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Collaborative strategies for deploying artificial intelligence to
complement physician diagnoses of acute respiratory distress
syndrome
Negar Farzaneh 1,2,6✉, Sardar Ansari1,2,6, Elizabeth Lee3, Kevin R. Ward 1,2,4 and Michael W. Sjoding1,5,6

There is a growing gap between studies describing the capabilities of artificial intelligence (AI) diagnostic systems using deep
learning versus efforts to investigate how or when to integrate AI systems into a real-world clinical practice to support physicians
and improve diagnosis. To address this gap, we investigate four potential strategies for AI model deployment and physician
collaboration to determine their potential impact on diagnostic accuracy. As a case study, we examine an AI model trained to
identify findings of the acute respiratory distress syndrome (ARDS) on chest X-ray images. While this model outperforms physicians
at identifying findings of ARDS, there are several reasons why fully automated ARDS detection may not be optimal nor feasible in
practice. Among several collaboration strategies tested, we find that if the AI model first reviews the chest X-ray and defers to a
physician if it is uncertain, this strategy achieves a higher diagnostic accuracy (0.869, 95% CI 0.835–0.903) compared to a strategy
where a physician reviews a chest X-ray first and defers to an AI model if uncertain (0.824, 95% CI 0.781–0.862), or strategies where
the physician reviews the chest X-ray alone (0.808, 95% CI 0.767–0.85) or the AI model reviews the chest X-ray alone (0.847, 95% CI
0.806–0.887). If the AI model reviews a chest X-ray first, this allows the AI system to make decisions for up to 79% of cases, letting
physicians focus on the most challenging subsets of chest X-rays.
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INTRODUCTION
Recent advances in artificial intelligence (AI) have led to the
development of AI models with human-level performance in the
diagnoses of many health conditions based on clinical waveforms
and images1–3, including radiographic images4. However, because
medical diagnostic decisions are often high-stakes, completely
replacing human expertise with automated AI models alone is
unlikely to be acceptable by clinicians and patients5. Instead,
strategies where an AI model collaborates with, rather than fully
replaces a physician, may be a reasonable alternative. When
optimized, such collaborations can result in higher diagnostic
accuracy than either physicians or AI systems alone6.
A limited body of literature exists investigating how automated

AI systems can collaborate with physicians for diagnostic decision-
making. Several studies have examined strategies where an AI
model’s prediction is shown to a physician before the physician
makes the final diagnostic decision6–9. However, there may be
scenarios where alternative strategies that better leverage the
unique strengths of AI models and physicians may be more
optimal. Understanding both the strengths and blind spots of AI
algorithms and physicians could provide insights as to how AI and
clinicians could most effectively collaborate together and help
guide decisions surrounding AI model deployment to ensure safe,
efficient, and effective use of AI systems to improve diagnostic
decision-making.
This work examines possible strategies for AI model deploy-

ment on chest X-rays in the context of identifying acute
respiratory distress syndrome (ARDS). ARDS is a common critical
illness syndrome10 that develops in over 200,000 people in the

United States every year11,12 and has a mortality rate of 40%13 yet
diagnosis is commonly delayed or missed. Several studies have
demonstrated that this syndrome is under-recognized in clinical
practice resulting in patients not receiving evidence-based
therapies13. ARDS is currently diagnosed based on the Berlin
ARDS definition with the presence of bilateral airspace opacities
on chest X-rays being a key criterion for the diagnosis14–16.
However, physicians have been shown to have low reliability
identifying findings of ARDS on chest X-rays17. Therefore, an AI
tool could be of value to support clinicians with the interpretation
of chest X-rays for ARDS.
In this study, we examine the strengths and weaknesses of

