause of impaired glycaemic control – diabetes
– showed variation with sex, smoking, hypertension, ethnicity,
body fat composition, and social deprivation consistent with
previous data from populations with a similar age distribution
(Fig. 2). A diagnosis of diabetes was associated with higher and
more widely dispersed HbA1c, reflecting variable success in the
clinical management of the underlying disorder (Fig. 3). These
observations suggest predictive models of HbA1c based on this
data can be considered representative of a plausible real-world
modelling scenario.

Basic ethical model calibration
A regression model based on a conventional fully-connected feed-
forward net with three hidden layers, an architecture chosen for its
controllable flexibility (see Methods), was evaluated across the
population as a whole. Near-identical root mean squared errors
were observed on the training and validation sets – 6.099 and
6.097, respectively – corresponding to normalised root mean
squared errors (NRMSE) of 0.169 for both. Nonetheless, examina-
tion of performance independently stratified by sex, smoking, and
deprivation revealed substantial disparities in model fidelity
(Table 1), with evident underperformance for men, smokers, and
the socially more deprived.

Representational ethical model calibration
To permit the identification of underperformance localised to
more complex subpopulations defined by the interactions of
multiple factors, we used an autoencoder to embed participants
in a two-dimensional latent representational space that com-
pactly described their high-dimensional similarities and differ-
ences (see Methods). Labelling the embedding by individual
regression errors (Fig. 4b) revealed potentially structured varia-
tion in fidelity; labelling it by key descriptive features revealed its
organisation (Fig. 4d–i). To facilitate the identification of a
tractable number of characteristic subpopulations, the latent
space was segmented into fifty groups using a Gaussian Mixture
Model (GMM). Examining the five largest groups in the bottom
25th regression performance centile revealed a diversity of
patterns of individual features, most of them shown on
permutation testing to be significantly different from the rest of
the population (Table 2). Crucially, model fidelity varied more
widely than across basic features of ethical concern, and reached

lower values, illustrating the need for evaluating feature
interactions in the quantification of equity.

Remediation
Revealing the pattern of inequitable performance allows us to
target our efforts at remediation. The optimal approach to
remedying inequitable models – in healthcare and elsewhere – is
the subject of intense study, and will vary circumstantially in
feasibility and effectiveness. Here we illustrate only one approach
to remediation, focused on model training. The subpopulations
exhibiting higher than median NRMSE were designated as under-
served. A simple strategy of remediation was then applied,
oversampling these subpopulations in model training, generat-
ing a very different pattern of performance with less pronounced
disparities across the population, but at the cost of reduced
fidelity overall (Figs. 5, 6). These observations can be formalised
in terms of NRMSE, and standard indices of distributional equality
such as the Gini coefficient (Tables 3, 4). Varying the degree of
oversampling moved NRMSE and Gini coefficient scores in the
expected directions, as shown in Fig. 7. Performance disparities
persisted across groups, such as men and women, defined by
dimensions other than those selected for remediation. Note our
objective here is not to devise or implement an optimal
approach to remediation, but to show how the calibration and
remediation processes relate. An optimal approach would
improve equity without deleterious impact on other groups or
overall performance.

DISCUSSION
We have formulated a framework, Representational Ethical Model
Calibration, for detecting and quantifying inequity in model
performance distributed across subpopulations defined by multi-
ple interacting characteristics. Central to the framework is the use
of representation learning to compress and render navigable
the high-dimensional space of patient diversity over which
equitable performance must be evaluated. We have demonstrated
ethical model calibration on large-scale UK-biobank data in the
context of a common morbidity – impaired glycaemic control –
and a simple, purely illustrative approach to remediation.
Here we examine ten aspects of the conceptualisation,

implementation, and application of our approach.
First, if epistemic equity cannot be assumed where, as here, the

modelling task is comparatively simple and the data are balanced
and abundant, the case for evaluating it explicitly across all
models employed in healthcare ought to be hard to resist. The
narrow recruitment mechanism makes a test based on UK Biobank
conservative, for the underlying heterogeneity is likely to be less
pronounced than that observed in clinical reality. Equally, our
analysis shows that calibration across familiar, observed, unitary
features such as demographics cannot reveal inequity across
unfamiliar, latent, composite features accessible only through

Fig. 3 Relationship of diabetes and glycated haemoglobin
(HbA1c). Those without diabetes tended to have HbA1c below
the diagnosis threshold of 48, while those with diabetes had a wide
range of HbA1c both above and below the threshold.

