
ARTICLE OPEN

Synthetic electronic health records generated with variational
graph autoencoders
Giannis Nikolentzos 1✉, Michalis Vazirgiannis1,2, Christos Xypolopoulos1, Markus Lingman 3,4 and Erik G. Brandt5

Data-driven medical care delivery must always respect patient privacy—a requirement that is not easily met. This issue has
impeded improvements to healthcare software and has delayed the long-predicted prevalence of artificial intelligence in
healthcare. Until now, it has been very difficult to share data between healthcare organizations, resulting in poor statistical models
due to unrepresentative patient cohorts. Synthetic data, i.e., artificial but realistic electronic health records, could overcome the
drought that is troubling the healthcare sector. Deep neural network architectures, in particular, have shown an incredible ability to
learn from complex data sets and generate large amounts of unseen data points with the same statistical properties as the training
data. Here, we present a generative neural network model that can create synthetic health records with realistic timelines. These
clinical trajectories are generated on a per-patient basis and are represented as linear-sequence graphs of clinical events over time.
We use a variational graph autoencoder (VGAE) to generate synthetic samples from real-world electronic health records. Our
approach generates health records not seen in the training data. We show that these artificial patient trajectories are realistic and
preserve patient privacy and can therefore support the safe sharing of data across organizations.

npj Digital Medicine (2023) 6:83 ; https://doi.org/10.1038/s41746-023-00822-x

INTRODUCTION
Access to real-world health data is often restricted by privacy-
protecting regulations like Health Insurance Portability and
Accountability Act (HIPAA) and General Data Protection Regulation
(GDPR), but also due to technical limitations or simply lacking
incentives for data-sharing. Even when pseudo-anonymized (by
leaving out personal identifiers such as social security numbers,
residence, age, etc), a malicious agent with sufficient knowledge
could re-identify patients by connecting patient attributes, condi-
tions, medical prescriptions, etc. for an individual. Techniques like
federated learning1, differential privacy2, and homo-morphic
encryption3 are actively researched to overcome these barriers.
Carefully created synthetic data could reduce data scarcity by

exempting data from privacy-preserving regulations. By design,
synthetic data mimics real data but is decoupled from real
individuals and can be safely shared among healthcare providers,
academics, and private stakeholders without leaking sensitive or
personally identifiable information. High-quality synthetic data
enables exploration and hypothesis generation but could also be
used to pre-train AI models and thus decrease the need for vast
amounts of original data. A synthetic data set that mirrors the
original data well could also help focus efforts on more probable
hypotheses before seeking confirmation in the source data.
Therefore, synthetic data could meet both privacy concerns and
re-balance the effort of data access in relation to the chance of
relevant findings and also explore data patterns before investing
too much in new research routes.
Healthcare data sets are complex in both space (heterogeneous

and strongly connected) and time (cause and effect of symptoms,
diagnoses, medications, etc.). Understanding the relationships
between the different parts of information about a patient created
along a patient trajectory is essential in clinical medicine. It is
relatively straightforward to mimic the static properties of a given

data distribution but far more difficult to mimic diverse and
coupled time series with non-equidistant time steps4,5. To the best
of our knowledge, this remains to be done in the context of
electronic health records (EHRs).
Deep learning (DL) models have revolutionized a wide range of

real-world applications, from autonomous vehicles6 to machine
translation7 and molecule generation in drug discovery8. Never-
theless, even the most successful DL model is at the mercy of the
amount and quality of its training data set. DL algorithms are very
data-hungry, and the training samples must adequately reflect the
full population that is to be learned. When such conditions can be
met, DL algorithms have a canning ability to capture complex data
patterns, and they also generalize well to unseen data. In practice,
available data is often insufficient to train DL models with millions
of parameters in any meaningful way. As a consequence, DL
models are especially sensitive to limited data availability, as
manifested in healthcare.
Machine learning algorithms have already been successfully

introduced in the healthcare informatics domain9–15. Variational
Autoencoders (VAEs)16,17—and their graph off-springs18–20—and
Generative Adversarial Networks (GANs)21,22 are recent deep
learning architectures of particular promise. These models learn a
“hidden” underlying data distribution from the training data. VAEs
consist of an encoder–decoder pair. The encoder maps the input
data to a latent (hidden) distribution, which is randomly sampled
by the decoder with the objective of reconstructing the original
input data. The latent distribution is usually chosen as a
multivariate normal distribution characterized by its mean value
and standard deviation. Once the model is trained, an arbitrary
number of new samples can be generated by feeding the decoder
random samples from the normal distribution. GANs, on the other
hand, use two neural networks that are trained together but in
adverse. The two networks are known as the generator and the

1LIX, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France. 2Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden.
3Department of Molecular and Clinical Medicine/Cardiology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. 4Center for Applied
Intelligent Systems Research, Halmstad University, Halmstad, Sweden. 5SHAARPEC, Stockholm, Sweden. ✉email: nikolentzos@lix.polytechnique.fr

www.nature.com/npjdigitalmed

Published in partnership with Seoul National University Bundang Hospital

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-023-00822-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-023-00822-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-023-00822-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-023-00822-x&domain=pdf
http://orcid.org/0000-0002-0336-5879
http://orcid.org/0000-0002-0336-5879
http://orcid.org/0000-0002-0336-5879
http://orcid.org/0000-0002-0336-5879
http://orcid.org/0000-0002-0336-5879
http://orcid.org/0000-0002-4068-0341
http://orcid.org/0000-0002-4068-0341
http://orcid.org/0000-0002-4068-0341
http://orcid.org/0000-0002-4068-0341
http://orcid.org/0000-0002-4068-0341
https://doi.org/10.1038/s41746-023-00822-x
mailto:nikolentzos@lix.polytechnique.fr
www.nature.com/npjdigitalmed

discriminator. The generator learns to create samples as realisti-
cally as possible, while the discriminator learns to distinguish
synthetic samples from real ones. Once both networks are fully
trained, the generator can create unseen data samples with high
similarity to the real data.
Earlier efforts to simulate EHR data have used Bayesian network

learning23, and deterministic differential modeling, e.g., as imple-
mented in the popular open-source software Synthea24. This open-
source software package is designed to simulate the lifespans of
synthetic patients but is based on fixed demographic properties
extracted from public data and does not learn through a training
procedure. GANs have so far been the primary deep-learning
method to generate synthetic EHRs9,25–27. Notably, Choi et al.
proposed medGAN9, a neural network model that generates high-
dimensional discrete variables to represent EHR events. Baowaly
et al.25 derived two enhanced versions of medGAN with a more
complex (Wasserstein) architecture, and Yale et al.26 identified
limitations to medGAN and proposed HealthGAN, another
Wasserstein-based method. They also developed improved metrics
for synthetic health data quality. Chin-Cheong et al.28 created
synthetic EHR data with GANs trained on patient data from intensive
care units. The final results were combined with federated learning1

to mimic a real-world scenario with data sets from different
organizations isolated in silos. Finally, Esteban et al.11 generated a
synthetic medical time series with a GAN using recurrent neural
networks for both the generator and the discriminator. While GANs
have achieved promising results, they also have drawbacks. GAN-
generated data is continuous by default and must be paired to an
autoencoder9 or LSTM generator to produce discrete results11. Also,
the adversial style used to train GANs increases the risk of getting
stuck in local minima during learning29. Such minima are very
challenging to escape with more training alone and may limit the
use of GANs on certain data structures (such as graphs).
Interestingly, variational graph autoencoders (VGAEs) have not yet

been used to generate synthetic EHRs. VGAEs present a promising
route in this area because they are easy to train, have been applied
successfully to other graph learning problems, and can accurately
model the underlying data distribution. We discuss the strengths and
weaknesses of GANs vs VGAEs in more detail in the “Results” section.
In this paper, we develop a machine-learning algorithm for

generating electronic healthcare records represented as sequen-
tial graphs (patient trajectories). A patient trajectory is a time
sequence of encounters (visits) at healthcare organizations (e.g.,
hospitals or other providers). Each encounter links to patient
interventions such as identified medical conditions and requested

medications. Analyzing such patient trajectories is key to
delivering data-driven insights to healthcare organizations. Creat-
ing synthetic EHRs with graph deep learning is, to the best of our
knowledge, a new concept. Synthetic graphs are already trending
in drug design30–33, but patient trajectories require much larger
(e.g., hundreds of nodes) graph representations than their drug
molecule counterparts. This poses a significant challenge to
generation algorithms. Here, we propose a VGAE tailored to
patient trajectories that can generate novel large-scale samples.