physicians and a previously published deep learning algorithm18

for interpreting chest X-rays for ARDS to gain insight into potential
strategies for physicians and an AI model to collaborate in the
diagnosis of ARDS. Then, we evaluate several strategies for model
deployment and physician-AI collaboration, including: (1) physi-
cians interpreting chest X-rays first and deferring to the AI model if
uncertain, (2) AI model interpreting chest X-rays first and deferring
to a physician if uncertain, and (3) AI model and physician
interpreting chest X-rays separately and then averaging, or
weighting, their interpretations. While we find that the weighted
average of AI and physician diagnoses leads to the highest
accuracy, this strategy would require physicians to review all chest
X-rays. Having the AI model interpret a chest X-ray first and defer
to the physician if it is uncertain has near-equivalent accuracy,
while reducing the number of chest X-rays that required manual
physician review to determine if ARDS is present by 79.2%.
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RESULT
Study cohort
The University of Michigan Institutional Review Board (IRB)
approved this study (HUM00180748) with a waiver of informed
consent from patient subjects and study physicians. The test
dataset included 414 chest X-rays from 115 adult patients (age
>17 years) who were consecutively hospitalized at a single health

center in 2017 and developed acute hypoxic respiratory failure,
defined as having a PaO2/FiO2 < 300 while receiving invasive
mechanical ventilation or non-invasive mechanical ventilation.
Demographics and clinical characteristics of the patient cohort are
summarized in Table 1. Twelve patients who developed ARDS had
initial chest X-rays that were not consistent with ARDS, but
developed ARDS on a subsequent chest X-ray. The median
number of chest X-rays per patient was 3 (IQR 2–4.5). Chest X-rays
were performed a median 2 (IQR 1–4) days after patients were
admitted to the hospital.

Comparing the AI model to physicians
Chest X-rays performed when patients met criteria for acute
hypoxic respiratory failure were reviewed by six or more
physicians with expertise in the identification of ARDS, while
physicians also reviewed other relevant clinical information for
each patient. Their combined reviews served as a reference
standard for whether ARDS findings were present. This reference
standard was used to evaluate the AI model performance and
individual physicians. In total, 9 physicians reviewed chest X-rays
for the study, each reviewing between 123 and 414 chest X-rays
(see Method for details).
Overall, the deep learning-based AI system had significantly

higher accuracy in detecting ARDS images compared to physi-
cians (0.847 [95% CI 0.806–0.887] vs. 0.808 [95% CI 0.767–0.85], p
value of < 0.05 using the one-sided bootstrapped two-sample
hypothesis testing) (Table 2). Physicians had lower average
sensitivity (0.727 [95% CI 0.651–0.796]) across the chest X-rays
that they reviewed compared to the AI model’s sensitivity (0.789
[95% CI 0.679–0.89]) on the same chest X-rays. The AI model also
maintained a higher specificity (0.864 [95% CI 0.816–0.91]) than
physicians (0.838 [95% CI 0.804, 0.874]). Supplementary Fig. 1
shows examples of chest X-rays with and without ARDS findings
both correctly and incorrectly classified by the AI model.
While the AI model had higher overall accuracy than physicians,

we hypothesized there may be chest X-rays where the AI model
still had lower performance. For example, the AI model may more
consistently and correctly classify chest X-rays that are easier to
diagnose, but physicians may be better at recognizing subtle
findings that are needed to classify more challenging chest X-rays.
Understanding physician and AI system strengths, weaknesses,
and blind spots could better inform optimal system deployment.
We explored this concept in two ways, by comparing AI and
physician accuracy after dividing chest X-rays into difficult and
non-difficult categories, and after stratifying chest X-rays by
whether physicians or the AI model had higher uncertainty.
We identified difficult chest X-rays as those where at least two

physicians disagreed with the majority label (after excluding the
testing physician, see Method for details). In Fig. 1a, we plotted the
variation in accuracy across physician reviewers, showing that

Table 1. Demographics of study patients.

