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An ensemble deep learning model for risk stratification of
invasive lung adenocarcinoma using thin-slice CT
Jing Zhou1,7, Bin Hu2,7, Wei Feng3, Zhang Zhang4, Xiaotong Fu1, Handie Shao1, Hansheng Wang5, Longyu Jin3, Siyuan Ai6 and
Ying Ji 2✉

Lung cancer screening using computed tomography (CT) has increased the detection rate of small pulmonary nodules and early-
stage lung adenocarcinoma. It would be clinically meaningful to accurate assessment of the nodule histology by CT scans with
advanced deep learning algorithms. However, recent studies mainly focus on predicting benign and malignant nodules, lacking of
model for the risk stratification of invasive adenocarcinoma. We propose an ensemble multi-view 3D convolutional neural network
(EMV-3D-CNN) model to study the risk stratification of lung adenocarcinoma. We include 1075 lung nodules (≤30mm and ≥4mm)
with preoperative thin-section CT scans and definite pathology confirmed by surgery. Our model achieves a state-of-art
performance of 91.3% and 92.9% AUC for diagnosis of benign/malignant and pre-invasive/invasive nodules, respectively.
Importantly, our model outperforms senior doctors in risk stratification of invasive adenocarcinoma with 77.6% accuracy [i.e.,
Grades 1, 2, 3]). It provides detailed predictive histological information for the surgical management of pulmonary nodules. Finally,
for user-friendly access, the proposed model is implemented as a web-based system (https://seeyourlung.com.cn).

npj Digital Medicine           (2023) 6:119 ; https://doi.org/10.1038/s41746-023-00866-z

INTRODUCTION
Lung cancer has always been among the most frequently
diagnosed cancers threatening people’s health worldwide. In
2020, the detection rate was approximately 11.4% of all cancer
diagnoses, ranking in the top place1. Moreover, it is also the
leading cause of cancer-related mortality, accounting for approxi-
mately 18% of total cancer-related deaths1. In China, the incidence
of lung cancer and cancer-related mortality in 2020 ranked in the
first place among all cancers, with an overall 5-year survival rate of
approximately 30%2. In recent decades, with the popularization of
low-dose computed tomography (LDCT) in lung cancer screening,
more early-stage lung cancers have been detected3. The critical
role of LDCT screening in reducing lung cancer-related mortality
has been confirmed by evidence-based medicine4,5.
According to the classification of the International Association

for the Study of Lung Cancer (IASLC), lung adenocarcinoma can be
divided into two broad categories: pre-invasive adenocarcinoma
(Pre-IA) and invasive adenocarcinoma (IAC)6. Pre-IA consists of
atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ
(AIS), and minimally invasive adenocarcinoma (MIA). Besides,
according to the latest IASLC grading system, predominant and
high-grade patterns are practical and prognostic for invasive lung
adenocarcinoma7. This new grading system divides IAC into three
risk grades and shows satisfactory survivability hierarchical
evaluation. It is meaningful to predict the pathological grades of
IAC by CT images since it helps select the most suitable surgical
approach (lobectomy, wedge resection, or segmentectomy)
before performing a medical operation. However, the current
lung cancer screening results based on chest CT may result in
different interpretations by different surgeons, posing serious
challenges to clinical work. These clinical challenges motivate us
to develop an automated diagnosis system. Such a system should

not only quickly and accurately detect and classify benign and
malignant nodules but also the pre-invasive and invasive types, as
well as the IAC pathological grades.
To detect and diagnose pulmonary nodules, some studies have

used extracted imaging features to predict the pathological
type8–12. For example, researchers developed radiomic models to
extract thousands of tumor-related features to quantify the image
features of lung tumors, such as morphological, texture, boundary,
and intensity features13–17. Wu et al.18 demonstrated that
separating ground-glass and solid CT radiomic features of part-
solid nodules is useful in diagnosing the invasiveness of lung
adenocarcinoma. Wang et al.19 combined a radiomic method and
frozen sections to predict the final classification of peripheral lung
adenocarcinoma manifesting as ground-glass nodules. Although
the radiomic-based method has been proven to be effective in
predicting the tumor pathological type, it is limited by the number
of extracted features. This is because these extracted features
highly rely on human engineering and the radiologist’s subjective
intervention, which may cause an unnecessary subjective bias.
Recently, with the rapid development of deep learning

technologies, features that can be automatically learned using
convolutional neural network (CNN) models have been verified as
a great supplementary to hand-crafted features extracted using
radiomic models20,21. CNN-based methods have been successful
in many lung cancer-related tasks, such as tumor segmenta-
tion22–26, benign and malignant classification27–31, and tumor
prognosis27,32–34. For most of the benign-malignant discrimination
tasks, researchers usually validate their models by either using
screen-detected nodules35 or incidentally detected nodules36,37,
which were with low incident rate of lung cancer. That means,
those proposed models may be more suitable for screening
populations with less suspicious nodules. In addition to lung
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cancer screening research, some scholars are dedicated to
distinguishing invasive lesions in malignant nodules38–42. For
example, Gong et al.43 developed a deep neural network model to
diagnose ground-glass nodules and classify Pre-IA and IAC.
However, the results of their model on two external validation
sets were unstable (Their model on validation 1 only yielded an
AUC value of 0.76, while the AUC value for validation 2 was 0.96).
Besides, most previous studies only focused on a certain type of
nodules in the inclusion criteria. Some researchers focused on
solid or semisolid nodules35–37, while others focus on ground-glass
nodule or mixed grounded glass nodule38,41,43. This may limit the
real-world application of AI models.
In summary, all the aforementioned studies focused on