Table 1. Stratified model performance to demonstrate inequity.
NRMSE is shown across three example variables.

Sex Smoking Deprivation

F M No Yes Low High

Training 0.152 0.186 0.162 0.176 0.156 0.187

Validation 0.151 0.187 0.161 0.177 0.158 0.185

The deprivation index was binarized into high and low by mean split. The
model’s overall training NRMSE was 0.169. Consistent performance
differences are shown, with the model performing better (lower NRMSE)
for women, non-smokers and the less deprived.
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representation learning. A commitment to ethical model calibra-
tion implies a commitment to the representational kind.
Second, the epistemic equity of the models used to guide

clinical care – our concern here – is obviously not the only kind of
equity healthcare must consider. Unwarranted variation in clinical
outcomes may arise from a wide diversity of procedural, cultural,
social, economic, political, and regulatory factors that operate
outside the realm of evidence-guided practice and need to be

addressed independently from it5,16,22–32. In focusing on epistemic
equity we are not denying the importance of other kinds. But
since action proceeds from belief, and belief in medicine strives to
be objectively evidential, detecting and quantifying epistemic
equity will always be a fundamental concern. Equally, in using the
qualifier “ethical”, we do not mean to imply that detecting equity,
still less epistemic equity, exhausts the ethical realm, only to
indicate the purpose of the calibration our framework enables,
applied to an object – a mathematical model – whose ethical
expression is limited to fidelity.
Third, to draw attention to subpopulations defined by the

interactions of many or unfamiliar identifying characteristics is not
to neglect the importance of familiar single characteristics taken in
isolation, still less those already identified as posing a risk to
equity. Indeed, equity with respect to a single characteristic may
be concealed by disordinal interactions. For example, if compared
with men of any age a model both over-performs in young
women and under-performs in elderly women, calibration against
sex alone will not reveal any difference between men and women
at all. Even those interested in a particular characteristic cannot
afford to ignore its interactions with others.
Fourth, since the objective is to evaluate the epistemic equity of

a model with respect to a description of the population that best
exposes it to scrutiny, the choice of modelled characteristics will
typically be constrained only by feasibility. Prejudice for or against
any given characteristic would undermine the very notion of
equity we are seeking to promote. Equally, inequities embedded
in the source characteristics themselves may propagate to their
representation: a problem mitigated by calibrating with multiple
different representations, either constructed from different sets of
characteristics, or drawn from different levels of a hierarchical

Fig. 4 Two-dimensional latent space. The space is coloured by data density (a), model error (b, c), and the values of selected variables (d–i).
The space appears to be dominantly clustered by sex (d). The largest groups in the worst 25th performance percentile are shown in (c),
associated with higher levels of HbA1c (i).

Table 2. Permutation test results.

Group

22 2 41 33 23

High Blood Pressure 0.0010 0.0010 0.0010 0.0010 0.0010

Smoking 0.0010 0.0010 0.0010 0.1029 0.0010

BMI 0.0010 0.0010 0.0010 0.0010 0.0010

HbA1c 0.0010 0.0010 0.0010 0.0010 0.0010

Age 0.0010 0.0010 0.0010 0.0010 0.0010

Ethnicity: white 0.0579 0.0010 0.0010 0.0010 0.0010

Townsend Deprivation Index 0.1349 0.0010 0.0010 0.0040 0.0010

P-values below a given significance level indicate that the group’s mean
was significantly different from the remainder of the data for that variable.
Applying the Benjamini-Hochberg procedure to control the False
Discovery Rate across multiple tests resulted in 85 significant results out
of 110 tests at α= 0.05.
Selected permutation test results (p-values) are shown for the five largest
groups in the worst 25th performance percentile for prediction.
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decomposition of a single set, yielding a multi-scale perspective
on equity.
Fifth, although contemporary discourse on model equity is