Characteristic Without ARDS With ARDS P-value

Patient, n 85 30

Chest X-ray, n 326 88

Age (years), median
[Q1, Q3]

63 [55,72] 59 [49.25, 67] 0.23a

BMI (kg/m2), median
[Q1, Q3]

26.94
[23.06, 32.69]

27.05
[24.34, 33.70]

0.75a

Sex 0.52b

Female, n 32 (37.65%) 14 (46.67%)

Male, n 53 (62.35%) 16 (53.33%)

Race 0.52b

Caucasian, n 71 (83.53%) 27 (90%)

Black, n 11 (12.94%) 3 (10%)

Other or unknown, n 3 (3.53%) 0 (0%)

Risk factor

Pneumonia, n 14 (16%) 7 (23%) 0.57b

Sepsis, n 13 (15%) 8 (26%) 0.27b

Trauma, n 6 (7%) 0 0.31b

Aspiration, n 3 (4%) 4 (13%) 0.14b

Acute hypoxemic respiratory failure (AHRF) severity
(PaO2/FiO2)

<0.01b

200–300, n 43 (51%) 6 (20%)

100–200, n 29 (34%) 12 (40%)

<100, n 13 (15%) 12 (40%)

Respiratory support 0.58b

Mechanical
ventilation, n

84 30

BiPAP, n 1 0

aWelch’s t test is used to test for a significant difference between the mean
of with and without ARDS populations.
bChi-squared is used to test for a significant difference between the
frequencies of categories with and without ARDS populations. Q1 first
quartile, Q3 third quartile, BMI body mass index, ARDS acute respiratory
distress syndrome, BiPAP bilevel positive airway pressure.

Table 2. Performance of the ARDS detection strategies.

Physician AI AI-aided
physician

Physician-
aided AI

Average of
physician & AI

Weighted average
of physician & AI

Accuracy (95% CI) 0.808 (0.767, 0.85) 0.847 (0.806, 0.887) 0.824 (0.781, 0.862) 0.869 (0.835, 0.903) 0.86 (0.822, 0.894) 0.871 (0.836, 0.905)

F1 score (95% CI) 0.628 (0.511, 0.73) 0.69 (0.562, 0.793) 0.649 (0.533, 0.749) 0.726 (0.621, 0.815) 0.71 (0.594, 0.802) 0.729 (0.617, 0.819)

Sensitivity (95% CI) 0.727 (0.651, 0.796) 0.789 (0.679, 0.89) 0.735 (0.664, 0.8) 0.796 (0.707, 0.876) 0.774 (0.689, 0.852) 0.795 (0.701, 0.879)

Specificity (95% CI) 0.838 (0.804, 0.874) 0.864 (0.816, 0.91) 0.856 (0.821, 0.89) 0.893 (0.855, 0.926) 0.89 (0.86, 0.92) 0.897 (0.863, 0.929)

PPV (95% CI) 0.676 (0.579, 0.768) 0.624 (0.471, 0.758) 0.684 (0.576, 0.779) 0.696 (0.562, 0.808) 0.724 (0.62, 0.818) 0.709 (0.579, 0.812)

NPV (95% CI) 0.92 (0.885, 0.949) 0.933 (0.893, 0.966) 0.922 (0.889, 0.95) 0.936 (0.904, 0.964) 0.932 (0.9, 0.958) 0.937 (0.904, 0.965)

Review burden (95% CI) 100 (100, 100) 0 (0, 0) 100 (100, 100) 20.7 (15.8, 25.8) 100 (100, 100) 100 (100, 100)

95% confidence intervals were generated using cluster-bootstrapping. Review burden is defined as the percentage of chest X-rays that need to be reviewed
by physicians. AI artificial intelligence model, CI confidence interval, PPV positive predictive value, NPV negative predictive value.
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physicians slightly outperformed the AI model in classifying the
25% of chest X-rays considered to be difficult by this definition. On
average, physicians had an accuracy of 0.702 [95% CI 0.606–0.802]
on these chest X-rays compared to an accuracy of 0.678 [95% CI
0.6–0.754] for the AI model. However, the AI system was notably
more accurate in classifying the 75% of chest X-rays that were not
difficult to classify (accuracy of 0.899 [95% CI 0.858–0.937] for AI
vs. 0.844 [95% CI 0.807–0.882] for physicians), with less variability
in accuracy compared to the group of physicians.
During their reviews, physicians graded each chest X-ray on a