RESULTS
EHR data source
The Medical Information Mart for Intensive Care (MIMIC-IV)
database was the source of all our numerical experiments34.
MIMIC-IV provides critical care data for thousands of patients
admitted to the intensive care units at the Beth Israel Deaconess
Medical Center. The patient, visit (encounter), diagnosis (condition),
and medication (medication request) data tables were migrated to
a labeled property graph (LPG) database. These data tables cover
healthcare events at the emergency unit and the following in-
patient stays. They are a subset of a complete graph model for
healthcare data developed by one of the authors35, which follows
the FHIR standard for healthcare data36. The LPG database was
constructed by connecting all visits (encounters) for a patient in
chronological order. Conditions and medications for the patient are
then attached to the encounters. Descriptive nodes for the types of
conditions and medications are shared among the patients in the
database. Labels are the only node and edge attributes included in
this work. Our results are easily extended to include more metadata
stored as key-value pairs on nodes and edges.
A patient graph (trajectory) is defined as the subgraph

constructed with its origin at a patient node, following edges
outwards until reaching terminal nodes (type-describing nodes
that have no outgoing edges). Patient graphs defined in this way
are directed acyclic graphs (DAGs), i.e., they do not contain
directed cycles. We extracted a subset of patients whose
trajectories contain any of the ICD-10-CM diagnosis codes I48.0,
I48.1, I48.2, and I48.9. This group corresponds to a real-world
cohort of patients diagnosed with atrial fibrillation.
A trajectory graph was constructed for each of those 6535

patients. The node and edge labels are described by the functions
ℓV and ℓE, which assign elements from the sets ΣV and ΣE (i.e.,
ℓV : V→ ΣV and ℓE : E→ ΣE). Here, V and E denote the set of nodes

Fig. 1 Visualization of a patient trajectory. Each trajectory is represented as a directed acyclic graph. The patient timeline is represented by
the edges between Encounters (highlighted in red).

G. Nikolentzos et al.

2

npj Digital Medicine (2023) 83 Published in partnership with Seoul National University Bundang Hospital

1
2
3
4
5
6
7
8
9
0
()
:,;

and edges of all graphs, respectively. There are, in total ∣ΣV∣= 13,980
different node labels and ∣ΣE∣= 6 different edge labels. Figure 1
shows an example of a patient trajectory. Each trajectory contains
one Patient node and a number of Encounter nodes that form the
patient timeline. Each Encounter is described by an EncounterCa-
tegory and is shaped like a star graph with Condition/ConditionType
and MedicationRequests/MedicationType pairs for the diagnosis and
medication events. The edge labels are ATTENDS between Patient
and each Encounter, NEXT between neighboring Encounters,
OF_CATEGORY to describe the Encounter, DIAGNOS between
Encounter and Condition, ADMINISTRATED between Encounter
and Medication, and OF_TYPE to describe the Condition/Condition-
Type and MedicationRequests/MedicationType pairs. The edge
labels are uniquely determined by the label pair of the ancestor
and successor nodes. Note that edge labels are omitted from Fig. 1
to simplify the presentation. Figure 2 shows the frequency of the
node and edge labels in the training data (see Table 1 for more
details on the source data). ConditionType and MedicationType
labels are higher-level labels that contain all diagnosis and
medication events, respectively (i.e., labels I10, E92, Heparin,
Mupirocin Ointment 2%, etc., in Fig. 1).
There is a large number of distinct ICD-10-CM diagnostic codes

(and analog ATC codes for medications) in the MIMIC-IV data. Since
the atrial fibrillation cohort is limited to 6535 patients, pre-
processing is needed to reduce the number of node labels for
the learning algorithm. The data was processed by: (1) Dropping all
Condition nodes, which correspond to earlier versions than ICD-10-
CM (ICD-9 and a few ICD-8 codes). (2) Only keeping the chapter (the
three first characters) of the ICD-10-CM codes and merging nodes
that ended up as identical. (3) Dropping rare events (condition and
medication nodes that occurred less than 50 times). After these
steps, 944 node labels remained. The largest graph had 143
Encounters, and the largest Encounter had 180 successors. More
details about the pre-processed trajectories are given in Table 1.

Generating model
Graph learning algorithms are usually permutation invariant, i.e.,
invariant to the ordering of nodes. Since nodes are added one at
a time, node order becomes important. By modeling patient
graphs (patient trajectories) as DAGs, graph generation is
significantly simplified because every DAG has at least one
linear ordering of the nodes such that for every directed edge
(u, v), node u comes before node v. This is known as a topological
ordering and can be computed in linear time.
We found that standard recurrent neural networks were unable

to learn realistic patient trajectories (see the discussion in the
Methods section). We, therefore, designed a model tailored to the
structure of our patient graphs. These trajectories are built up of
linear sequences of Encounter nodes, where each Encounter node
is the center of a star graph. These two substructures (linear
sequence and star) can be modeled separately.
GANs and VAEs are two of the most common architectures for

generative models. They both learn from training data and can

generate new and previously unseen data samples. GANs can
generate highly realistic images, audio, and text but can be
difficult to train, as the generator and discriminator networks may
get stuck in a local equilibrium29. GANs struggle to provide
meaningful latent data representations, while VAEs can interpolate
smoothly between data points to find and generate new
representative patient trajectories. Importantly, GANs work best
with continuous data. We formulate graph generation as a
sequential task where nodes and edges are added to the graph
in iterations. This is natural for DAGs but poses a challenge for
backpropagation because the gradients are zero. The usual
workarounds can not be applied to graphs (e.g., Gumbel
softmax37). One option is to avoid sequential generation and
generate the adjacency matrix in one shot38. However, this
approach is only feasible for small-graph applications, e.g.,
molecule generation (the adjacency matrix is an (n × n)-matrix
for a graph of n nodes).
In light of the above discussion, we used a variational

autoencoder as the basis of our synthetic data generator. The
encoder maps patient trajectories into a parameterized multi-
variate Gaussian distribution (i.e., the encoder predicts the mean
vector and covariance matrix of this distribution). A random
sample is drawn from the distribution (the “hidden” representa-
tion of the input patient trajectory) and fed into the decoder to
reconstruct the original patient trajectory. Once trained, new
trajectories can be generated at scale by drawing random samples
from the normal distribution and using the decoder to output a
synthetic trajectory. Further details on the model architecture and
training details are found in the “Methods” section.

Experiments
We first investigated whether the proposed model can accurately
reconstruct its input graphs. To this end, we used graph kernels,

Fig. 2 Histogram of the number of (higher level) node labels and edge labels in the training data. There exist eight different (higher level)
node labels and six different edge labels in total. Note that some higher-level node labels, such as MedicationType, and ConditionType,
aggregate hundreds or even thousands of lower-level node labels.