tightly focused on complex models based on machine learn-
ing33–35, the question of epistemic equity arises with any model
architecture – simple, complex, transparent or opaque – indeed
with intuitive decision-making too. The simple models of
traditional evidence-based medicine, crafted in ignorance of
population heterogeneity, are not more equitable but merely
blind to the violations of equity they may commit. It precisely
because complex models seek to ground beliefs about individuals
in a local feature space that variations over the population
become both surveyable and remediable. But it is also true that
greater model flexibility can be associated with greater model
fragility, potentially amplifying disparities through subpopulation-
specific catastrophic failure36–40. In any event, all models – and
intuitive decision-making – should be evaluated, for no practice is
immune to inequity.
Sixth, the causes of epistemic inequity will vary in their

susceptibility to remediation41–46. The irreducible, random com-
ponent of variation may be greater in one subpopulation than
another through constitutional differences in the underlying
biological processes nothing could possibly equalise, such as
those associated with ageing. There may be variations in data
representation, class balance, labelling, and noise that are outside
the power of healthcare systems to address, imposing practical,
circumstantial limits on equity. But that a representation model
can identify a distinct subpopulation shows its features are
learnable, and that underperformance is therefore potentially
addressable, even if it may not be found to be so on subsequent
examination. Our framework neither assumes nor accepts
differential limits on epistemic quality: its task is to focus attention
on where they most need to be examined.
Seventh, none of the components of the framework – the target

model, the representation model, the metrics of fidelity and
equity, or the approach to remediation – are generally prescribed.
It is natural that each should be adapted to the specific task and
its circumstances: a strength of the approach is its flexibility. In
particular, the expressivity of the representation should be tuned

to the heterogeneity of the data and its learnability under the
applicable data and computational regime. Where supported by
the regime, it is appropriate to use a finely granular representa-
tion; where not, a coarser representation may still capture
systematic intersectional effects non-representational calibration
would miss. Hierarchically organised representations provide a
graceful way of manipulating representational expressivity with-
out the need to retrain the representational model: one simply
chooses the most suitable level of the descriptive hierarchy. In
general, our innovation is not in the ingredients but in the way in
which they are put together to provide a robust, comprehensive
solution to the problem of quantifying equity in populations of the
heterogeneity likely to obtain in reality.
Eighth, although most naturally derived from the data on

which the target model is trained, the representations used in
calibration may originate from another source as long as the test
data can be mapped onto the same representational space. The
task of the representation model – to redescribe the population
in a way that makes its heterogeneity legible – does not require
the target label, and can therefore be accomplished with larger
scale data from elsewhere. This mechanism can even be used in
remediation to augment the target data to include patterns of
variation derived from another source. For example, one might
use learnt patterns of age-related changes in brain morphology
to deform an independent set of brain images across a wider
range of aged appearances47.
Ninth, remediation need not be confined to model retraining,

but may encompass any action that improves the quality of the
decision-making the target model is used to guide, including
simply narrowing the applicable scope of a model. Theoretically
the most potent action, though perhaps the least discussed in the
literature, is acquisition of new data selected by its predicted
impact on model equity48,49. Just as such active learning may
make the decision boundaries of a discriminative model easier to
delineate, so it may ensure they are equitably configured. Indeed
it would be entirely natural to add an equity constraint to an
active learning or sequentially optimised experimental design
modelling framework. In general, it should be part of the objective
of remediation to attain improvements in equity without impact