scale of 1–8, where 1 corresponded to no ARDS with high
confidence, and 8 corresponded to ARDS with high confidence.
Thus, a score of 4 or 5 indicated significant uncertainty in whether
ARDS findings were present. Analogously, the AI model’s
probability estimate range from 0.357 to 0.643, equivalent to a 4
or 5 on a 1–8 scale (see Method for details), could indicate model
uncertainty. In Fig. 1b, we plotted variations in the accuracy of
physicians and the AI model for chest X-rays with high and low
certainty. Physicians indicated high uncertainty in only 5.6% of the
chest X-rays on average, but in those groups of chest X-rays, the AI
model was more accurate. On average, accuracy was 0.794 [95% CI
0.694–0.917] for AI vs. 0.626 [95% CI 0.5–0.744] for physicians.
Similarly, physicians had higher accuracy in the larger subset of
20.8% of images in which the AI was uncertain (0.698 [95% CI
0.623–0.767] for physicians vs. 0.596 [95% CI 0.498–0.695] for AI)
(Fig. 1b). There was also only a minimal number of chest X-rays
(1.7%), where both AI and physicians were uncertain. These results
provide evidence that AI and physician expertise can complement
each other.

We also measured physician and AI accuracy as a function of
their confidence levels (Fig. 1c, d). The AI model’s accuracy
increased as its confidence increased, suggesting that the AI
model is capable of recognizing when it is uncertain (green line in
Fig. 1c). However, physicians demonstrated a lower ability to
recognize when they should be uncertain, as seen by the gray line
in Fig. 1d. Interestingly, this finding seemed to be driven by only a
few physicians whose confidence levels were not well-calibrated
to their accuracy (Supplementary Fig. 2). As shown in Fig. 1d, on
average, the AI model outperforms physicians whenever physi-
cians were not highly confident in whether a chest X-ray was
consistent with ARDS (confidence level below 4). This result
indicates that replacing physician diagnoses with AI when
physicians are not highly confident (confidence level= 1, 2, or
3) resulted in greater accuracy than physicians alone.

AI and physician collaboration
Given the relative strengths and weaknesses of both physicians
and the AI model for identifying findings of ARDS, we compared
several collaborative strategies for combining physician and AI
diagnostic expertise to understand which approach might result in
the highest overall performance (Fig. 2). The strategies were:
1) AI-aided physician: physicians provide all the diagnoses which

were replaced with the AI output score only if a physician was
uncertain (Fig. 2a).
2) Physician-aided AI: AI was the primary diagnosis tool, and its

diagnoses were replaced with physician reads only if AI was
uncertain (Fig. 2b).

Fig. 1 Performance of physicians and the AI model stratified on difficulty and certainty levels. a Compares the performance of physicians
and AI performance stratified on the difficulty of the image interpretation, b compares the performance of physicians and AI stratified on
uncertainty in their evaluation, and c, d show physician and AI accuracy stratified on their respective confidence levels. The physician
accuracies were calculated by comparing each of the nine physicians against reference labels that were generated from the remaining eight
physicians. Similarly, the AI accuracies were composed of nine values by comparing the AI model output against the same nine sets of
reference labels that physicians were tested against. Bootstrapping was not used to generate Fig. 1. ACC accuracy, std. dev. standard deviation.