Table 1. Statistics on the patient trajectories calculated from the atrial
fibrillation cohort extracted from the MIMIC-IV database.

Raw After Pre-processing

Max # nodes 18,947 2772

Min # nodes 10 10

Average # nodes 1044.1 221.2

Max # edges 36,811 5162

Min # edges 9 9

Average # edges 1867.3 294.7

node labels (∣ΣV∣) 13,980 944

edge labels (∣ΣE∣) 6 6

graphs 6535 6535

Statistics are provided for both raw data and processed data.

G. Nikolentzos et al.

3

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2023) 83

which are symmetric positive semi-definite functions on the set of
graphs G39. Roughly speaking, a graph kernel measures the
similarity of graphs. Once we define a function k : G ´G ! R on
the set G, there exists a map ϕ : G ! H into a Hilbert space H,
such that kðG;G0Þ ¼ hϕðGÞ;ϕðG0ÞiH for all G;G0 2 G where h�; �iH is
the inner product in H. Graph kernels are grouped into major
families that focus on different structural aspects of graphs. We
primarily relied on the Weisfeiler-Lehman subtree (WL) kernel40

and on the shortest path (SP) kernel41 to compare input graphs
against reconstructed graphs. WL and SP are among the most
successful graph kernels and account for both graph structure and
node label information. We computed the histogram of
ki ¼ kðGi ; ĜiÞ, where Gi is an input graph, Ĝi its corresponding
reconstructed graph, and k(⋅ , ⋅) is a graph kernel (i.e., WL or SP)
with i∈ {1, 2,…, 6535}. Here, ki= 0 means that reconstructed
graph i is completely different from its input, and vice versa ki= 1
implies high similarity or even identity up to isomorphism. For the
reconstruction task, ideally, we would like the model to output
graphs isomorphic to those given as input. Thus, we would like
most kernel values to be large (close to 1). The histograms in Fig. 3
show very high similarity (k > 0.9 for 3/4 of the graph distribution)
for most graphs. This indicates that the proposed model yields
very good performance in reconstructing the input graphs, even

when some of them are large and consist of many Encounter
nodes.
We have established that the model successfully reconstructs

the patterns from the input graphs. Can the model also generate
novel synthetic graphs that are realistic but not found in the
training data? To investigate this, we generated 10,000 synthetic
patient graphs by feeding random samples drawn from the
multivariate normal distribution to the decoder. We used the WL
and SP graph kernels to compare the generated synthetic graphs
to the input graphs from the training data. We computed the
histogram of the maximum similarity kmax

j ¼ max
i

kij for the two
kernels, where now Gi is an input graph, Ĝj is a graph generated
from a random sample with j∈ {1, 2,…, 10000}, and kij ¼ kðGi ; ĜjÞ
is the (i, j):th element of a (6535 × 10,000)-similarity matrix with
k(⋅ , ⋅) being a graph kernel. We end up with 10,000 kernel values.
Figure 4 shows that both kernels’maximum similarity distributions
are centered around kmax � 0:55. There is a small fraction of
samples for which kmax � 1 holds. Such graphs correspond to
near-identical replicas of input graphs and could lead to patient
privacy leaking from the training set. These graphs must be
eliminated from the generated data set to reduce the risk of
privacy leak.
A simple method to avoid these replica graphs is to add

Gaussian noise to the decoder-generated Encounter node

Fig. 3 Histograms of similarities between input and reconstructed trajectories. Each input trajectory was compared against its
corresponding reconstructed trajectory using a graph kernel. a Histogram of similarities between input graphs and reconstructed graphs
using the Weisfeiler-Lehman subtree (WL) kernel. b Histogram of similarities between input graphs and reconstructed graphs using the
shortest path (SP) kernel.

Fig. 4 Histograms of similarities between input and generated trajectories. The model was used to generate 10,000 synthetic trajectories,
and for each synthetic trajectory, the most similar input trajectory was found. a Histograms of similarities between input and generated
trajectories using the Weisfeiler–Lehman subtree (WL) kernel. b Histograms of similarities between input and generated trajectories using the
shortest path (SP) kernel.

G. Nikolentzos et al.

4

npj Digital Medicine (2023) 83 Published in partnership with Seoul National University Bundang Hospital

representations. We can guarantee that all generated graphs are
novel samples by tuning the variance of the Gaussian. Figure 5
shows the proportion of novel samples as a function of the
standard deviation of the Gaussian distribution. We generated
20,000 samples for each value of σ. As expected, the number of
novel samples is an increasing function of σ, and all samples are
novel when σ ≥ 0.5. More rigorous methods to ensure privacy
could also be used. For example, there are VAE algorithms that
perturb the latent vectors that represent the samples in a
differential privacy-consistent way42. The fraction of replicas is
small, even without added noise. More than 99% of the
generated samples are novel. In addition, Fig. 4 shows that
there are no graphs at low kmax. Contributions near kmax ¼ 0
would have indicated a very low similarity to the inputs and
generated patient trajectories that are unrealistic.
Further, we must determine to what extent these novel-

generated samples are realistic representations of electronic
health records. In what follows, we remove samples that are very
similar to input graphs (those graphs Ĝj for which kmax

j >0:9
according to the WL or SP kernel). We use the Graph Kernel-
Maximum Mean Discrepancy (GK-MMD) metric to evaluate the
quality of the generated graphs. The GK-MMD accounts for both
graph topology and node labels43. The MMD statistical test
determines whether sample sets from two distributions P and Q
were in fact derived from the same distribution (i.e., whether

distributions P and Q are identical). The square of the MMD is:

MMD2ðP;QÞ ¼ Ex;x0�P½kðx; x0Þ� � 2Ex�P;y�Q½kðx; yÞ� þEy;y0�Q½kðy; y0Þ�
(1)

where k(⋅ , ⋅) is the associated kernel function44. A lower MMD
score indicates a better approximation in terms of the employed
kernel (0 means that they are identical). We computed the
squared WL-MMD and SP-MMD scores between the generated
trajectories and their training data. The scores were 0.0017 and
0.0020, respectively.
We also investigate if paths of length n occurred with the same

frequencies in the generated graphs as in the input graphs. Such
n-paths can be thought of as Condition and Medication node pairs
separated in time by (n− 1) Encounters. In this terminology,
1-path corresponds to node labels, 2-paths to nearest neighbors,
and 3-paths to next-nearest-neighbors. The first is a static (time-
independent) property, but the other two are dynamic properties
through the timeline implicit by the NEXT relation between
neighboring Encounters. Examples of 2- and 3-paths are high-
lighted in Fig. 6. The number of such paths increases exponen-
tially, which has a significant impact on the time complexity to
compute correlation coefficients for larger n. We calculated
Pearson’s r as a function of n (Table 2 and Fig. 7). The static
1-paths (node labels) are perfectly retained in the generated
graphs (r= 0.995). This shows that static properties like patient
attributes and the number of diagnoses and medications are
indistinguishable in the generated graphs compared to the
training data. The dynamic 2- and 3-paths are almost equally well
preserved in the novel training samples (r > 0.93). This shows
without a doubt that the model learns time-dependencies
between conditions and medications that occur in consecutive
Encounters.
We can show the generated data quality more concretely. First,

the patient visit length is the number of consecutive Encounters in
the patient’s trajectory. Figure 8 shows the frequency of visit
lengths for real and synthetic patient cohorts, respectively. The
two distributions are very similar, and both real and synthetic
cohorts are dominated by short visit lengths (less than 20
Encounters, even though the input data contains a 144-length
outlier). We computed an MMD of 0.025 between the two
distributions. This very low value further verifies that the
generated trajectories are realistic.
Next, we calculated comorbidities, defined as two or more

medical conditions that exist simultaneously in the patient
trajectory regardless of causal relationships. Following ref. 45, we
define the comorbidities for atrial fibrillation as Heart failure (ICD-
10-CM code I50), Hypertension (I10–I15), Diabetes mellitus

Fig. 5 Percentage of novel trajectories as a function of the
standard deviation of the Gaussian noise. The mean of the
Gaussian was chosen to be the zero vector. The noise was added to
the representations of the Encounter nodes. For each value of
σ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, 20000 trajectories were generated
in total, which was compared against the real trajectories.