Fig. 5 Model performance by GMM group in the latent space. Performance is shown before (a) and after (c) remediation. The top panel of
(a) shows model performance by group, while the bottom panel shows the group counts. The model showed mostly even performance across
groups. The top panel of (b) shows the effect of remediation. Lower-performing (higher NRMSE) groups show improvements, but the better-
performing groups got significantly worse. The bottom panel of (b) shows group counts in descending order of the original NRMSE. It can be
seen that performance decreases occurred in high-volume groups. The performance distribution worsened overall, shown in (c), and this
would likely offset any gain in equity.
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on other subpopulations or on the population as a whole47. Only
remediation methods that add information, through additional
data or more accurate prior beliefs, could plausibly combine joint
improvements in equity and overall fidelity. Since knowledge in
healthcare is not a fixed quantity, to be divided more or less
evenly across the population, redistributive approaches are less
appropriate here than in other domains of activity33–35,41,50. This is
not a zero-sum game.
Finally, we should recognize the deep union between epistemic

equity and the individuation of care: neither is possible without
the other. Equity implies maximising our knowledge of the
optimal care of a patient, identified as richly as the task demands,

up to the practically achievable limit; successful individuation
implies having attained that maximum. Both require the flexible,
highly expressive models contemporary machine learning has
only recently supplied but medicine has always needed.
In summary, our proposed framework enables the assurance of

the epistemic equity of any model in healthcare – whether simple
of complex – under ethically the most general notion of identity:
one defined not merely by demographics but by any set of
characteristics that define a distinct group, alone or in interaction.
Our approach places ethical model calibration on a robust
conceptual and algorithmic footing, advancing the application
of quantitative ethics to medicine, and promoting equitable
clinical care at the highest level: the knowledge it rests on.

METHODS
Dataset
The dataset for this study was drawn from the UK Biobank. The UK
Biobank was established as a major prospective study with
significant involvement from the UK Medical Research Council and
the Wellcome Trust21, and has become an important open-access
resource for medical researchers across the UK and worldwide.
The subset of data contained 150,000 records in the training set
and 50,000 records in the validation set, each record representing
a distinct individual. The variables in the dataset were as follows
(UK Biobank field number in brackets): Demographic: Sex (31), Age
(33), Smoking (20116), Ethnicity (21000), Townsend Deprivation
Index (189); Investigatory: Haemoglobin (30020), Glycated Hae-
moglobin (30750), Body Mass Index (21001), Weight (21002), Body
Fat % (23099); Medical Diagnoses: Diabetes (2443), High blood
pressure (6150), Heart Attack / Angina / Stroke (6150), Blood Clot /
Emphysema / Lung Clot, Asthma, Hayfever/Rhinitis/Eczema (6152),
Other Serious Condition (2473).
The condition of interest in this study was Type II diabetes:

globally a leading, and increasing, cause of morbidity and
mortality51, predicted to become the most prevalent condition
in the UK Biobank cohort21. Diabetes was chosen in order to test
the framework with a realistic medical problem, and a selection of
variables of ethical interest. It was expected that the diagnosis of
diabetes, and by association raised levels of HbA1c, would be
predictable from the data. This was known to be plausible due to
existing work52 on diabetes prediction using UK Biobank data,
which influenced the variable selection. The dataset was used for
the regression task of predicting the level of glycated haemoglo-
bin (HbA1c) using the other variables, excluding the presence of a
diabetes diagnosis.
To prepare the data, a small number of records with what

appeared to be outlier values of HbA1c were removed. Some
other variables of interest were dropped including Income and

Fig. 6 Effect of remediation. NRMSE is shown for the whole dataset, the base group and the under-served group, before and after
remediation, over n= 10 trials, on training and validation data. Performance was worse on the under-served group, and this improved after
rebalancing. However, there was a high cost in base group performance. See differences in Table 3. The boxplots show the median (centre
line), 25th and 75th centiles (box), 1.5 times the interquartile range (whiskers), and outliers (diamonds).

Table 3. Difference in Normalised Root Mean Square Error (NRMSE)
before and after rebalancing.

Mean Difference
in NRMSE

Standard Deviation

Training Validation Training Validation

All −0.0411 −0.0420 0.0466 0.0470

Base −0.0817 −0.0809 0.0666 0.0667

Under-served 0.0315 0.0268 0.0335 0.0300

Mean differences and standard deviations of differences are presented
across n= 10 trials. Results are presented for the entire dataset, the base
group and the under-served group. A positive difference indicates better
model performance. It can be seen that base group performance worsened
on average while under-served group performance improved. NRMSE
values are illustrated in Fig. 6.