N. Farzaneh et al.

3

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2023)    62 



3) Average of physician and AI: this approach used the average
ratings of both AI and physicians on a scale of 1 to 8 (Fig. 2c).
4) Weighted average of physician and AI: the weights were

determined by maximizing the average validation accuracy (Fig.
2c).
The two best performing strategies for maximizing diagnostic

accuracy across all physicians evaluated were the physician-aided
AI strategy (accuracy of 0.869 [95% CI 0.835–0.903]) and the
strategy of taking a weighted average of the physician and AI
model (accuracy of 0.871 [95% CI 0.836–0.905]) (Table 2 and Fig.
3). The weighted average of physician and AI model only
marginally exceeded that of the physician-aided AI strategy, and
would require physicians to review every chest X-ray. In contrast,
in the physician-aided AI strategy, physicians would need to
review only 20.8% of chest X-rays on average, thus off-loading the

human expert workload on the reading of up to 79.2% chest X-
rays, allowing physicians to focus on the more challenging subset.
Inspired by Oxipit ChestEye (the first AI-based framework for

interpreting chest X-rays that was European Conformity (CE)-
marked)19–21, we also evaluated an alternative strategy using an AI
model as an auditing tool to identify potentially problematic
physician reviews, which are then over-read by a second
physician. In this framework, when the physician and AI disagreed,
a second physician reviews the chest X-ray and the second
physician’s review is used. This strategy did not result in
meaningfully higher accuracy than the physician-aided AI
approach (0.871 [95% CI 0.832, 0.909] vs. 0.869 [95% CI
0.835–0.903]). The auditing strategy requires all chest X-rays to
be reviewed by a physician and an average of 22.9% reviewed by
a second physician leading to a 122.9% review burden, which is
much more physician resource intensive than the physician-aided
AI approach which requires physicians to review only a subset
20.8% of chest X-rays.

Physician-level analysis of collaboration strategies
We reviewed the collaboration strategies for each physician
individually (Fig. 4, Supplementary Tables 1–3, and Supplementary
Fig. 3). For 8/9 physicians the physician-aided AI strategy
outperformed the physician’s alone accuracy. This physician-
aided AI strategy was statistically significantly better than the
physician’s accuracy alone for 3/9 physicians (Fig. 4, and
Supplementary Table 1). Supplementary Fig. 3, and Supplemen-
tary Tables 2 and 3 also show the individual-level sensitivity and
specificity values. The sensitivity of 3/9 physicians significantly
improved after employing the physicians-aided AI strategy while
this strategy did not result in a significant sensitivity decline for
any physician, which means that the physician-aided AI strategy
could improve rates of missed diagnosis.

DISCUSSION
This study examined the strengths and weaknesses of physicians
and a previously published AI model18 for interpreting chest
X-rays for ARDS. It also evaluated potential strategies for physician
and AI model collaborations for ARDS diagnosis. We found
evidence that AI and physician expertise can complement each
other. When physicians were not confident in a chest X-ray’s
interpretation, the AI model was often more accurate. In cases
where the AI model had lower confidence, physicians were more
accurate. The AI model had higher and more consistent accuracy
on less difficult chest X-rays, while physicians had higher accuracy
on difficult chest X-rays. The model was also generally better at
calibrating its uncertainty, identifying a larger group of chest

Fig. 2 Schematic diagram of the proposed strategies for
physician-AI collaboration. a Shows the proposed AI-aided
physician framework, b shows the physician-aided AI framework,
and c shows the average scoring framework. It can be both basic
and weighted average.

Fig. 3 Average performance of physicians, AI, and four collaborative strategies. Receiver operating characteristic (ROC) curve of our AI
model versus the performance of other strategies in ARDS detection. Markers denote each strategy’s performance in terms of sensitivity and
1-specificity along with their 95% CIs.
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X-rays in which it was uncertain. These findings provide insight as
to why collaborative strategies may improve rates of misdiagnosis.
A strategy where the AI model reviews chest X-rays first and defers
to clinicians when uncertain exceeded the physician- and AI-alone
performance.
Several recent studies have demonstrated that deep learning-

based AI systems can augment clinical decision-making. Providing
deep learning model predictions to human experts improved
medical image interpretation in different applications, including
chest X-rays7,8, knee Magnetic Resonance Imaging (MRI)9, and skin
cancer images6. However, all these studies relied on a physician to
make a final decision after reviewing the model predictions. In
contrast, our study explored several novel strategies for integrat-
ing physicians and AI by taking each method’s strengths and blind
spots into account.
There are several ways that the collaborative strategies