Fig. 6 Examples of 2- and 3-paths in a patient trajectory. A 2-path from the ConditionType node I10 of the first Encounter node to
ConditionType node Z59 of the second Encounter node is highlighted in pink. A 3-path from the ConditionType node I51 of the second
Encounter node to the MedicationType node Sodium Chloride 0.9% of the fourth Encounter node is highlighted in green.

G. Nikolentzos et al.

5

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2023) 83

(E10–E14), and Stroke/TIA (G45, I63, and I74). Figure 9 shows
comorbidities for the real and synthetic atrial fibrillation cohorts.
The synthetic data faithfully replicates the trends in the original
data. The only difference is that patients with combined heart
failure and hypertension are slightly more common with diabetes
in the real data than in the synthetic data.
We now investigate whether synthetic data samples can stand

in for real-world data in downstream analytics tasks. As
mentioned, heart failure is a common and potentially fatal
comorbidity to atrial fibrillation. It is the leading cause of
hospitalization and readmission in older adults46. In fact, about
40 million people worldwide suffered from heart failure in 201547.

Machine learning methods have already improved predictions of
hospital readmissions in heart failure patients48, but the onset of
heart failure is more difficult to predict. Here, we designed a
classification task where the objective is to predict whether heart
failure is the cause of the next patient encounter. We developed a
classifier by pairing the encoder module of our VGAE with a multi-
layer perceptron (MLP). This model was trained from scratch to
make predictions in two different scenarios: “train on real, test on
real” and “train on synthetic, test on real”. These scenarios
demonstrate whether a model trained on synthetic data
generalizes to real data with similar performance to a model
trained on real data. We used identical test sets in the two
scenarios and the same number of training samples. All data sets
were balanced with an equal number of input samples from each
class. For each scenario, we designed two experiments. In Task 1,
the last Encounter node was removed from each trajectory. The
sample was assigned to class 1 if that Encounter node linked to a
Condition node with ICD-10-CM code I50 (heart failure) and to
class 0 otherwise. In Task 2, we removed all trajectories with either
no I50 code or where the I50 code was connected to the first or
second Encounter. By definition, the first I50 code of the trajectory
is connected to the ith encounter (i > 2). The trajectories were then
assigned to class 0 (heart failure did not occur) or class 1 (heart
failure did occur) with equal probability. For each class 0-
trajectory, we generated a random number k= {1,…, i− 2}. The
trajectory’s first k Encounters and their Conditions and Medica-
tionRequests were kept. For each class 1-trajectory, the first i− 1
Encounters and their Conditions and MedicationRequests were
kept. We trained the two tasks as binary classifications. Training
and analysis were repeated 10 times. The average test accuracy
and the standard deviation are reported in Table 3. We find that
the classifier’s performance is independent of whether real or
synthetic training data is used. In both tasks, training on synthetic
data does not impact the performance of the classifier. Thus, for
these downstream tasks, the synthetic data provides the same

Table 2. Pearson’s r between the frequency of different structures in
the collection of training trajectories and the collection of generated
trajectories.

n r Description

1 0.995 Node types

2 0.963 Sequences of condition/medication codes of length two

3 0.934 Sequences of condition/medication codes of length three

Structures correspond to 1-paths (node types), 2-paths, and 3-paths, as
illustrated in Fig. 6.

Fig. 7 Pearson’s r between the frequency of different structures
in the collection of training trajectories and the collection of
generated trajectories. Structures correspond to 1-paths (node
labels), 2-paths, and 3-paths, as illustrated in Fig. 6.

Fig. 8 Plot of visit lengths for real and synthetic data. The visit
length refers to the number of Encounter nodes that exist in a
patient trajectory. Only trajectories consisting of, at most, 50
Encounter nodes are considered.

Fig. 9 Comorbidities for the real and synthetic atrial fibrilla-
tion cohorts. We define the comorbidities for atrial fibrillation as
follows: HF heart failure, S/TIA stroke/TIA, DM diabetes mellitus, H
hypertension.

Table 3. Classification accuracy of the two experimental scenarios in
two separate downstream analytics tasks.

Scenario Task 1 Task 2

Train on real, test on real 64.02% ± 2.93 73.04% ± 1.35

Train on synthetic, test on real 63.85% ± 2.57 73.32% ± 2.90

Both tasks are variants of predicting the onset of heart failure in patients. In
the first scenario, the classifier is trained on real data and is evaluated on
real data, while in the second scenario, the classifier is trained on synthetic
data and is evaluated on real data.

G. Nikolentzos et al.

6

npj Digital Medicine (2023) 83 Published in partnership with Seoul National University Bundang Hospital

predictive performance as the real data. The data patterns needed
for these predictions are learned by the synthetic generator.
Finally, we validated our model with outlier identification using

a one-class Support Vector Machine (SVM), which is an
unsupervised variant of the standard SVM49. SVMs can be applied
to graph data using graph kernels. We generated 6535 synthetic
patient trajectories and checked that no samples were isomorphic
to the real training set. We randomly selected 10% of the synthetic
trajectories and added them to the real trajectories (this is the
“inlier” set). Then, we sampled 10% of the remaining synthetic
trajectories and used the trained one-class SVM on each candidate
to decide whether it was an inlier or not (“outlier”). We used the
SVM parameter ν= 0.1, meaning that no more than 10% of the
training samples can be considered outliers by the decision
boundary. We repeated the prediction experiment 10 times by
sampling different subsets of synthetic trajectories. For compar-
ison, we split the real data into training and test sets at a 90:10
ratio. As before, we enriched the training set with 10% of the
synthetic trajectories and let the SVM classifier identify outliers in
real data. Table 4 shows the results of these numerical
experiments. The one-class SVM algorithm predicts that a large
majority (92–93%) of the synthetic trajectories are inliers
independent of the graph kernel. The algorithm performance is
similar (90–91%) to the real data samples. This shows that the
generated trajectories are of high quality and indistinguishable
from real data. Figure 10 shows examples of how similar
trajectories from the original data set are to novel samples
generated with our VGAE-based model.
We also trained a support vector machine (SVM) classifier to

learn to distinguish between real trajectories and the synthetic
trajectories generated by the model. However, the classifier could
only discern that synthetic trajectories were slightly more similar
to each other than to the real trajectories. Those results are
provided in Table 5 in the Supplementary Materials.