Table 4. Gini coefficients. Mean Gini coefficients, differences and
standard deviations are presented, before and after rebalancing,
across n= 10 trials.

Mean Gini Coefficient Standard Deviation

Training Validation Training Validation

Original 0.1594 0.1595 0.0163 0.0170

Rebalanced 0.1466 0.1470 0.0309 0.0299

Difference 0.0128 0.0124 0.0321 0.0324

A Gini coefficient of zero indicates equality and a Gini coefficient of one
indicates maximum inequality. A positive difference can be be observed,
which indicates a decrease in Gini coefficient on average and hence a more
equitable distribution of performance across groups. However, the
standard deviations indicate that this behaviour was not consistent.
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Forced Expiratory Volume, owing to missing data. The ethnicity
codes in the data were also grouped into broader categories for
ease of illustration. The diagnoses of heart attack, angina and
stroke were combined into one variable due to the format of the
original data and low prevalence, as was Blood Clot/Emphysema/
Lung Clot and Hayfever/Rhinitis/Eczema for the same reasons. Any
records with missing values were removed; the number of records
above refers to complete records.
The UK Biobank project was approved by the National Research

Ethics Service Committee North West-Haydock (REC reference: 11/
NW/0382). An electronic signed consent was obtained from the
participants.

Regression model
A standard feed-forward neural network model was used for the
regression task. Three hidden layers of neurons were used, with
the number of neurons in each layer being (16,16,8), yielding 753
parameters. The ReLU activation function was used at each hidden
layer. The mean squared error loss function was used. The model
was trained using gradient descent with a batch size of 10 and the
Adam optimiser with a learning rate of 0.001, as has been shown
to perform well in a variety of contexts53. The number of epochs
was set following experimentation based on error on the
validation set. Variables were normalised before modelling to
have a mean of zero and standard deviation of one across
participants. The Pytorch library was used.
Model performance was measured using Root Mean Square

Error (RMSE) and Normalised RMSE (NRMSE), which is RMSE of
the model normalised by the average Root Mean Square Error of
the subpopulation. This results in a proportional measure between
zero and one. The normalisation was done to allow for different
variance between subpopulations. For example, patients with
diabetes have a higher variance in glycated haemoglobin (HbA1c),
and so a higher RMSE could be expected and is not necessarily
indicative of decreased model performance. One disadvantage of
(N)RMSE is that it can be affected by outliers.
Existing equity metrics such as Statistical Parity Difference or

Equal Opportunity Difference were not used. These tend to be
classification-oriented, limited in scope and require the definition
of favourable vs unfavourable outcomes. For example, judge-
ments around the relative consequences of a disease being under-
or over-diagnosed were not addressed, only that model accuracy
differs across the dataset.

Unsupervised models
An autoencoder model was used to in an attempt to uncover
new subpopulations in the latent space of the data. An
autoencoder consists of a two-part neural network, where the
first “encoder” network compresses the data into a low-

dimensional space, and the second “decoder” network attempts
to reconstruct the original data from the compressed representa-
tion. The autoencoder architecture consisted of two hidden
layers with (8,4) neurons before a “bottleneck” layer of two
neurons (the compressed data) and a mirror-image decoder
network. The mean squared error loss was used to calculate
reconstruction error. For most experiments, the compressed layer
was kept at two neurons for visualisation purposes, even though
it was unlikely that all the information could be retained in just
two variables given the specific nature of the datasets. The other
training hyperparameters were set following a similar procedure
to the neural network regression model. Non-binary variables
were normalised before modelling.
Given a two-dimensional latent space containing key informa-

tion about relationships in the dataset, a Gaussian Mixture Model
(GMM) was used to identify subpopulations within that space.
The GMM is a weighted mixture of multivariate Gaussian
probability distributions54. It can be used to estimate complex
densities due to its flexibility and ability to generalise to high
dimensions. Here our interest was to segment the latent space
into subpopulations, which could be interpreted as probabilistic
clustering where each point is assigned to the Gaussian
component with the highest probability. Although GMM is
effective as a clustering method, there are limitations on the
shape of clusters it can find. In addition, the number of
components must be specified. To determine the optimal
number of components, silhouette scores were calculated.
Silhouette scores are based on a comparison of distances
between points both within and between clusters55. They are
close to one for well-separated clusters and close to zero or
negative for poorly-separated clusters. For the latent spaces in
this study, the mean silhouette scores tended to decrease as the
number of Gaussian components in the GMM increased. This
indicates that the clusters identified by the GMMs were not well-
separated, as there was no clear distinction between them.
Nevertheless, the GMM was still used to segment the latent space
for analysis, based on the numerical values of the latent space,
which were expected to have some degree of local correspon-
dence. A fixed number of fifty components was used to balance
between diverse subpopulation identification and having a
sufficient number of data points in each subpopulation. Since
neural network models such as autoencoders produce distrib-
uted or “entangled” representations that are subject to random
variation, there is no guarantee of finding meaningful subpopu-
lations with this method, and in practice a greater degree of
disentanglement would be necessary to identify consistent and
meaningful subpopulations. Note this is just one possible
method of segmenting the latent space: it was used here merely
to exemplify the general approach to representational ethical
model calibration.

Fig. 7 Effect of upsampling multiplier on performance metrics. Panel (a) shows NRMSE for the entire dataset, the base group and the under-
served group, for training and validation sets. Panel (b) shows the Gini coefficient. In both training and validation sets, increasing the
upsampling multiplier improved model performance on the under-served group, while negatively affecting performance on the base group
and overall. The Gini coefficient tended to drop as upsampling increased, mostly indicating increased equity in the distribution for higher
levels of upsampling.
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Subpopulation performance
The regression model tended to perform differently across
subpopulations, deviating from the ideal of equal fidelity for all.
To identify the characteristics of those that exhibited particularly
poor model performance, a combination of visual analysis and
permutation tests was employed. Permutation tests are non-
parametric tests that explore all possible random orderings of a
variable in a dataset and thus produce a p-value of a variable’s
mean within a subpopulation56. This provides an objective way to
determine which variables are important in defining that
subpopulation. It does not, however, give specific details and
the overall results require domain knowledge to interpret. For
computational reasons, it was unfeasible to calculate all possible
permutations, and so the standard approximation of 1000 rounds
was used. Due to the number of tests (testing each of 25 variables
across 5 groups), the Benjamini-Hochberg procedure57 was used
to control the False Discovery Rate at α= 0.05.
To quantify the overall level of inequity in a population of

model predictions, the Gini coefficient was calculated. This
economic metric was originally used to index the dispersion of
income differences in a population58. Its calculation is based on
the relative mean absolute difference in incomes across the
population. A Gini coefficient of zero indicates equality of income
and a Gini coefficient of one indicates maximum inequality. If the
distribution is random, the Gini coefficient has an expected value
in the region of 0.33. In our case, “income” becomes model
fidelity as captured by NRMSE. The Gini coefficient is a useful
summary statistic, particularly when examining the impact of a
remediation algorithm on a population of model results. Note
other indices of equity may be used here, dependent on the
measure of fidelity most appropriate to the specific task: our use
of Gini is intended to be illustrative.

Remediation
Once model inequity was identified, the chosen remediation
approach was to oversample the underperforming group,
before retraining the model on the rebalanced dataset. This is
referred to as rebalancing. There is no consensus on the best
method for remediation59: rebalancing is used here merely to
illustrate remediation in the context of the broader calibration
framework. The underperforming group was defined to be data
points in subpopulations with a performance metric below the
median performance for all. This reduced the emphasis on
particular subpopulations, which were automatically resampled
in proportion to their size. This method was selected after
previous experiments showed that rebalancing based on
individual groups could push already-marginalised groups to
have even worse results. Hence the dataset was split into an
“under-served” (underperforming) group and a “base” (remain-
der) group. The oversampling multiplier was set to optimise
model performance following experimentation (Fig. 7). The
experiment was repeated 10 times and the variance in results is
shown in Fig. 6 and Tables 3, 4.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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