evaluated in this study could be deployed in practice for ARDS
care. Simply making the AI model available to clinicians most
closely aligns with the strategy of having clinicians review the
chest X-ray first and then deferring to the AI model if uncertain.
Our analysis suggests, however, that many times clinicians would
likely feel confident in their evaluation of a chest X-ray and not
consider or defer to the AI model for the assessment of ARDS. This
approach potentially fails to leverage the AI model’s strengths to
improve ARDS diagnosis and treatment at the bedside.
Many intensive care unit practices are highly protocolized by

bedside nurses and respiratory therapists. Integrating the AI
model into these protocols could be an effective way of deploying
the model in practice. For example, one of the most important
evidence-based practices in ARDS care is providing patients with
lung-protective mechanical ventilation that uses tidal volumes
based on ideal body weight. For patients with imaging findings
consistent with ARDS, the system could set as a default low tidal
volume setting and monitor patients to ensure they receive this
therapy. It could communicate alerts to the respiratory therapist or
nurses without significant physician oversight, only deferring to
the physician in situations where the AI model has high
uncertainty. This may be particularly helpful in low-resource
settings, such as Intensive Care Units (ICU) without 24-hour access
to critical care trained physicians.
The AI model could also be integrated into patient critical care

dashboards. Dashboards are useful to clinicians, because they
provide a quick, higher-level summary of critical information
needed for patient care activities. AI models could abstract away
the chest X-ray data, providing only the critical information in the
dashboard (e.g., consistent with ARDS, inconsistent with ARDS,
uncertain), allowing the clinician to quickly make use of this
information without the need to review each chest X-ray for those
details.
Our study has several limitations. First, this study was performed

retrospectively and in a hypothetical manner based on previously

collected chest X-ray review data. We did not evaluate a
physician’s accuracy after directly showing them the AI prediction
to allow them to synthesize this information in their evaluations. If
physicians were told they could defer to the AI model if uncertain,
they may have modified how they rated their certainty of
diagnosis. The overall patient sample size and the number of
ARDS cases were relatively low, potentially limiting general-
izability. However, ARDS risk factors in this study were consistent
with other ARDS epidemiology studies13. Due to the limited
number of ARDS chest X-rays across patient demographic
subgroups, we could not provide conclusive evidence for either
accepting or rejecting the generalizability of the collaborative
strategies across patient subgroups. When possible, transparent
reporting on different subgroups is necessary in order to detect
and avoid automation bias and protect underrepresented groups
from worse-case scenarios and should be the subject of future
work22. Finally, although we demonstrated evidence of the
superiority of AI-based decisions, more research is still needed
to investigate the collaboration of AI and physicians in other
diagnosis tasks and environments.
While we aim to propose the most accurate and resource-

efficient AI-physician collaboration strategy, we acknowledge that
in high-stake clinical applications, our proposed physician-aided AI
strategy is subject to stringent US Food and Drug Administration
(FDA) regulatory requirements before it can be adopted in a real-
world setting. Compared to AI systems that act as a recommenda-
tion system to physicians, the physician-aided AI strategy poses a
higher level of autonomy by replacing physicians in the evaluation
of chest X-rays for ARDS without supervision. Thus, this autonomy
can be considered a barrier to its introduction into the practice.
Physicians, however, will often still look at chest X-rays for more
than just diagnosing ARDS, e.g., whether the endotracheal tube is
in the right place or the presence of a pneumothorax. The ARDS
model is not designed to assist in such activities, which could be
considered another limitation of its use in practice.
In conclusion, this work suggests the potential value of

integrating AI into clinical practice and using collaborative
strategies between physicians and AI models to improve the
diagnosis of ARDS. The physician-aided AI strategy, which defers
the diagnosis to physicians only if the AI model is uncertain,
resulted in improved diagnostic accuracy than both physician-
and AI-alone. Automating recognition of ARDS for many patients
may enable them to receive more consistent ARDS care.