DISCUSSION
Well-generated synthetic healthcare data could provide an
opportunity to improve the value of analytics by allowing easier
access to data in order to pre-train AI models, generate novel
hypotheses, and explore data patterns without jeopardizing
patient integrity. In this paper, we present a deep-learning model
for generating synthetic patient trajectories from electronic health
records. We show that the model can be effectively trained on real
graphs and generate novel ones that are not in the training set.
These patient trajectories are clinically realistic while sufficiently
different from the trajectories in training set to preserve patient
privacy.
Our model is a variational graph autoencoder (VGAE) tailored to

patient trajectories represented as directed acyclic graphs.
Previous generative models have failed to produce large graphs
or to learn long-range time correlations. The model proposed here
solves these issues by decoupling the sequential patient timeline
from the clinical interventions. The model is well suited for the

complex time dependencies found in electronic health records.
Our numerical results show that the model generates novel
synthetic patient trajectories, not found in the training data, that
are sufficiently different to preserve patient privacy yet retains the
characteristics of the real-world data. Arguably the most
significant feature is that the model is powerful enough to learn
long-range correlations between trajectory nodes.
An interesting question arising from this work is to what extent

synthetic data can replace real-world data in downstream analysis.
Given our experimental results, and the model’s ability to learn
paths in patient trajectories, we expect analysis based on either
real or synthetic to lead to similar conclusions. This could be
tested in practice by comparing the output of more machine
learning classifiers trained on synthetic trajectories against those
trained on real-world data. Are the data-driven insights identical?
As we have already emphasized, the success of any deep

learning model rests on the quality and amount of training data.
The model can capture general trends already from limited
training data but ultimately requires large amounts of training
data to generate long and accurate patient trajectories. In short, as
always, the more data, the better results. In general, outliers
(patient trajectory groups that rarely occur in the training set) are
also difficult to generate with accuracy. The generative model
should always take measures to ensure that all trajectories of
interest are well-represented in the training set.
We next discuss the technical limitations of the proposed

model. First, node and edge labels are the only metadata included
in our model. There is a lot of additional metadata in EHR systems
(for example, lab data including values and units) that is of interest
for analysis. Such data is represented as key/value pairs on nodes
and edges in our graph model. Our generator is easily extended to
node and edge attributes by coupling a multi-layer perceptron
(MLP) to the model once the node type has been determined.
Second, the present version of the model assumes that Encounter
nodes are connected to only one type of Condition or Medication
node. In practice, there can be more than one on the same node
(if, for example, the patient is administered the same medication
multiple times in the same encounter). This limitation is due to the
model’s binary classifier, which decides whether (or not) a single
node of each type should be added to the encounter. A future
iteration of the model could replace the binary classifier with a
module that accounts for multiplicity. Third, the model has a
number of hyper-parameters (see the Methods section) that could
be investigated for further sensitivity analysis and optimization.
Another aspect of the work that is worth discussing is data bias.

Data bias (i.e., skewed representations of certain data categories
based on e.g., ethnicity, gender, or something else) in healthcare
AI systems has been debated because of its potential to harm
misrepresented population groups50,51. Although data bias is a
real concern to the systematic use of healthcare data in general, it
is important to separate the discussion regarding bias in the
underlying training data from any eventual bias introduced by the
AI model itself. We have identified no such model bias.
Synthetic data is not meant to straight-off replace original

patient data. Instead, synthetic data can first increase data
efficiency by providing a safe and accessible environment for
analytics and pre-training AI models. Tentative conclusions from
analytics will still need to be verified on the original data, as
before. But crucially, synthetic data avoids the need to access
sensitive real-world data when the chances for meaningful
conclusions are lower.
With regard to privacy risks in the context of synthetic data, a

major threat is when a malicious agent can use synthetic patient
trajectories to re-identify real patients from the training data. This
is called privacy leaking. That risk is magnified when the agent is
in possession of additional information about the real individuals
(medical conditions, prescriptions, etc.) that can be combined with
the synthetic data to form recognizable patterns that can be used

Table 4. Percentage of real and synthetic samples that were identified
as outliers by the one-class SVM algorithm.

Kernel Outliers

Synthetic data Real data

WL 7.8% ± 1.2 10.7% ± 0.9

SP 6.9% ± 1.0 11.3% ± 0.8

Two graph kernels are employed to compute the kernel values (i.e.,
similarities) between trajectories, namely the Weisfeiler-Lehman subtree
(WL) kernel and the shortest path (SP) kernel.

G. Nikolentzos et al.

7

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2023) 83

for re-identification. In our model, the amount of similarity
between the synthetic and real trajectories is adjustable by the
amplitude of the noise injected into the sampled latent space.
Synthetic data should undergo a careful evaluation with respect to
identity disclosure risks prior to distribution52. A number of
different approaches for reducing the risk of information
disclosure53,54 have been proposed since disclosure control
methods have a significant impact on data utility.
To conclude, graph deep learning is a powerful tool for learning

complex data patterns. Here, a variant of a variational graph
autoencoder (VGAE) tailored to patient trajectories represented as
large directed acyclic graphs created privacy-preserving and

highly accurate synthetic EHRs with long-range time correlations.
This approach could reduce the problem of restricted access to
health data, thus enabling explorative analyses, algorithm pre-
training, hypothesis generation, and data expansion without
jeopardizing privacy.

METHODS
Notation
Let ½n� ¼ f1; ¼ ; ng � N for n≥1 and G= (V, E) be a directed
graph where V is the node set, and E is the edge set, such that n is
the number of nodes and m is the number of edges in the graph.

Encounter

Metoprolol Tartrate

Sodium Chloride 0.9% Flush

Docusate Sodium

Senna

I50

Aspirin

Maalox/Diphenhydramine/Lidocaine

Clopidogrel

AcetaminophenHeparin

Ramelteon

Atorvastatin

Furosemide

Rivaroxaban

I48

I11

Z79
Patient

J84

Influenza Vaccine Quadrivalent

I21

Potassium Chloride

Metoprolol Succinate XL

I25

Lisinopril

Inpatient

Polyethylene Glycol

Pantoprazole

MedReq

MedReq

MedReq

MedReq

Condition

MedReq

MedReq

MedReq

MedReqMedReq

MedReq

MedReq

MedReq

MedReq

Condition

Condition
Condition

Condition

MedReq

Condition

MedReq

MedReq

Condition

MedReq

MedReq

MedReq

Atorvastatin

Encounter

Aspirin

Encounter

Encounter

PNEUMOcoccal 23-valent polysaccharide vaccine

I25

Carvedilol

E11

Heparin

Lisinopril

Z79

Senna

V45

Encounter

TiCAGRELOR

Sodium Chloride 0.9% Flush

Patient

Rosuvastatin Calcium

Influenza Vaccine Quadrivalent

Nitroglycerin SL

Emergency

Docusate Sodium

Z95

Acetaminophen

V15

I50

Clopidogrel

Hospital observation services

Z87

E87

Cardiovascular

E78

MedReq

MedReq

MedReq

Condition
MedReq

MedReq

Condition

MedReq

MedReq MedReq

Condition

MedReq

Condition

Condition

Condition

MedReq

MedReq

MedReq
MedReq

MedReq

MedReq

MedReq

MedReq

Condition

MedReq

Condition

Condition

MedReq MedReq

Condition

Condition

Condition

Patient

Encounter

Sodium Chloride 0.9% Flush

Heparin
Atorvastatin

Aspirin

Furosemide

I95

I50

Influenza Vaccine Quadrivalent

E78

I21

Lisinopril

I25

Metoprolol Succinate XL

Captopril

Potassium Chloride Replacement (Critical Care and Oncology)

R57

DOPamine

Outpatient, primary care

F17

I35

MedReq

MedReq

MedReq

MedReq

MedReq

Condition

Condition

MedReq

Condition

Condition

MedReq

Condition

MedReq

MedReq

MedReq

Condition

MedReq

Condition

Condition

Patient
Encounter

Emergency

I10

Hospital observation per hr

Encounter

J18 Z91

Z98

I51R10

Z59

Encounter

R07Encounter

Sodium Chloride 0.9% Flush

Heparin

I50

Influenza Vaccine Quadrivalent

Lisinopril

I16

I11

Hydrochlorothiazide

Condition

Condition

Condition

Condition
Condition

Condition

Condition
Condition

Condition

Condition

Condition

MedReq

MedReq

Condition
MedReq

MedReq

Condition

Condition

MedReq

Fig. 10 Visualizations of patient trajectories. a Two examples of trajectories extracted from the training data. b Two examples of synthetic
trajectories that were generated with the proposed model.