classifying benign and malignant pulmonary nodules or Pre-IA
and IAC. To the best of our knowledge, there is currently no
research on the pathological grading of IAC despite its
importance for thoracic surgeons to select the most effective
surgical treatment44. For pre-invasive lesions, with their excel-
lent prognosis, sublobar resection is usually sufficient. Never-
theless, the histological subtypes can significantly affect
outcomes in IAC, which could aid in selecting the optimal
resection procedure45. To this end, it is of great practical
importance to correctly determine the IAC risk stratification
levels by screening CT images.
To overcome the limitations of previous literature, we develop a

three-stage ensemble multi-view 3D convolutional neural network
(EMV-3D-CNN) model to diagnose benign and malignant lung
tumors (Task 1), classify Pre-IA and IAC (Task 2), and further
identify the risk stratification level (i.e., Grades 1, 2, and 3) of IAC
(Task 3; see the Methods section for the detailed definitions of the
three grades). Here, we adopt a heterogeneous ensemble (HEE)
strategy, which is a general ensemble strategy that require
multiple models trained on the sane dataset46. Figure 1 shows an
overview of our study. To broaden the applicability of our model,

we include various types of pulmonary nodules, such as pure-
solid, part-solid, pure ground-glass and heterogeneous ground-
glass nodules. Our approach consists of three key tasks. For each
task, we first independently train three 3D CNN models (e.g., 3D
Inception, 3D VGG, and 3D ResNet) on the training set with the
pathological types as targeted labels. With the best trained model,
each 3D CNN model can give a predicted probability of each
category for each pulmonary nodule in the validation dataset. We
then calculate an averaged probability of each category for each
nodule. For Task 1 and Task 2, a cut-off value determined using
the Youden index is adopted to obtain the final predicted label.
For Task 3, the category corresponding to the maximum averaged
prediction probability is used as the final predicted label. To
further evaluate the model performance, a retrospective reader
study with six certified doctors is conducted by comparing the
performance of the six doctors and the proposed model
concerning lung adenocarcinoma risk stratification. Finally, for
user-friendly access, the proposed model is also implement as a
web-based system (https://seeyourlung.com.cn). By uploading
one full original CT image in the DICOM format for a patient,
our algorithm can give the probability of malignancy of
pulmonary nodules by specifying the center location of the target
lung nodule.
Compared to previous studies, our contributions can be

summarized as follows. First, we develop an AI tool that more
likely works for suspicious nodules that will undergo a surgery.
Second, by including various types of pulmonary nodules, the
proposed AI tool is more widely applicable in the real world.
Finally, we not only fill the gap of automatic diagnosis for
identifying the risk stratification levels of IAC but also provide an
artificial intelligence (AI)-based diagnosis platform for surgeons to
determine the most effective surgical treatment before perform-
ing a medical operation.
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Fig. 1 Study design and workflow of the study. The training cohort is used to develop our model. The validation cohort is used to evaluate
the model performance. A comparison study is conducted between our model and two groups of six radiologists. Finally, we develop a user-
friendly web-based platform for doctors.
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RESULTS
Datasets
A total of 1,075 pulmonary nodules with confirmed pathological
results were collected from 627 subjects (252 men, 375 women,
mean age of 58.1 ± 11.6 years) in three centers (from Jan 2016 to
Dec 2021) to develop and validate the proposed EMV-3D-CNN
model. The training and validation cohorts included 488 (Beijing
Chao-Yang Hospital) and 139 subjects (The Third Xiangya Hospital
of Central South University: 89, Changsha Central Hospital: 50),
respectively. It should be noted that one sample unit in our study
represents a specific pulmonary nodule. Accordingly, the training
and validation sets included 843 and 232 pulmonary nodules,
respectively. All the patients included in this study received a thin-
slice CT scan with slice thickness ranging from 0.5 mm to 1.5 mm,
with an average of 0.625mm. No significant differences were
observed between each center (p > 0.05). Main inclusion criteria
were nodules (≤30mm and ≥4mm) with definite pathology
confirmed by surgery. Supplementary Note 1 shows the detailed
inclusion/exclusion criteria for the registered patients in this study.
Table 1 summarizes the demographics and clinical characteristics
of the patients in the training and validation cohorts, and
Supplementary Table 1 lists the CT scan characteristics for the
three centers that participated in this study. To identify the
pathological type of each pulmonary, we treated each pulmonary
nodule as an independent observation, and its position was
labeled by reading the CT image before the surgery. To locate the
position, the center point of each nodule on the CT scan was

recorded using X, Y, and Z coordinates, along with the maximum
diameter of each tumor in millimeters (mm). Details of the labeling
procedure are described in Supplementary Note 2.

Model performance for the three tasks
We trained and evaluated the EMV-3D-CNN model on the training
and validation sets for the three tasks, then compared its
performance with that of radiologists. Six doctors from Beijing
Chao-Yang Hospital and The Third Xiangya Hospital of Central
South University, who had 2–15 years of clinical experience with
an average of 8 years, independently graded the CT images in the
validation set to obtain the classification results of a specific
pulmonary nodule. They comprised two groups: a senior group
(Doctors 1–3) with an average experience of 13 years (reading an
average of 3500 chest CT scans per annum) and a junior group
(Doctors 4–6) with an average experience of 3 years (reading an
average of 2400 chest CT scans per annum). More details for this
observational study are provided in the Methods section.
We first evaluated the proposed model for Task 1, identifying

benign and malignant pulmonary nodules. Figure 2a shows the
receiver operating characteristic (ROC) curves of the proposed
model and the six doctors by testing on the validation set. The
proposed EMV-3D-CNN model achieved an area under the curve
(AUC) of 91.3% (95% confidence interval: 85.6–96.2%). We defined
an optimal cut-off value of 0.747 for the EMV-3D-CNN model
according to the Youden index. The results showed that the
proposed model achieved a sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), and
accuracy of 0.928, 0.843, 0.934, 0.831, and 0.903, respectively.
With a PPV of 0.934, the model achieved a sensitivity of 0.928,
which indicates that the proposed model can identify 92.8% of the
malignant cases by only using a thin-slice chest CT scan, when
allowing 6.6% of the positive predictions as false. In addition, our
model achieved a specificity of 0.843, which suggests the
probability of diagnosing a benign nodule as malignant is only
15.7%. Table 2 lists and summarizes the performance evaluation
metrics (see Methods, Statistical analysis) for both the EMV-3D-
CNN model and the six doctors by testing on the validation set.
For the radiologist performance, the senior (i.e., Doctors 1–3) and
junior groups (i.e., Doctors 4–6) yielded average AUC values of
89.16% and 77.98%, respectively. The more experienced the
radiologists were, the better the AUC values achieved in the
classification of Task 1. This verifies that the EMV-3D-CNN model
achieved equivalent or slightly higher performance compared
with senior doctors, and much higher performance compared
with junior doctors.
Second, we evaluated the proposed model in terms of

distinguishing Pre-IA from IAC (i.e., Task 2). Figure 2b shows the
ROC curves of the proposed model and the six doctors by testing
on the validation set. The EMV-3D-CNN model achieved an AUC of
92.9% (95% confidence interval: 88.2–96.6%). Similar to Task 1, we
defined an optimal cut-off value of 0.46 for the EMV-3D-CNN
model according to the Youden index. Consequently, the
proposed model’s sensitivity, specificity, PPV, NPV, and accuracy
were 0.859, 0.921, 0.918, 0.864, and 0.890, respectively. This
suggests that the proposed model can identify 85.9% of the
invasive cases when controlling the false positive rate to be as low
as 7.9%. For the radiologists’ performance, the senior (Doctors
1–3) and junior groups (Doctors 4–6) yielded average AUC values
of 88.04% and 77.56%, respectively. Table 2 lists and summarizes
the performance evaluation metrics for both the EMV-3D-CNN
model and the six doctors by testing on the validation set. The
evaluation metrics revealed that the EMV-3D-CNN model achieved
higher performance than the radiologists in distinguishing
invasive nodules from pre-invasive ones.
Lastly, we evaluated the EMV-3D-CNN model for identifying the

pathological risk stratification of IAC (i.e., Task 3). Since Task 3 is a

Table 1. Demographic and clinical characteristics of patients in the
training and validation datasets.

Training
dataset
(n= 843)

Validation
dataset
(n= 232)

Age
Mean (SD)

58.4(±11.5) 57.7(±11.7)

Gender Male 198(40.6%) 54(38.8%)

Female 290(59.4%) 85(61.2%)

Pathological
type

Benign 216(25.6%) 78(33.6%)

Pre-IA 288(34.2%) 78(33.6%)

IAC (Grade1) 124(14.7%) 29(12.5%)

IAC (Grade2) 116(13.8%) 26(11.2%)

IAC (Grade 3) 99(11.7%) 21(9.1%)

Location LUL 200(23.7%) 49(21.1%)

LLL 140(16.6%) 32(13.8%)

RUL 268(31.8%) 88(38.0%)

RML 78(9.3%) 15(6.5%)

RLL 157(18.6%) 48(20.7%)

Nodule
morphology

pGGN 287(34.0%) 63(27.2%)

Heterogeneous
ground-glass nodule

41(4.9%) 20(8.6%)

Part-solid nodule 182(21.6%) 55(23.7%)

Pure solid nodule 333(39.5%) 94(40.5%)

Diameter (mm) ≤10mm 429(50.9%) 122(52.6%)

10–20mm 280(33.2%) 72(31.0%)

20–30mm 134(15.9%) 38(16.4%)

Average
diameter (mm)
Mean (SD)

Benign
Malignant

8.6( ± 7.6)
14.3( ± 8.8)

8.9( ± 7.3)
14.2( ± 8.1)

n is the number of nodules, IAC invasive adenocarcinoma, RUL right upper
lobe, RML right middle lobe, RLL right lower lobe, LUL left upper lobe, LLL
left lower lobe, pGGN pure ground-glass nodule.
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multiclass classification problem, the standard ROC-related
evaluation metrics could not be directly applied. To this end,
following Landgrebe et al.47, we carried out a pairwise comparison
strategy (one class vs. all the other classes), and for each pair, we
plotted a standard ROC curve. Specifically, for Task 3, we plotted
three standard ROC curves indicating the classification perfor-
mance for each grade vs. the other two grades. For the
radiologists’ observational study, we could only give each doctor
one data point specifying the false positive rate and true positive
rate for each task. The left panel of Fig. 2c presents the multiclass
ROC curves. From the figure, the AUC value of Grade 3 was 94.8%,
followed by Grade 1 (AUC: 92.8%), and Grade 2 was the most
difficult pathological grade to be identified, with an AUC value of
only 80.3%. Furthermore, the confusion matrix in the right panel
of Fig. 2c supports the above findings. From the confusion matrix,
among pulmonary nodules with the true pathological type of
Grade 2, 23.1% were incorrectly predicted as Grade 1. This number
increased to 28.6% when the true pathological type was Grade 3,
and the result was incorrectly predicted as Grade 2. However, the
misclassification rate for Grade 1 was only 6.9%, which is low. For
more detailed confusion matrix results for the six doctors, we refer
to Supplementary Fig. 2. Table 3 lists the model accuracy results. It
can be seen that the proposed EMV-3D-CNN model achieved an
accuracy of 77.6%, which was much higher than those of the
senior (average accuracy of 66.23%) and junior groups (average
accuracy of 56.14%). These results verified that the EMV-3D-CNN

model achieved much higher performance in pulmonary IAC risk
stratification than doctors.
For all three tasks, we calculated Cohen’s kappa values to

measure the interrater reliability of the EMV-3D-CNN model and
the six doctors compared with the ground truth (GT) of the
histopathological results. Figure 3 presents the results in the form
of a heat map. For Tasks 1 and 2, the binary classification results
for the six doctors were generated by categorizing the prediction
score of 3 into the high-risk group (i.e., malignant group or
invasive group). Compared with the GT of nodules, both the EMV-
3D-CNN model and the senior group showed relatively high
agreement, and this consistency decreased with the decrease in
the radiologist’s experience. Lastly, to assess the benefit of
adopting an ensemble strategy, we also provide the performance
for each individual models (i.e., 3D Inception, 3D VGG, and 3D
ResNet) in the EMV-3D-CNN model for all the three tasks. The
detailed performance results can be found in Supplementary
Tables 2–3 and Supplementary Fig. 3. For example, from the result
of task 1 in Supplementary Table 2, the AUC values of the three
individual models are not as good as that of the integrated model.
Similar patterns can also be found in task 2. Additionally, the
improvement (i.e., accuracy value) of the ensemble model for task
3 is much larger than each of the individual model. All of these
evidences have shown that applying individual model is not good
enough. Therefore, we propose this ensemble model.

(a) (b)

(c)

Fig. 2 Comparisons of ROC curves and AUC values generated by the proposed EMV-3D-CNN model and the six doctors. a The Task 1 ROC
curves for our model and the six radiologists. b The Task 2 ROC curves for our model and the six radiologists. c For the multiclass problem of
Task 3, we conduct a pairwise comparison (one class vs. all other classes) and then plot three standard ROC curves. For the radiologists’ study,
red, yellow, and blue indicate the performance of identifying the nodule risk for Grades 1, 2, and 3, respectively.
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Web-based platform
For many clinicians, deep learning (or machine learning) methods
represent a black box that is difficult to use and interpret. Thus,
one of the ultimate goals for clinicians is to use easily interpretable
deep learning-based models in practice. For example, in our case,
once doctors upload a series of chest CT images, an algorithm can
provide a malignancy risk score for lung adenocarcinoma. To this
end, the EMV-3D-CNN model was also implemented as a web-

based platform for user-friendly access. Figure 4 shows a
screenshot of the application that is available at https://
seeyourlung.com.cn. To estimate the probability of lung cancer,
users need to upload a series of chest CT images in DICOM format.
By manually typing the coordinates of the center point (i.e., the X,
Y, and Z coordinates) of a specific pulmonary nodule, our
algorithm can give the probability of malignancy (step 1), the
probability of invasiveness (this is step 2 if step 1 is passed), and

Table 2. Performance comparisons of the proposed EMV-3D-CNN model and the six radiologists on the validation dataset for Tasks 1 and 2.

Evaluation Index Task 1 Task 2

Model D1 D2 D3 D4 D5 D6 Model D1 D2 D3 D4 D5 D6

AUC (%) 91.3 93.9 85.1 88.4 78.6 78.9 76.5 92.9 90.4 87.1 86.6 79.9 80.1 72.7

Accuracy (%) 90.3 89.9 86.1 86.5 78.1 77.6 75.5 89.0 87.7 80.5 82.5 77.9 73.4 63.0

Sensitivity (%) 92.8 92.2 93.4 89.8 82.6 88.6 85.0 85.9 89.7 84.6 83.3 78.2 87.2 91.0

Specificity (%) 84.3 84.3 68.6 78.6 67.1 51.4 52.9 92.1 85.5 76.3 81.6 77.6 59.2 34.2

PPV (%) 93.4 93.3 87.6 90.9 85.7 81.3 81.1 91.8 86.4 78.6 82.3 78.2 68.7 58.7

NPV (%) 83.1 81.9 81.4 76.4 61.8 65.5 59.7 86.4 89.0 82.9 82.7 77.6 81.8 78.7

F1 (%) 93.1 92.8 90.4 90.4 84.1 84.8 83.0 88.7 88.1 81.5 82.8 78.2 76.8 71.4

PPV positive predictive value, NPV negative predictive value, D Doctor.

Table 3. Performance comparisons of the proposed EMV-3D-CNN model and the six radiologists on the validation dataset for Task 3.

Overall accuracy (%) Task 3

Model D1 D2 D3 D4 D5 D6

77.6 67.1 69.7 61.8 59.2 56.6 52.6

G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3

Accuracy (%) 88.2 78.9 88.2 78.9 72.4 82.9 73.7 78.9 86.8 75.0 71.1 77.6 72.4 68.4 77.6 71.1 63.2 78.9 73.7 53.9 77.6

Sensitivity (%) 93.1 69.2 66.7 89.7 38.5 71.4 93.1 50.0 61.9 79.3 42.3 61.9 86.2 34.6 52.4 75.9 30.8 61.9 34.5 42.3 90.5

Specificity (%) 85.1 84.0 96.4 72.3 90.0 87.3 61.7 94.0 96.4 72.3 86.0 83.6 63.8 86.0 87.3 68.1 80.0 85.5 97.9 60.0 72.7

PPV (%) 79.4 69.2 87.5 66.7 66.7 68.2 60.0 81.3 86.7 63.9 61.1 59.1 59.5 56.3 61.1 59.5 44.4 61.9 90.9 35.5 55.9

NPV (%) 95.2 84.0 88.3 91.9 91.9 88.9 93.5 78.3 86.9 85.0 74.1 85.2 88.2 71.7 82.8 82.1 69.0 85.5 70.8 66.7 95.2

F1 (%) 85.7 69.2 75.7 76.5 76.5 69.8 73.0 61.9 72.2 70.1 50.0 60.5 70.4 42.9 56.4 66.7 36.4 61.9 50.0 38.6 69.1

PPV positive predictive value, NPV negative predictive value, D Doctor, G Grade.
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Fig. 3 Cohen’s kappa values for the EMV-3D-CNN model and six radiologists. a Task1, b Task2, c Task3. GT stands for the pathological
ground truth. The kappa values are interpreted as follows: < 0.2: poor consistency; 0.21–0.4: fair consistency; 0.41–0.6: moderate consistency;
0.61–0.8: slightly strong consistency; 0.81–1.0: strong consistency.
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the probabilities of the three risk grades (this is step 3 if step 2 is
passed). For a more detailed description of this web-based
platform, we refer to Supplementary Note 3 or the user guidelines
for the platform that can be downloaded from the website. To
further help users to understand and use the platform, we also
provide a tutorial video in the online supplementary. Readers can
directly visit the video by clicking https://github.com/zhoujing89/
EMV-3D-CNN.

DISCUSSION
Currently, for early-stage lung cancer study, the radiographic
diagnosis of pulmonary nodules and the appropriate selection of
the surgical procedure remain two popular topics for researchers.
Among all lung cancer types, lung adenocarcinoma accounts for

more than 75% of early-stage lung cancer48. Therefore, it is of
significant importance to develop an accurate diagnostic model
for pulmonary nodule classification. However, most current
automatic diagnosis models focus on identifying benign and
malignant pulmonary nodules that are detected in screening or
incidentally35–37. Both of them are with very low malignant rate
and more likely work for less suspicious nodules. Meanwhile, no
techniques have been developed for risk stratification of invasive
lung adenocarcinoma from the perspective of surgical evaluation.
Such an AI tool can potentially work for suspicious nodules that
are candidates for surgery. In this study, we developed an EMV-
3D-CNN model for lung adenocarcinoma risk stratification on thin-
slice CT scans. We trained and evaluated the model using data
collected from three medical centers that were all undergoing
surgeries. That means our tool more likely work for highly

Fig. 4 Snapshot of the web-based platform. Panel (A) is a snapshot of the website before users upload a series of CT images. Panel (B) is a
snapshot of the website after users upload a series of CT images. The left side of the page displays the CT images. Doctors can find the lung
nodules by sliding the scroll bar below. Once they find the nodule, its corresponding X, Y, and Z coordinates can be recorded manually. On the
right side, our algorithm can give the predictive results of Tasks 1–3 by clicking the start calculation button. For a detailed user guideline,
doctors can either go to the website (https://seeyourlung.com.cn) to download the manual or refer to the Supplementary Note 3.
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suspicious nodules that will undergo a surgery. The proposed
model was evaluated on three tasks: (1) detecting benign and
malignant pulmonary nodules; (2) identifying Pre-IA and IAC; (3)
and classifying the risk stratification level (i.e., Grades 1, 2, 3) for
invasive lung adenocarcinoma. Our model achieved excellent
performance for all three tasks. Furthermore, in an observational
comparison study with six radiologists, our model also achieved
an equivalent or even higher performance compared with senior
doctors having over 10 years of clinical experience. Finally, for
user-friendly access, we developed an online platform embedded
with the proposed EMV-3D-CNN model (https://
seeyourlung.com.cn). This platform can assist clinicians in lung
nodule diagnosis and surgical procedure selection.
Detecting benign and malignant pulmonary nodules using

chest CT images is one of the most popular topics in deep
learning. From Table 1, we can see that compared with benign
nodules, malignant nodules showed larger average nodule
diameter. However, this correlation is not that simple as a linear
relation (see Supplementary Fig. 4). As such, size is not always a
discriminator for benign vs malignant discrimination. Previous
studies have mainly used public datasets such as LIDC-IDRI (or
LUNA2016) and NLST23,24,27,49. All the subjects from the two
datasets were from the United States. However, there are some
distribution differences in the epidemiologic features of pulmon-
ary nodules between the Chinese and American populations50. For
example, nodules containing ground-glass opacity (GGO) compo-
nents in both datasets are very rare, while GGO accounts for a
large proportion of the Chinese population51. Therefore, a direct
application of the previous models may lead to biased results. In
this study, we collected CT images from three medical institutions
in China. The proposed EMV-3D-CNN model has been verified and
achieved satisfactory accuracy and stability. From Table 1, we can
see that the nodules with different radiomic characteristics were
relatively evenly distributed in the training set. This leads to a
better prediction performance in the four nodule types (i.e., pure
ground-glass, heterogeneous ground-glass, part-solid, and pure
solid nodules). In the comparison study with six doctors (see the
design of the observational study in the Methods section), the
EMV-3D-CNN model achieved equivalent or slightly higher
performance compared with the senior doctors and much higher
performance than junior doctors. Since early detection of small
pulmonary nodules is less sensitive to liquid biopsy, puncture
diagnosis, and other detection methods52,53, it is of great clinical
value to detect benign and malignant nodules by CT images.
Although biopsy is also an important and accurate method for the
preoperative diagnosis, it is an invasive operation and examina-
tion. Besides, for about 16.7–29.8% of the patients, clinicians are
unable to obtain tumor tissue biopsy or evaluable tissue biopsy
(were non-diagnostic). Previous studies revealed that tumors with
less than 15mm and non-solid imaging feature can lead to a
decrease of accuracy rate54,55. In China, due to the large number
of patients, performing biopsy on all suspicious nodules will
inevitably overcrowd medical resources. Therefore, our tool can
effectively screen out patients with a higher possibility of
malignancy. For those patients with a relatively high score in
Task 1, AI diagnosis may replace biopsy to a certain extent.
Nevertheless, identifying benign and malignant nodules only
addresses the question of whether patients need further surgical
intervention. To select the suitable surgical treatment, thoracic
surgeons need to evaluate and predict the malignant risk of the
nodules.
The second task of our study was to distinguish between Pre-IA

and IAC. Radiologists and thoracic surgeons usually perform a
visual evaluation by measuring the proportion of GGO or solid
components on 2D CT images. Therefore, individual differences in
judgement and bias are inevitable. For example, in defining GGO
and solid components, personal preferences will cause contro-
versy in clinical practice. However, deep learning models usually

have good stability in this regard. In previous studies, the AUC
values for classifying Pre-IA and IAC were between 83 and
92%10,29,40,41. In this study, we achieved an AUC value of 92.93%,
which is slightly higher than previous ones. A recent paper has
further classified AAH, AIS, and MIA in pre-invasive lesions using
CT images56,57. However, since there is no significant difference in
the treatment strategy and prognosis of these three types of pre-
invasive nodules in clinical practice, we did not identify these
three Pre-IA subtypes in this study.
Recently, as additional insights into early-stage lung adenocar-

cinoma, the surgical treatments for early-stage lung adenocarci-
noma have gradually changed. With the release of the results for
two clinical trials, JCOG080258 and CALGB14050359, sublobar
resection has been established as a surgical treatment of early-
stage lung cancer. However, many studies have found that IAC
with micropapillary or solid pattern results in a high relapse
rate44,60,61. For patients with predominant and high-grade
patterns (solid, micropapillary, or complex gland), lobectomy
may still be the best suitable surgical treatment. Due to the
different histologic subtypes of adenocarcinoma associated with
different prognoses, the latest IASLC grading system classifies
pulmonary IAC into three grades: Grade 1 (well differentiated),
Grade 2 (moderately differentiated), and Grade 3 (poorly
differentiated)7. Hence, if the pathological grades of IAC can be
accurately predicted using preoperative CT images, it will
effectively assist thoracic surgeons in choosing the appropriate
surgical treatment. In the current study, we used a deep learning-
based model to predict the pathological grade of early-stage IAC
for the first time. Our model achieved an accuracy of 77.6%, which
is much higher than that obtained by senior radiologists in the
observational study, demonstrating the significant advantage of
AI-based methods in predicting the pathological subtypes of IAC.
Given the large training size (average 3500 chest CT per year) and
train years (average 13 years) of senior radiologists, one of the
advantages of the AI-model is its efficiency. Our model, which was
trained on only 843 nodules, has surpassed experienced clinical
doctors in tumor pathological grading. This indicates that AI
model can extract details of tumor more comprehensively and
effectively than the naked eye, and are superior to doctors in
identifying pathological subtypes. It is well known that there are
distinct radiographic features in the differentiation of benign,
malignant, and pre-invasive nodules, which can help clinicians
identify these nodules. For example, MIA shows a ground-glass
predominant nodule 3 cm or smaller with a solid component that
should appear 0.5 cm or small6. However, there is a lack of typical
CT imaging features among histological grades in invasive
pulmonary adenocarcinoma. In this regard, it disfavors thoracic
surgeons in evaluating the risk of nodules using 2D CT images.
Although in some previous studies, pathologists could identify the
high-grade patterns of lung adenocarcinoma by intraoperative
frozen sections44,62, the detection consistency among different
pathologists was unsatisfactory, with an overall accuracy of
approximately 74%. Meanwhile, relying solely on the intraopera-
tive frozen results to select the surgical treatment of invasive lung
adenocarcinoma may affect the implementation of segmentect-
omy and the extent of lymph node dissection. Besides, given that
the small amount of tissue examined with pre-surgical biopsy, a
poor agreement was observed between post-surgical histology
and pre-surgical biopsy for pathological grade. In our study, we
developed an AI-based classification algorithm for invasive
pulmonary adenocarcinoma using CT images (Task 3). The
classification is based on the latest grading system established
by the IASLC pathology panel. Our model achieved an accuracy of
88.2%, 78.9%, and 88.2% for well (Grade1), moderately (Grade2),
and poorly (Grade3) differentiated adenocarcinoma, respectively.
In terms of risk stratification of invasive lung adenocarcinoma, our
results are superior and slightly better than those achieved by
doctors and intraoperative frozen pathology, respectively. Thus, it
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can effectively assist thoracic surgeons in selecting surgical
treatments because these prediction results are based on
preoperative CT scans.
To further validate the external validity of the proposed model,

we included a completely independent external dataset collected
from Beijing LIANGXIANG Hospital. It contained 194 pulmonary
nodules, covering 132 patients (47 men, 85 women, mean age of
57.9 ± 11.4 years), who have undergone surgeries between Jan
2016 and Dec 2021. We then apply the proposed EMV-3D-CNN
model and the determined cutoff values on this dataset. The
detailed performance results are reported in Supplementary Table
4. For task 1, with the determined cutoff value of 0.747, the overall
accuracy of distinguishing between benign and malignant is
89.7%. For task 2, with the determined cutoff value of 0.46, the
overall accuracy of classifying between pre-invasive tumor and
invasive tumor is 83.8%. For task 3, the overall accuracy for
distinguishing among the three different grades is 70.4%. From
these results, we can conclude that the cutoffs that were
determined based on the current validation set can also general-
ize to other datasets, since the performance on this external
dataset is relatively stable. For other more detailed results, we
refer to Supplementary Table 4.
Despite the promising results, our study has the following

limitations. First, the proposed EMV-3D-CNN model was developed
and evaluated using data collected only from three cooperative
hospitals, and the number of samples was relatively small. To further
validate the clinical application value of the model, more samples
should be collected and used to perform comprehensive external
validation. Second, the proposed model was developed based on
thin-slice CT images, which limits the usage of CT images with fewer
slices (e.g., slice thickness is larger than 5mm). Although a previous
study indicated that the low resolution of CT images can decrease
the performance of deep learning models43, developing an algorithm
that can combine both high- and low-resolution CT images remains a

significant challenge that should be addressed in future research.
Finally, both the EMV-3D-CNN model and doctors in the observa-
tional study were blinded to other clinical information, which was
slightly different from real-world clinical situations. Including clinical
information may provide additional diagnostic information to the risk
stratification of nodules. Furthermore, previous studies have
suggested that aggregating deep learning and radiomic features
can help improve the classification accuracy of Pre-IA and IAC20.
Therefore, there is a need for developing a comprehensive frame-
work that incorporates radiomic features, clinical information, and
deep learning to predict the risk stratification of lung cancer.

METHODS
Data preprocessing and augmentation
This multicenter study was performed in four centers in China. The
requirements for informed consent were waived owing to the
study’s retrospective nature. The study was conducted in
accordance with the Declaration of Helsinki (as revised in 2013)
and approved by the ethics committee of Beijing Chao-Yang
Hospital (No. 2022-ke-36). The Third Xiangya Hospital, Central
South University, Changsha central hospital, Beijing LIANGXIANG
hospital and Renmin University of China were informed and
agreed with this study.
We performed data preprocessing on the CT images to apply the

proposed EMV-3D-CNN model to our three tasks (e.g., Fig. 5).
Specifically, to eliminate the variations in image resolution and slice
thickness in different CT scans, the CT images were interpolated to
a fixed voxel spacing of 0.625mm× 0.625mm× 0.625mm. Then,
the CT values of each scan were normalized to [0,1] by applying a
window range of [-1400HU, 400HU] using the min-max normal-
ization method. Next, inspired by the studies of Liu et al. and
Liu et al.63,64, we developed a multi-view strategy to capture the
detailed characteristics of nodules with different sizes. The input for

Fig. 5 The workflow of model development. Task 1 classifies benign and malignant lung nodules. Task 2 identifies pre-invasive and invasive
malignant nodules. Task 3 further evaluates the risk stratification of invasive lung adenocarcinoma. It is remarkable that for each task, the
input shapes of the three 3D CNN are different with each other. Their detailed input shapes of the three 3D CNN for each task are list in the
Supplemental Table 2.

J. Zhou et al.

8

npj Digital Medicine (2023)   119 Published in partnership with Seoul National University Bundang Hospital



each 3D CNN model in all the three tasks had to be 3D patches with
three different views. In this study, for each pulmonary nodule, we
considered cropping the 3D patches with five different views based
on the coordinate values of the center point. The 3D patches had
voxel sizes of 100 × 100 × 100, 80 × 80 × 80, 60 × 60 × 60,
40 × 40 × 40, and 20 × 20 × 20. For simplicity, a 3D patch with a
voxel size of 100 × 100 × 100 is written as 3D-100, and so on for
others. To this end, a total of C3

5 ¼ 10 combinations of three views
need to be examined for each 3D CNN model in each task. To
determine the best view size combination, we conducted several
experiments based on the training and validation cohorts. Then, the
view size combination that maximized the accuracy of the
validation set was chosen as the input of the corresponding model.
Supplementary Table 5 shows the three tasks' final view size
combinations for each 3D CNN model. Lastly, to adapt the input for
the subsequent modeling process, we unified the 3D patches with
different views into a predefined feeding voxel size using a spline
interpolation algorithm (see the last column in Supplementary
Table 5).
Second, we employed a series of data augmentation techniques

to further increase the sample size in the training cohort. These
techniques included: (1) rotating and flipping the 3D patches on
the X, Y, and Z axis; (2) rotating the 3D patches by 36 degrees from
0 to 360 degrees; (3) random shifting; and (4) nodules with a
diameter of less than or equal to 1.5 centimeters were randomly
amplified by 1.5 times. To this end, the sample size of the training
cohort was expanded to 28,782 pulmonary nodules. Specifically,
the actual numbers of pulmonary nodules used for training were
13,635, 10,158, and 4989 for Tasks 1, 2, and 3, respectively.
Supplementary Fig. 1 shows a flowchart of data preprocessing and
augmentation.

Pathological evaluation
The pathological sections used in this study were reviewed by four
experienced senior pathologists. Pathologic diagnosis was based on
the 5th edition WHO classification of lung tumors. IAC was further
divided into well (Grade 1), moderately (Grade 2), and poorly (Grade
3) differentiated adenocarcinoma based on the grading system
proposed by the IASLC pathology panel. Following Moreira et al.7,
Grade 1 is well-differentiated adenocarcinoma: lepidic predominant
tumors with no or less than 20% of high-grade patterns (solid,
micropapillary, and/or complex glandular patterns); Grade 2 is
moderated differentiated adenocarcinoma: acinar or papillary pre-
dominant tumors with no or less than 20% of high-grade patterns;
and Grade 3 is poorly differentiated adenocarcinoma: any tumor with
20% or more of high-grade patterns.

Model development
Figure 5 shows the flowchart of the proposed EMV-3D-CNN model.
To build the proposed model, multi-view 3D patches preprocessed
from original CT images were fed into the model as input. Our
approach aims to accomplish three key tasks: detection of benign
and malignant lung tumors (Task 1), classification of Pre-IA and IAC
(Task 2), and risk stratification (i.e., Grades 1, 2, and 3) of invasive
lung tumors (Task 3)7. For each task, we first independently trained
3D Inception, 3D VGG, and 3D ResNet models on the training set
with pathological types as targeted labels. After training, each 3D
CNN model can give a predicted probability of each category for
each pulmonary nodule in the validation dataset. We then calculate
an averaged probability of each category for each nodule. For Task 1
and Task 2, a cut-off value determined using the Youden index was
adopted to obtain the final predicted label. For Task 3, the category
corresponding to the maximum averaged prediction probability was
used as the final predicted label. In brief, we introduce the
architectures of the three 3D CNN models in the next paragraph. For
illustration purpose, the details of the proposed models for Task 1
are shown in Supplementary Tables 6–8. It should be noted that

model structures for Task 2 and Task 3 can be obtained by simply
changing the input shapes, and we have eliminated them for space
saving.
In deep learning, 3D CNNs are used for 3D feature extraction. The

key point is to replace the 2D convolution and pooling operations in
the traditional 2D CNN with 3D convolution and pooling operations.
This is to accommodate the multi-view 3D input patches (i.e.,
40 × 40 × 40). For the 3D inception model, there are a total of 145
layers, including nine inception modules65. Each inception module
comprises six convolution layers, six batch normalization layers, and
two pooling layers. Inside each inception module, we concatenate all
the layers in the channel dimension at the last step. Before the
classification layer, we adopt a dropout layer with an inactivation rate
of 0.4. The specific size and number of convolutional kernels are
displayed in Supplementary Table 6. The 3D VGG model has 27
layers, including five convolutional blocks66. Each convolutional block
has either two or three convolutional layers, one pooling layer, and
one batch normalization layer. Before the classification layer, we
adopt a dropout layer with an inactivation rate of 0.4 and a max
pooling layer. The specific size and number of convolutional kernels
are displayed in Supplementary Table 7. Lastly, the 3D ResNet model
has 87 layers, including eight residual blocks67, designed to facilitate
the model construction. Each residual block comprises three
convolutional layers, five batch normalization layers, and a short
connection to combine the input and output in each block. Before
the classification layer, we adopt an average pooling layer, a dropout
layer with an inactivation rate of 0.4, and a 3D pooling layer. The
specific size and number of convolutional kernels are displayed in
Supplementary Table 8.
The EMV-3D-CNN model was implemented using Python 3.9

based on TensorFlow 2.8deep learning library and trained on
multiple NVIDIA P100 GPUs with 16 GB memory. To obtain a
relatively high model performance, we apply both a naïve grid
search and a random search strategy for selecting the optimal
hyper-parameters. Specifically, we consider the combination of
three hyper-parameters, they are the learning rate (i.e., [
10�4; 10�1]), optimizer (i.e., Adam, SGD, Adagrad, Adadelta, and
Nadam), and learning patience epochs (i.e., [5,10,20]). For each
individual model in the three tasks, we validate 50 different sets of
hyper parameter combinations. To determine the optimal
parameter set, we conducted a total of 20 epochs to train the
individual model corresponds to a specific hyperparameter set,
and recorded the maximum prediction accuracy. Then the
hyperparameter combination with the highest accuracy on the
validation is chosen as the final parameter set for each individual
model. In summary, except for the 3D Inception and 3D VGG
model in task 2, all the other models were trained using the Adam
optimization algorithm with an initial learning rate of 0.001. When
the prediction accuracy did not improve after every 20 epochs, the
learning rate was reduced to half of the previous one. Then we
adopt Nadam optimization algorithm with an initial learning rate
of 0.0032 for 3D Inception and 0.001 for 3D VGG, respectively in
task 2. For all the models, the batch sizes of the training and
validation sets were fixed to 30 and 20, respectively. Finally, a total
of 200 epochs were conducted for each model. To further
accelerate the training process, all of the models were trained
using an online GPU platform (https://matpool.com). This enables
us to use multiple GPUs to run the models in a parallel manner.
For each model, we chose the epoch with the maximum
prediction accuracy on the validation as the final evaluated model
and release the H5 file in public (see code availability).

Observational study design
To demonstrate the effectiveness of the proposed method, we
conducted an observational study to compare the performance of
the EMV-3D-CNN model with that of six doctors on the validation
dataset. Six doctors from hospitals (Beijing Chao-Yang Hospital
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and The Third Xiangya Hospital, Central South University) with
2–15 years of clinical experience were recruited and divided into
two groups based on their chest CT interpretation experience:
senior (with an average clinical experience of 13 years) and junior
groups (with an average clinical experience of 3 years). In each
group, three radiologists independently completed the three
tasks. For Tasks 1 and 2, we followed the reference standard of
diagnostics by ref. 43. Specifically, for Task 1, we used scores from 1
to 5 to represent highly suspicious normal/benign to highly
suspicious malignant nodules. Similarly, we also used scores 1–5
to describe highly unlikely invasive to highly suspicious invasive
nodules for Task 2. Finally, for Task 3, we directly asked the
radiologist to choose the grade (i.e., Grades 1, 2, and 3) that the
node is most likely to belong to. All the radiologists were blinded
to the specific pathological results and other clinical information
to determine the malignant degree of pulmonary nodules. Since
our algorithm can provide a result in a few seconds, for a fair
comparison, we asked each radiologist to provide an answer
within 30 s for each pulmonary nodule.

Statistical analysis
The performance of the proposed EMV-3-CNN model was compre-
hensively evaluated with seven metrics: AUC, accuracy, sensitivity,
specificity, PPV, NPV, and F1 score (F1 ¼ 2 ´ Precision ´ Recall

PrecisionþRecall ). To obtain
the above metrics, we had to give a predictive probability for each
task. To this end, for each task, we first calculated the average
predictive probability over the three 3D CNNmodels. Then, this value
was treated as the final predictive probability value for each task.
Specifically, for Tasks 1 and 2, the predictive probabilities were then
converted into binary results using a threshold determined by the
Youden index. The values were 0.747 and 0.46 for Tasks 1 and 2,
respectively. Since Task 3 was a multi classification problem, we
directly chose the label corresponding to the maximum predictive
probability as the predictive result. Additionally, the ROC curve was
generated, and the area under it (AUC) was computed using Python.
All confidence intervals of AUC values were computed using a
bootstrapping method. The Cohen’s kappa values were also
computed using Python.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The data are not publicly available due to hospital regulations. However, data
requests with aims will be needed to assess the reasonability. After approval from the
hospital and the corresponding authors, de-identified CT data will be provided.
Requests to access the datasets should be directed to corresponding author.

CODE AVAILABILITY
The code used for preprocessing the CT data, training the models and the parameters
of the EMV-3D-CNN model has been made publicly available at Github (https://
github.com/zhoujing89/EMV-3D-CNN). We have also packaged our model into an
open-access and ready-to-use tool (https://seeyourlung.com.cn/) for the community
to test and feedback.
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