METHOD
Patient cohort and data labeling
The 414 chest X-rays included in the test set were from 115
patients consecutively hospitalized between August 15 to October
2, 2017 at the University of Michigan who met criteria for acute
hypoxemic respiratory failure (AHRF) in one of four intensive care

Fig. 4 The accuracy of individual physicians, along with the performance of AI and four combinatory strategies when assessed on the
same subset as physicians. Numbers in parentheses indicate the number of chest X-rays that each physician read.
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units (medical, surgical, cardiac, and trauma). AHRF was defined as
patients who had a PaO2/FiO2 < 300 while receiving invasive
mechanical ventilation or non-invasive mechanical ventilation. A
cohort flow diagram of the training, validation and test sets are
shown in supplementary Fig. 4.
Frontal chest X-rays of patients in the test set were reviewed

individually by at least six physicians for the (1) the presence or
absence of ARDS and (2) confidence in this diagnosis while
physicians also reviewed other relevant clinical information for
each patient. Chest X-rays from the first 7 days after-admission
were reviewed. Physicians were randomly assigned patients to
review in the test set. Chest x-ray assessments were then
converted to a rating on a scale of 1–8 as shown in Fig. 5. Six or
more physicians reviewed each chest X-ray, and the majority
voting was used to determine whether the chest X-ray was
consistent with ARDS. In the event of ties, we averaged the ratings
on a scale of 1–8, and any chest X-ray with an average value of
≥4.5 (binary decision threshold) was identified as consistent with
ARDS. Nine physicians reviewed at least 100 chest X-rays including
a radiologist, 5 pulmonary-critical care attendings, and 3
pulmonary-critical care fellows.
The overall reference labels were determined using all readings

of an image and were used to generate Table 1. However, using
the overall reference labels to assess a physician’s readings can
artificially boost their performance since the testing physician can
influence the ground truths against which they are tested.
Consequently, when each physician was evaluated for their
individual accuracy and accuracy of AI collaboration strategies,
the reference labels were determined separately following the
above-mentioned process but after excluding the test physician’s
readings from the label set.
For each testing physician, a chest X-ray would be labeled as being

uncertain if the physician states equivocal confidence in the diagnosis
(confidence= 1, Fig. 5). Difficult chest X-rays were identified as those
for which at least two physicians disagreed with the ground truth
label. Note that, similar to deriving the ground truths, the testing
physician is excluded when identifying disagreements.

Deep learning model
We used a previously published deep convolutional neural
network model with a 121-layer dense neural network architec-
ture (DenseNet) to detect ARDS on chest X-rays18 with some
modifications to the chest x-ray pre-processing and model pre-
training steps. The chest x-ray pre-processing step was modified
such that the image’s aspect ratio was maintained when re-scaling
a raw image to a fixed-sized 320 by 320-pixel image. Pre-training
on the CheXpert and MIMIC-CXR datasets was also increased to 15
epochs. The network weights were then retrained to detect ARDS
following the published approach using the same data splits as in
ref. 18 (Supplementary Fig. 4), where training and validation were
performed on chest x-rays from a consecutive group of patients
hospitalized with AHRF between January 2016 and June 2017 that
were distinct from the hold-out set. There was no overlap between
patients in the training/validation set and the 115 patients in the
test set. After training, the AI model was calibrated using Platt
scaling with data from the validation dataset, following the same

approach as in its original development23,24.To align with the
physicians’ rating scale, the model output probability scores were
linearly mapped from 0–1 to a scale of 1–8. For this deep learning-
based AI model, the uncertain images were identified as those
with output scores of ≥3.5 and <5.5).