G. Nikolentzos et al.

8

npj Digital Medicine (2023) 83 Published in partnership with Seoul National University Bundang Hospital

The neighborhood NðvÞ of a node v is the set of all nodes
adjacent to v. For a directed graph, we use NþðvÞ ¼ fu j ðv; uÞ 2
Eg to indicate the set of out-neighbors of v where (v, u) is an edge
between nodes v and u of V, and N�ðvÞ ¼ fu j ðu; vÞ 2 Eg to
indicate the set of in-neighbors of v. The out-degree of node v is
dþðvÞ ¼ jNþðvÞj and its in-degree is d�ðvÞ ¼ jN�ðvÞj. The
adjacency matrix A 2 Rn ´ n of a graph G is a symmetric (and
typically sparse) matrix used to encode edge information in the
graph. Element (i, j) is the weight of the edge between nodes vi
and vj if the edge exists and 0 otherwise. For graphs with node
labels and edge labels, nodes and edges are associated with
discrete labels, expressed by two functions ℓV : V→ ΣV and
ℓE : E→ ΣE that map nodes and edges to labels from the sets of
labels ΣV and ΣE, respectively.

Architectural details
We designed a model tailored to patient trajectories where each
graph corresponds to the following:

● A patient node is followed by a sequence of Encounter nodes
(Fig. 11a).

● Each Encounter node is connected to Condition and
MedicationRequest nodes, which in turn are terminated with
ConditionType and MedicationType nodes. An Encounter

node could also be connected to EncounterType and/or
EncounterCategory nodes (Fig. 11b).

Clearly, the graph generation can be carried out in two steps: (1)
Generate the Encounter node sequence. (2) Generate the
successors of each Encounter node. For the first task, we use
the topological order of the patient trajectory subgraph obtained
only from the Patient and Encounter nodes. This topological order
is important because it keeps the trajectory timeline by enforcing
Encounter node u to precede Encounter v chronologically. Since
Patient and Encounter nodes are only a small fraction of the nodes
in the patient trajectory, a recurrent neural network (RNN) can
capture the relationships between consecutive encounters in the
sequence. For the second task, we could generate successors of
the Encounter nodes by imposing any topological ordering and
letting another RNN learn that structure. That is possible since
Encounter nodes do not have too many successors. In this work,
we used an alternative approach where we consider the
Encounter successor nodes as a set, and then we simply generate
a set that contains those nodes.
We use an encoder–decoder architecture. The encoder maps

input DAGs to a distribution parameterized as a multivariate
Gaussian. In other words, the encoder predicts the mean and
standard deviation of this Gaussian distribution. A random sample

Patient

Encounter Encounter Encounter Encounter

Encounter

Sodium Chloride 0.9%

Docusate Sodium

Aspirin

Clopidogrel

I11

Z79

J84

I25

Emergency

MedReq

MedReq

MedReq

MedReq

Condition

Condition

Condition

Condition

Fig. 11 The two main structures into which a patient trajectory can be decomposed. A patient trajectory can be decomposed into a patient
node followed by a sequence of Encounter nodes and a set of Encounter nodes, each connected to several Condition and MedicationRequest
nodes, which in turn are terminated with ConditionType and MedicationType nodes. a Example of a sequence of 4 Encounter nodes.
b Example of an Encounter node.

Fig. 12 An overview of the proposed variational autoencoder. To train the model, a patient trajectory is fed to the encoder, which projects
the trajectory to a distribution parameterized as a multivariate Gaussian. Then a latent vector z is sampled from that distribution and is passed
on to the decoder, which reconstructs the input trajectory. To generate a synthetic sample, a vector is sampled from the normal distribution
and is then fed directly to the decoder, which constructs the synthetic trajectory.

G. Nikolentzos et al.

9

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2023) 83

is then drawn from the distribution and serves as the latent
representation of the input graph. The decoder tries to reconstruct
the input DAGs given their vector representations. The decoder is
a variational approximation, pθ(G∣z), which takes an embedding z
as input. An overview of the proposed model is given in Fig. 12.
Two pre-processing steps were applied to the patient

trajectories before encoding. First, we merged Condition/Con-
ditionType and MedicationRequest/Medication type node pairs.
Second, for each graph, an End node was added via a directed
edge to the last Encounter node. This allows the model to decide
when to terminate the generation of nodes in a new graph.
The encoder of the model is a message-passing graph neural

network. Its first part is an embedding layer that creates
representations for the nodes in each patient DAG. Each node v
has a trainable node embedding xv, and there is a single node
embedding for each node type. These node embeddings are
updated during training with a combination of synchronous and
asynchronous message-passing schemes.
First, the Encounter node embeddings are updated by

aggregating the embeddings of their successors, excluding
Encounter and End nodes:

mv ¼
P

u2NþðvÞ
f ðxuÞ

hv ¼ GRUðxv ;mvÞ
(2)

where NþðvÞ is the set of successors of Encounter node v (again,
excluding Encounter and End nodes), f is a neural network
(MLP), xv is the embedding of node v, and GRU is a gated
recurrent unit.
An asynchronous message passing scheme is then applied

where we sequentially perform message passing according to the
topological sorting obtained from the patient subgraph of
Encounter and End nodes. This differs from the standard
message-passing scheme in graph neural networks, where all
node embeddings are updated at each algorithm step. In our
algorithm, the node embeddings are updated in this step
according to the following:

mv ¼
P

u2N�ðvÞ
f ðhuÞ

hv ¼ GRUðhv ;mvÞ
(3)

where N�ðvÞ is the set of incoming neighbors of v for
Encounter nodes.
Once all node embeddings of the DAG have been computed,

we use the end node embedding (i.e., the node without any
successors) as the output of the encoder. Thus, hG= he where e
denotes the End node of G. This vector is passed to two fully-
connected layers to get the mean and variance parameters of the
posterior approximation q(z∣G):

μ ¼ WμhG þ bμ

logσ2 ¼ Wσ2hG þ bσ2

(4)

The decoder of the model also applies an asynchronous
message-passing scheme to generate node representations. The
decoder uses a GRU to update node embeddings when
generating the graph.
A fully-connected layer is used to map the input latent vector z

to the initial (hidden) state vector h0. The state vector is passed to
the GRU, which constructs a DAG node-by-node. So far, all are
Encounter (or End) nodes. The embedding of the first (Patient)
node is hv1 ¼ GRUðxv1 ;h0Þ. The following steps are performed to
generate node vi:

● Compute the label distribution of vi with an MLP based on the
current graph state hG ¼ hvi�1 .

● Sample the label of vi. If this is the end label, stop the
decoding, connect the last Encounter node to vi, and return

the DAG. If not, continue the generation.
● Connect the last added Encounter node and the Patient node

to vi. Update hvi according to:

mvi ¼
P

u2N�ðviÞ
f ðhuÞ

hvi ¼ GRUðxvi ;mvi Þ
(5)

● Produce a vector s 2 Rc (c denotes the different types of
successors of Encounter nodes excluding Encounter and End
nodes):

s ¼ MLPðhvi Þ (6)

The sigmoid function is applied point-wise to the MLP output,
and then the model decides whether to add a node of each type
of successor to the graph. When a new node is added, so is a
directed edge from vi. The decision to add a successor to the
graph is a binary classification problem. We, therefore, use the
binary cross entropy loss to train the model.