Strategies for physician-AI collaboration
The four proposed frameworks for combining the physicians and
AI diagnoses for ARDS detection are outlined in Fig. 2. These
strategies are explained below in order from the least to the most
level of automation involved.
1) In the AI-aided physician strategy (Fig. 2a), all chest X-rays

would be reviewed by a physician first. However, if the physician
was uncertain about a diagnosis (i.e., confidence= 1), the decision
would be deferred to the AI model.
2) In the Average of physician and AI strategy (Fig. 2c), both

physicians and AI would be asked to provide a rating on a scale of
1–8, which, as stated above, includes information about both the
presence or absence of ARDS and the confidence level. The average
of two scores would be used to make the final decision. In this
strategy, themost confident of physician or AI will derive the decision.
3) The Weighted average of physician and AI strategy is similar to

the simple averaging stated above. However, instead of using an
equal weight, each of the physician and AI ratings were multiplied
by a factor, w, reflecting its importance by

ARDS score ¼ wphysicianyphysician þ wAIyAI (1)

where wAI= 1−wphysician. yphysician and yAI correspond to the
physician and AI ratings, respectively. For each physician, wphysician

was estimated as the weight ∈ {0,0.05, 0.1,…, 1} that resulted in
the highest average accuracy for the remaining eight physicians
after excluding the testing physician. Except for pulmonary fellow
2, for all other eight physicians, wphysician was determined to be 0.3
(wAI= 0.7). For pulmonary fellow 2, wphysician was 0.4 (wAI= 0.6).
The overall lower weight of physicians compared to AI indicates
the greater importance of AI ratings. See Supplementary Fig. 5 for
the detailed performance of individual and average physicians
against different values of wphysician.

4) The AI model primarily provided the diagnoses in the
Physician-aided AI strategy (Fig. 2b). Only in an event where AI is
uncertain (output score ∈ [3.5, 5.5)) would a physician be making
the diagnosis. This approach poses the highest level of automa-
tion (among four proposed strategies) by removing physicians
from the loop in the evaluation of ~79.2% of chest X-rays.
We also evaluated a fifth combinatory approach proposed by

Oxipit ChestEye19–21, where both physicians and the AI model
evaluate a chest X-ray for ARDS findings. In the event that the AI
model and physician disagreed, a second physician’s label is used.
The second physician was randomly selected among all other
reviewers reviewing the chest X-ray.

Statistical analysis
We assessed the performance in terms of accuracy, F1 score,
sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV) after applying the binary decision threshold of
0.5 to the class probabilities or 4.5 (middle value) to the ARDS labels
that range from 1 to 8. AUROC (area under the reciever operating
chracteristic curve) is not used in this study since it would not be fair
to compare the AUROC between physicians and the AI model.
Physicians generate a binary score, and this score could not be used
to rank chest X-rays in the same way that the AI model’s continuous
probability score could be used. Therefore, an AUROC calculation
would not be a fair representation of physician performance.
To compare the relative performance of AI and the four

collaborative strategies, for each of the nine physicians, we
calculated the performance metrics in a subset of images that the
respective physician had reviewed. Unless otherwise stated, the

Fig. 5 The ARDS assessment scale. A score of 1 indicates an
absolute certain assessment as a non-ARDS chest X-ray, and
8 signifies an absolute certain ARDS chest X-ray. The binary decision
threshold between non- ARDS, and ARDS is 4.5.

N. Farzaneh et al.

6

npj Digital Medicine (2023)    62 Published in partnership with Seoul National University Bundang Hospital



average values and the 95% confidence intervals (CI) were
generated by employing a bootstrapping approach with 1000
cluster bootstrap experiments. During each experiment, a sample
set with replacement was drawn at the patient level to account for
clustering of chest X-rays within patients, on which the
performance metrics were calculated25 To estimate how each
method (i.e., physicians, AI, and combinations of both) performs
on average, the performance metrics were averaged across the
nine physicians for each bootstrapping experiment leaving us with
1000 average values for each method. The 95% CI falls between
the 2.5th and 97.5th percentiles of the bootstrap samples.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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