Loss function
The loss function of our variational autoencoder has two terms,

L ¼ Lreconstruction þ βLKL (7)

The first term is the reconstruction loss, i.e., the variational lower
bound, and measures how well the model reconstructs the input
data. The reconstruction loss is high if the reconstructed DAG is
very different from its input. This term can be split into two
contributions, Lreconstruction ¼ Lencounter þ Lother. One contribution
measures how well the model can reconstruct the sequence of
Encounter nodes. It is equal to the binary cross-entropy between
the predicted types of Encounter or End nodes and their actual
types:

Lencounter ¼ �
Xk

i¼1

ℓðviÞ logðŷiÞ þ ð1� ℓðviÞÞ logð1� ŷiÞ (8)

Remember, {v1,…, vk} are only the Encounter and End nodes in
the DAG. The other contribution measures how well the model
can reconstruct the successors of the Encounter nodes. It is equal
to the binary cross-entropy between the predicted and the actual
successors of each Encounter node:

Lother ¼ �
Xk

i¼1

Xr

j¼1

f ðvi ; σjÞ logðŷijÞ þ ð1� f ðvi ; σjÞÞ logð1� ŷijÞ

(9)

Here the {σ1,…, σr} set includes all nodes except Encounter and
End nodes for node v :

f ðv; σÞ ¼ 1; fuju 2 NþðvÞ ^ ℓðuÞ ¼ σg�
�

�
�>0

0; otherwise

(

(10)

The second term of the loss function is a regularization term. It is
equal to the Kullback-Leibler (KL) divergence of the approximate
qðzjGÞ ¼ Nðμ;σÞ from the true posterior p(z), where pðzÞ ¼
Nð0; IÞ and 0 and I are the all-zeros vector and the identity matrix,
respectively. The KL divergence measures how closely the output
distribution q(z∣G) matches p(z):

LKL ¼ �KL½qðzjGÞjjpðzÞ� (11)

Training
To train the model, we used teacher forcing55, i.e., a strategy for
training RNNs that feeds the observed sequence values as input to
the model instead of feeding the model’s output from a prior time

G. Nikolentzos et al.

10

npj Digital Medicine (2023) 83 Published in partnership with Seoul National University Bundang Hospital

step, thus forcing the model to stay close to the ground-truth
sequence. Given the topological ordering of the Encounter nodes,
in each decoding step, we force the model to generate the
ground-truth node type (Encounter node or End node) and the
ground-truth condition and medication nodes connected to the
Encounter nodes. Note that during the generation of new
samples, teacher forcing cannot be applied since there is no
ground-truth information, and thus we sample node types
according to the decoding distributions. We used a cyclical
scheme for the annealing parameter in Eq. (7), which increases β
multiple times56. This is done to balance the two terms in the loss
function such that the model learns the underlying distribution
while maximizing the use of the available latent space.

Experimental setup
We used the following values for the model’s hyper-parameters.
The hidden-dimension size of the embedding layer and the GRU
layers was 512. The hidden-dimension size of the fully connected
layer that transforms the sampled vector representation of the
graphs was set to 512 and followed by a tanh-activation. We used
an MLP with hidden-dimension size 1024 to decide whether a new
node type was to be added to the graph (and also to determine its
type). We used an MLP with a hidden-dimension size of 2048 to
compute the successors of Encounter nodes. The hidden layers in
both MLPs were followed by ReLU activation functions. The
dimension of the multivariate Gaussian distribution was set to 256.
The batch size was 256, and the number of learning epochs was
5000. We used the Adam optimizer with an initial learning rate of
10−3 and decayed the learning rate by 0.1 every 1000 epochs to a
minimum of 10−5. The model with the lowest training loss was
stored on disk and retrieved at the end of training. The best model
was then used to generate new graphs for the numerical
experiments.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
MIMIC-IV data is available on the PhysioNet repository (https://physionet.org/), and
access is authorized to users through a data use agreement with the providers.

CODE AVAILABILITY
The code of the presented model, together with the code for the statistical analyses,
is available upon request to the corresponding author.

Received: 12 October 2022; Accepted: 5 April 2023;

REFERENCES
1. Rieke, N. et al. The future of digital health with federated learning. npj Digit. Med.

3, 1–7 (2020).
2. Abadi, M. et al. in Proceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, pp. 308–318 (2016).
3. Acar, A., Aksu, H., Uluagac, A. S. & Conti, M. A survey on homomorphic encryption

schemes: theory and implementation. ACM Comput. Surv. 51, 1–35 (2018).
4. Yoon, J., Jarrett, D. & Van der Schaar, M. in Advances in Neural Information Pro-

cessing Systems (2019).
5. Ramponi, G., Protopapas, P., Brambilla, M. & Janssen, R. T-cgan: conditional gen-

erative adversarial network for data augmentation in noisy time series with irre-
gular sampling. Preprint at arXiv https://doi.org/10.48550/arXiv.1811.08295 (2018).

6. Kuutti, S., Bowden, R., Jin, Y., Barber, P. & Fallah, S. A survey of deep learning
applications to autonomous vehicle control. IEEE Trans. Intell. Transp. Syst. 22,
712–733 (2020).

7. Popel, M. et al. Transforming machine translation: a deep learning system reaches
news translation quality comparable to human professionals. Nat. Commun. 11,
1–15 (2020).

8. Walters, W. P. & Barzilay, R. Applications of deep learning in molecule generation
and molecular property prediction. Acc. Chem. Res. 54, 263–270 (2020).

9. Choi, E. et al. in Proceedings of Machine Learning for Healthcare 2017, pp. 286–305
(2017).

10. Jordon, J., Yoon, J. & Van Der Schaar, M. in 7th International Conference on
Learning Representations (2019).

11. Esteban, C., Hyland, S. L. & Rätsch, G. Real-valued (medical) time series generation
with recurrent conditional gans. Preprint at arXiv https://doi.org/10.48550/
arXiv.1706.02633 (2017).

12. Wendland, P. et al. Generation of realistic synthetic data using multimodal neural
ordinary differential equations. npj Digit. Med. 5, 1–10 (2022).

13. Tucker, A., Wang, Z., Rotalinti, Y. & Myles, P. Generating high-fidelity synthetic
patient data for assessing machine learning healthcare software. npj Digit. Med. 3,
1–13 (2020).

14. Chen, R. J., Lu, M. Y., Chen, T. Y., Williamson, D. F. & Mahmood, F. Synthetic data in
machine learning for medicine and healthcare. Nat. Biomed. Eng. 5, 493–497
(2021).

15. Goncalves, A. et al. Generation and evaluation of synthetic patient data. BMC
Med. Res. Methodol. 20, 1–40 (2020).

16. Kingma, D. P. & Welling, M. in 2nd International Conference on Learning Repre-
sentations (2014).

17. Kingma, D. P. & Welling, M. An introduction to variational autoencoders. Found.
Trends® Mach. Learn. 12, 307–392 (2019).

18. Simonovsky, M. & Komodakis, N. in Proceedings of the 27th International Con-
ference on Artificial Neural Networks, pp. 412–422 (2018).

19. Salha, G., Limnios, S., Hennequin, R., Tran, V. A. & Vazirgiannis, M. in Proceedings of
the 28th ACM International Conference on Information and Knowledge Manage-
ment, pp. 589–598 (2019).

20. Chatzianastasis, M., Dasoulas, G., Siolas, G. & Vazirgiannis, M. in Proceedings of the
2021 IEEE/CVF International Conference on Computer Vision Workshops, pp.
393–402 (2021).

21. Creswell, A. et al. Generative adversarial networks: an overview. IEEE Signal Pro-
cess. Mag. 35, 53–65 (2018).

22. Gui, J., Sun, Z., Wen, Y., Tao, D. & Ye, J. A review on generative adversarial
networks: algorithms, theory, and applications. IEEE Trans. Knowl. Data Eng.,
3313–3332 (2021).

23. Kaur, D. et al. Application of Bayesian networks to generate synthetic health data.
J. Am. Med. Inform. Assoc. 28, 801–811 (2021).

24. Walonoski, J. et al. Synthea: an approach, method, and software mechanism for
generating synthetic patients and the synthetic electronic health care record. J.
Am. Med. Inform. Assoc. 25, 230–238 (2018).

25. Baowaly, M. K., Lin, C. C., Liu, C. L. & Chen, K. T. Synthesizing electronic health
records using improved generative adversarial networks. J. Am. Med. Inform.
Assoc. 26, 228–241 (2019).

26. Yale, A. et al. Generation and evaluation of privacy preserving synthetic health
data. Neurocomputing 416, 244–255 (2020).

27. Arvanitis, T.N., White, S., Harrison, S., Chaplin, R. & Despotou, G. A method for
machine learning generation of realistic synthetic datasets for validating
healthcare applications. Health Inform. J. 28, 1–16 (2022).

28. Chin-Cheong, K., Sutter, T. & Vogt, J. E. in Workshop on Machine Learning for
Health (ML4H) at the 33rd Conference on Neural Information Processing Systems
(2019).

29. Saxena, D. & Cao, J. Generative adversarial networks (gans) challenges, solutions,
and future directions. ACM Comput. Surv. 54, 1–42 (2021).

30. You, J., Ying, R., Ren, X., Hamilton, W. & Leskovec, J. in Proceedings of the 35th
International Conference on Machine Learning, pp. 5708–5717 (2018).

31. Jin, W., Barzilay, R. & Jaakkola, T. in Proceedings of the 35th International Con-
ference on Machine Learning, pp. 2323–2332 (2018).

32. Li, Y., Vinyals, O., Dyer, C., Pascanu, R. & Battaglia, P. in Proceedings of the 35th
International Conference on Machine Learning (2018).

33. Bongini, P., Bianchini, M. & Scarselli, F. Molecular generative graph neural net-
works for drug discovery. Neurocomputing 450, 242–252 (2021).

34. Johnson, A. et al. Mimic-iv https://physionet.org/content/mimiciv/1.0/ (2021).
35. Implemented in the SHAARPEC Analytics platform. https://www.shaarpec.com.
36. Bender, D. & Sartipi, K. in Proceedings of the 26th IEEE International Symposium on

Computer-Based Medical Systems, pp. 326–331 (2013).
37. Jang, E., Gu, S. & Poole, B. in 5th International Conference on Learning Repre-

sentations (2017).
38. De Cao, N. & Kipf, T. Molgan: an implicit generative model for small molecular

graphs. Preprint at arXiv https://doi.org/10.48550/arXiv.1805.11973 (2018)
39. Nikolentzos, G., Siglidis, G. & Vazirgiannis, M. Graph kernels: a survey. J. Artif. Intell.

Res. 72, 943–1027 (2021).

G. Nikolentzos et al.

11

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2023) 83

https://physionet.org/
https://doi.org/10.48550/arXiv.1811.08295
https://doi.org/10.48550/arXiv.1706.02633
https://doi.org/10.48550/arXiv.1706.02633
https://physionet.org/content/mimiciv/1.0/
https://www.shaarpec.com
https://doi.org/10.48550/arXiv.1805.11973

40. Shervashidze, N., Schweitzer, P., Van Leeuwen, E. J., Mehlhorn, K. & Borgwardt, K.
M. Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011).

41. Borgwardt, K. M. & Kriegel, H. P. in Proceedings of the 5th IEEE International
Conference on Data Mining (2005).

42. Weggenmann, B., Rublack, V., Andrejczuk, M., Mattern, J. & Kerschbaum, F. in
Proceedings of the ACM Web Conference 2022, pp. 721–731 (2022).

43. Kawai, W., Mukuta, Y. & Harada, T. Scalable generative models for graphs with
graph attention mechanism. Preprint at arXiv https://arxiv.org/pdf/
1906.01861.pdf (2019).

44. Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B. & Smola, A. A Kernel two-
sample test. J. Mach. Learn. Res. 13, 723–773 (2012).

45. Engdahl, J., Holmén, A., Rosenqvist, M. & Strömberg, U. Uptake of atrial fibrillation
screening aiming at stroke prevention: geo-mapping of target population and
non-participation. BMC Public Health 13, 715–724 (2013).

46. Members, W. G. et al. Heart disease and stroke statistics—2012 update: a report
from the American heart association. Circulation 125, e2–e220 (2012).

47. Vos, T. et al. Global, regional, and national incidence, prevalence, and years lived
with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for
the global burden of disease study 2015. The Lancet 388, 1545–1602 (2016).

48. Mortazavi, B. J. et al. Analysis of machine learning techniques for heart failure
readmissions. Circulation 9, 629–640 (2016).

49. Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J. & Williamson, R. C. Esti-
mating the support of a high-dimensional distribution. Neural Comput. 13,
1443–1471 (2001).

50. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K. & Galstyan, A. A survey on bias
and fairness in machine learning. ACM Comput. Surv. 54, 1–35 (2021).

51. Parikh, R. B., Teeple, S. & Navathe, A. S. Addressing bias in artificial intelligence in
health care. JAMA 322, 2377–2378 (2019).

52. Reiter, J. P. & Mitra, R. Estimating risks of identification disclosure in partially
synthetic data. J. Privacy Confid. 1, 99–110 (2009).

53. Reiter, J. P. Satisfying disclosure restrictions with synthetic data sets. J. Off. Stat.
18, 531 (2002).

54. Park, N. et al. Data synthesis based on generative adversarial networks. Proc. VLDB
Endow. 11, 1071–1083 (2018).

55. Williams, R. J. & Zipser, D. A learning algorithm for continually running fully
recurrent neural networks. Neural Comput. 1, 270–280 (1989).

56. Fu, H. et al. in Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp.
240–250 (2019).

ACKNOWLEDGEMENTS
M.V. is partially supported by the “Wallenberg AI, Autonomous Systems and Software
Program” (WASP). M.L. is partially supported by AIR Lund (Artificially Intelligent use of
Registers at Lund University) research environment and received funding from the

Swedish Research Council (VR; grant No. 2019-00198). G.N. is supported by the
French National research agency via the AML-HELAS (ANR-19-CHIA-0020) project.

AUTHOR CONTRIBUTIONS
E.G.B. designed and directed this study. G.N. and M.V. contributed to the
methodology design. G.N. conducted all the experiments. G.N., M.V., M.L., and
E.G.B. analyzed and discussed the results. All authors wrote, reviewed, and revised the
paper.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41746-023-00822-x.

Correspondence and requests for materials should be addressed to Giannis
Nikolentzos.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

G. Nikolentzos et al.

12

npj Digital Medicine (2023) 83 Published in partnership with Seoul National University Bundang Hospital

https://arxiv.org/pdf/1906.01861.pdf
https://arxiv.org/pdf/1906.01861.pdf
https://doi.org/10.1038/s41746-023-00822-x
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Synthetic electronic health records generated with variational graph autoencoders
	Introduction
	Results
	EHR data source
	Generating model
	Experiments

	Discussion
	Methods
	Notation
	Architectural details
	Loss function
	Training
	Experimental setup
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION

