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The success of foundation models such as ChatGPT and AlphaFold has spurred significant interest in building similar models for
electronic medical records (EMRs) to improve patient care and hospital operations. However, recent hype has obscured critical gaps
in our understanding of these models’ capabilities. In this narrative review, we examine 84 foundation models trained on non-
imaging EMR data (i.e., clinical text and/or structured data) and create a taxonomy delineating their architectures, training data, and
potential use cases. We find that most models are trained on small, narrowly-scoped clinical datasets (e.g., MIMIC-IIl) or broad,
public biomedical corpora (e.g., PubMed) and are evaluated on tasks that do not provide meaningful insights on their usefulness to
health systems. Considering these findings, we propose an improved evaluation framework for measuring the benefits of clinical
foundation models that is more closely grounded to metrics that matter in healthcare.
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INTRODUCTION

Foundation models (FMs) are machine learning models capable of
performing many different tasks after being trained on large,
typically unlabeled datasets'. FMs represent a paradigm shift in
how machine learning (ML) models are developed—rather than
developing a bespoke model for each specific use case (as was
done traditionally), a single FM can instead be reused across a
broad range of downstream tasks with minimal adaptation or
retraining needed per task. FMs have received significant
attention given their impressive range of capabilities across
multiple domains, from text generation? and video editing® to
protein folding* and robotics®.

One of the most popular FMs has been OpenAl's ChatGPT,
which surpassed 100 million users within two months of release®.
ChatGPT is a large language model (LLM), a type of FM which
ingests text and outputs text in response. Though ChatGPT was
trained to simply predict the next word in a sentence—it is
basically an advanced autocomplete— incredible capabilities
“emerged” from this training setup which allow the model to
perform a wide variety of complex tasks involving language’.
Physicians were quick to apply the model to pass medical
licensing exams®'", simplify radiology reports'?>, and write
research articles'®, In addition to text, FMs built on structured
EMR data have shown the ability to predict the risk of 30-day
readmission'?, select future treatments'®, and diagnose rare
diseases’®.

The breakneck progress of Al over the past year has made it
difficult for healthcare technology professionals and decision-
makers to accurately assess the strengths and limitations of these
innovations for clinical applications. Beyond short demos being
shared on social media, there is little systematic examination of
what the best use cases for production-grade clinical FMs are, or
how healthcare organizations should weigh their benefits against
their substantial risks''”='°, Clinical FMs lack the shared evaluation
frameworks and datasets?® that have underpinned progress in

other fields, such as natural language processing (NLP) and
computer vision?'. This makes it difficult to quantify and compare
these models’ capabilities.

If we believe that FMs can help both providers and patients??,
then rigorous evaluations must be conducted to test these beliefs.
In this review, we uncover notable limitations in how clinical FMs
are evaluated and a large disconnect between their evaluation
regimes and assumed clinical value. While adopting FMs into
healthcare has immense potential?®>, until we know how to
evaluate whether these models are useful, fair, and reliable, it is
difficult to justify their use in clinical practice. Inspired by recent
efforts to holistically evaluate LLMs trained on non-clinical text for
a range of capabilities beyond accuracy?, we believe that a similar
approach is necessary to tie the evaluation of FMs writ large with
use cases that matter in healthcare.

To clarify these challenges, we reviewed over 80 different
clinical FMs built from electronic medical record (EMR) data. We
included all models trained on structured (e.g., billing codes,
demographics, lab values, and medications) and unstructured
(e.g., progress notes, radiology reports, other clinical text) EMR
data, but explicitly excluded images, genetics, and wearables to
manage the scope of this review. We refer to the combination of
structured and unstructured EMR data (excluding images) as
simply “EMR data” or “clinical data"?>. We refer to FMs built on
these forms of clinical data as “clinical foundation models” or
“clinical FMs.” Our primary contributions are:

1. To our knowledge, we present the largest review of clinical FMs
for structured and unstructured EMR data. We organize these
models into a simple taxonomy to clearly delineate their
architectures, training data, capabilities, and public accessi-
bility.

2. We summarize the currently used evaluation frameworks for
clinical FMs and identify their limitations. We explain why
current evaluation tasks provide little evidence for the
purported benefits of FMs to a health system.
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Fig. 1 The two types of clinical FMs. Overview of the inputs and outputs of the two main types of clinical FMs. a The inputs and outputs of
Clinical Language Models (CLaMs). CLaMs ingest clinical text and output either clinical text or a machine-understandable representation of
the input text, which can then be used for downstream prediction tasks. b The inputs and outputs of Foundation models for Electronic
Medical Records (FEMRs). FEMRs ingest a patient’s medical history—which is simply a sequence of medical events with some temporal
ordering—and output a machine-understandable representation of the patient, which can then be used for downstream prediction tasks.

3. We propose an improved framework for evaluating clinical
FMs. We advocate for metrics, tasks, and datasets that better
capture the presumed value of clinical FMs.

We begin with a brief overview of clinical FMs and define their
inputs, outputs, and capabilities in “What are clinical FMs?”. In
“Benefits of clinical FMs”, we summarize the primary value
propositions of FMs for health systems. In “State of published
clinical FMs”, we provide an overview of the training data behind
clinical FMs, examine current evaluation regimens and identify
their limitations, and propose a framework for improving these
evaluations. Finally, we discuss the promise of clinical FMs for
solving a diverse range of healthcare problems in Discussion.

WHAT ARE CLINICAL FMS?

A foundation model (FM) is a type of machine learning model that
has been pre-trained on large amounts of unlabeled data and can
be adapted to a broad range of downstream tasks'. FMs leverage
a training procedure referred to as “pre-training,” in which a “self-
supervised” (i.e., no labels are required) learning objective is used
to scale learning to immense amounts (i.e., terabytes) of unlabeled
data. FMs also typically have significantly more parameters than
traditional ML models—sometimes in the hundreds of billions of
parameters—which requires significant computational resources
to train (i.e., months of time on a supercomputer with hundreds of
GPUs)?6. The significantly larger size of FMs, coupled with their
task-agnostic self-supervised learning objective, has sparked a
paradigm shift in how ML models are developed, and has resulted
in the “emergence” of unprecedented capabilities at sufficient
model scale?’

Clinical FMs are foundation models built specifically for
electronic medical record data. There are two broad categories
of clinical FMs: Clinical language models (CLaMs) and Foundation
models for EMRs (FEMRs).

Clinical language models (CLaMs)

The first category of FMs are clinical language models, or CLaMs,
which are a subtype of large language models (LLMs). As shown in
Fig. 1a, the unique attribute that separates CLaMs from general
LLMs is their specialization on clinical/biomedical text—CLaMs are
primarily trained on, ingest, and output clinical/biomedical text.
For example, a CLaM could extract drug names from a doctor’s
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note?®, automatically reply to patient questions?’, summarize
medical dialogues®®, or predict mechanical ventilation needs
based on clinical notes®'

While general-purpose LLMs (e.g., ChatGPT, Bloom, GPT-4, etc.)
trained on text scraped from the Internet can also be useful for
clinical tasks, they tend to underperform CLaMs on domain-
specific tasks>233, and thus we exclude them from this discussion.
However, the conclusions from this review should also readily
apply to these general-purpose models, as they suffer from the
same limitations that we describe for CLaMs.

Foundation models for electronic medical records (FEMRs)

The second class of clinical FMs are foundation models for
electronic medical records (FEMRs). These models are trained on
the entire timeline of events in a patient’s medical history. Given a
patient’s EMR as input, a FEMR will output not clinical text but
rather a machine-understandable “representation” for that patient,
as shown in Fig. 1b. This representation —also referred to as a
“patient embedding"—is typically a fixed-length, high-
dimensional vector which condenses large amounts of patient
information®*. A patient’s representation can then be used as
input to any number of downstream models for different tasks.
These downstream models (built on the “foundation” of FEMR
representations) tend to be more accurate and robust than
traditional machine learning (ML) models on clinically relevant
tasks, such as predicting 30-day readmission or long length-of-
stay®

The input to a FEMR can include many aspects of a patient’s
medical history, such as structured codes, lab values, claims, and
clinical text. In practice, however, FEMRs are typically limited to
the single modality of structured codes, as discussed in “State of
published clinical FMs".

Though CLaMs and FEMRs have remained fairly separate over
the past several years, we note that the distinction between these
two lines of work is becoming increasingly blurred as the next
generation of foundation models for EMRs becomes more
expressive and multimodal in nature.

Benefits of clinical FMs

Given the excitement around FMs in healthcare , we
summarize their primary value propositions over traditional ML
methods. These advantages could all be highly valuable to a

23,3641
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health system. Thus, it is essential that our evaluation tasks,
datasets, and metrics provide accurate assessments of these
purported benefits.

1. Clinical FMs have better predictive performance. By
using larger training datasets and more model parameters,
FMs can achieve better predictive performance (e.g., higher
sensitivity and specificity on classification tasks) than
traditional ML models®*.,

2. Clinical FMs require less labeled data (“improved sample
efficiency”). FMs enable superior model performance using
fewer labeled data via “transfer learning”*2. The core idea
behind transfer learning is to first “pre-train” a model on
large amounts of non-task-specific (and often unlabeled)
data to teach the model general patterns. Then, the model is
“fine-tuned” (i.e, continued to be trained) on a smaller
dataset specific to the desired task. For example, a
sentiment classification model pre-trained on the raw text
of Wikipedia before being fine-tuned on a labeled dataset of
100 Tweets will outperform models solely trained on the
smaller task-specific dataset of Tweets*?. Additionally, some
FMs can be directly applied to novel tasks without any
additional fine-tuning via “zero-shot” or “few-shot” learning.
In zero-shot learning, a model learns an entirely new task
without being given any specific examples for that task—in
other words, the model is given zero examples from which
to learn and must instead rely on its general reasoning
capabilities to complete the desired task. Similarly, in few-
shot learning, the model is only provided with a few
examples (typically less than 64) from which to learn. Zero/
few-shot learning are particularly powerful capabilities, as
they enable FMs to rapidly adapt to new tasks without the
need for large, task-specific labeled datasets. Thus, by
learning representations that are useful for many down-
stream tasks via self-supervised pre-training, FMs can greatly
reduce the cost of developing ML models for a
particular task.

3. Clinical FMs enable simpler and cheaper model deploy-
ment. After an FM is trained, it can help to decrease the
time, talent, and resources required to build subsequent ML
models by serving as the figurative “foundation” upon
which these subsequent applications are built'. Numerous
companies have already commercialized this “ML-as-a-
Service” approach, in which a centralized FM is made
available to end-users via a simple API*3. A similar approach
could work in healthcare, wherein a clinical FM allows
informaticians to integrate Al-related capabilities into
applications while avoiding the expensive data ingestion,
preprocessing, model training, and deployment steps in a
typical ML pipeline*.

4. Clinical FMs exhibit “emergent” capabilities that enable
new clinical applications. The large number of parameters
in FMs has resulted in a phenomenon known as “emer-
gence,” in which previously intractable problems become
tractable at sufficient model scale’. For example, CLaMs can
now write coherent insurance appeals in ways thought
impossible only a couple of years ago*’, while FEMRs can
generate compact patient representations that enable time-
to-event modeling of hundreds of outcomes simulta-
neously?S,

5. Clinical FMs can more effectively handle multimodal
data. FMs can be designed to accept a wide range of data
modalities (e.g., structured codes, lab values, clinical text,
images, speech patterns, etc.) as inputs and incorporate
them into a single unified representation®’. Substantial prior
work has shown that these models’ large parameter counts
and dataset sizes enable them to effectively model disparate
modalities in the same shared latent space, thereby deriving
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richer representations for each modality than possible with
unimodal models*®->", This is especially useful in medicine,
given the many types of data produced by patients2. For
example, a model might simultaneously consider an MRI
scan, vital signs, and progress notes when predicting a
patient's optimal treatment®3,

6. Clinical FMs offer novel interfaces for human-Al interac-
tion. Via a technique called “prompting”, a human can input
natural language into an LLM and have the model respond
in natural language®. This enables a two-way conversation
between humans and machine, and allows for the decom-
position of problems into smaller steps via techniques such
as “chain-of-thought” prompting®*. Prompting generalizes
beyond natural language. For example, a FEMR could be
prompted with a desired clinical end state (e.g., normal A1C
level) to identify which medications should be prescribed to
achieve it>.

STATE OF PUBLISHED CLINICAL FMS

We identified 84 distinct clinical FMs published before March 1,
2023. Specifically, we identified 50 CLaMs and 34 FEMRs by
following citations from several representative samples of recent
work, as well as manual article curation. Given the rapid pace at
which this field advances, we do not claim to include every
possible model or cover every recent advancement in the clinical
FM space, but rather aim at capturing the general narrative
direction of the field. We believe the papers that we selected
should adequately capture the general themes that would be
identified in other types of reviews, as they are representative of
the most recent work in the field, and therefore do not make any
claims about the systematicity of our search process. We focus
exclusively on models that utilize structured and unstructured
EMR data (excluding images) to scope this review.

In the following section, we review the training data and public
availability of both CLaMs and FEMRs.

CLaMs

Training data. ClLaMs (Fig. 2a) are primarily trained on either
clinical text (i.e., documents written during the course of care
delivery) or biomedical text (i.e., publications on biomedical
topics). Almost all CLaMs trained on the clinical text used a
single database: MIMIC-Ill, which contains approximately 2
million notes written between 2001-2012 in the ICU of the
Beth Israel Deaconess Medical Center®®. CLaMs trained on
biomedical text are virtually always trained on PubMed
abstracts and/or full-text articles. While most CLaMs trained
on clinical text are also trained on biomedical text, the
converse is not true.

Model availability. Almost all CLaMs have been made publicly
accessible via online model repositories like HuggingFace®’.
Unfortunately, the exceptions are the very CLaMs that seem to
have the best performance®® —ehrBERT*°, UCSF-Bert>8, and
GatorTron%°— as they were trained on private EMR datasets.

Takeaways. The high number of CLaMs published over the past
several years may lead us to mistake motion for progress. Nearly
all CLaMs have been trained on just two datasets -- MIMIC-lIl and
PubMed, which respectively contain about 2 million clinical notes
and 16 million abstracts with 5 million full-text publications.
Combined, these two datasets contain about 18.5 billion words,
which means models trained on them have substantial gaps in
completeness (i.e., any scientific knowledge not contained within
these corpora) and timeliness (i.e., any new diseases, treatments,
or practices discovered after 2012 in the case of MIMIC-I).
Empirically, we see that models trained on large-scale EHR data
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Primary Training Datasource
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a) Training Data Clinical
MIMIC-1IIV X XXX XXXXXXXXXX X X X 17
Private Single-Site EHR X X X X X X
Private Multi-Site EHR X 1
Biomedical Text
PubMed X X X X X X X X X X XX X XXX XXXXXXXXXXXXXXXXXXXXX X 38
UMLS Ontology X X X X X 4
Other X X X 2
Other Scientific Text
Academic Papers X X X 3
Public Availability Code X X XXX XXXX* XXXXX * XX X XX XXXXXXXXXXXXXXXXX X X X X X X X 45
Model Weights X XX XXXXX* XXXXX X X X X X X X X XX XX XXXXXXX X X X X X X X 42
* PhysioNet users only **345M model only
b) Evaluation Task  Clinical NLP Tasks
(Status Quo) Named Entity Rec. (NER) X XXX XXX X X XX X X X X 15
Inference (NLI) X X X X X X X X X X X X X X X 15
Relation Extraction (RE) X X X X X X 6
Sentence Similarity (STS) X X X X 4
Question Answering (QA) X X X 3
Document Classification (DC) X X 2
Text generation 0
Other X X X X X 4
Clinical Outcomes
Prediction X X X X X X X 7
Biomedical NLP Tasks
Named Entity Rec. (NER) X X X X X X X XXX X X X X X X X X X X 20
Inference (NLI) 0
Relation Extraction (RE) X X X X X X X X X X X X X X X X X X X 19
Sentence Similarity (STS) X X X X 4
Question Answering (QA) X X X X X X X X X X X X X X X 15
Document Classification (DC) X X X X X XX X 8
Text generation X X X 3
Other X X X X X X X 7
C) Foundation Better predictive performance X X X X X X X X X X X X X X X X X X X X X X X X X XXX XXXXXXXXXXXXXXXXX X X X 48
Model Benefit Less labeled data b3 b3 X X b3 X X 7
Simplified deployment 0
Emergent clinical capabilties X 1
Multimodality X 1
Novel human-Al interfaces X X X X X X X 7

Fig. 2 Overview of CLaMs. A summary of CLaMs and how they were trained, evaluated, and published. Each column is a specific CLaM,
grouped by the primary type of data they were trained on. Columnwise, the CLaMs primarily trained on clinical text are green (n = 23), those
trained primarily on biomedical text are blue (n = 24), and models trained on general academic text are purple (n = 3). The last column is the
count of entries in each row. An X indicates that the model has that characteristic. An * indicates that a model partially has that characteristic.
a Training data and public availability of each model. The top rows mark whether a CLaM was trained on a specific dataset, while the bottom-
most row records whether a model’s code and weights have been published. Almost all CLaMs have had their model weights published,
typically via shared repositories like the HuggingFace Model Hub. b Evaluation tasks on which each model was evaluated in its original paper.
Green rows are tasks whose data were sourced from clinical text and blue rows are evaluation tasks sourced from biomedical text. The tasks
are presented by the way they are commonly organized in the literature. CLaMs primarily trained on clinical text are evaluated on tasks drawn
from clinical datasets, while CLaMs primarily trained on biomedical text are almost exclusively evaluated on tasks that contain general
biomedical text (i.e., not clinical text). ¢ Clinical FM benefits on which each model was evaluated in its original paper. The underlying tasks
presented in this section are identical to those in (b), but here the tasks are reorganized into six buckets that reflect the six primary FM
benefits described in Benefits of clinical FMs. While almost all CLaMs have demonstrated the ability to improve predictive accuracy over
traditional ML approaches, there is scant evidence for the other five value propositions of clinical FMs.

outperform CLaMs trained on shared public datasets across-the- modalities, most FEMRs are unimodal as they only consider
board on out-of-domain data distributions3%°8. structured codes (e.g.,, LOINC, SNOMED, etc.).
FEMRs Model accessibility. FEMRs lack a common mechanism like

HuggingFace for distributing models to the research community,
as can be seen in the sparsity of the bottom-most row in Fig. 3a
compared to the density of the bottom-most row in Fig. 2a. Few
FEMRs have had their model weights published, meaning
researchers must re-train these models from scratch on local
EMR data to verify their performance.

Training data. Most FEMRs (Fig. 3a) are trained on either small,
publicly available EMR datasets or a single private health system’s
EMR database. Again, the most popular public dataset is MIMIC-III,
which contains less than 40,000 patients®. Other public datasets
vary greatly in size, from elCU’s 139,000 patients®' to the CPRD’s
longitudinal records on 7% of all patients in the UK%2 Several
FEMRs have been trained on insurance claims, which are typically
larger in size and more diverse than EMR data but contain less
granular information®3. Examples of claims datasets include
Truven Health MarketScan (170 million patients)®* and Partners
For Kids (1.8 million pediatric patients)®®. In terms of data

Takeaways. The overreliance on structured codes limits the
generalizability of FEMRs across health systems that use different
EMR systems and coding practices. Some models, such as
DescEmb, address this problem by first converting coded data
into their textual descriptions, thus detaching the model from the
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Primary Training Datasource
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a) Training Data Public EHRs
MIMIC-1lINV X X X X X X X X X X X X X 13
Other X X X X X X X X 8
Private EHRs
<1M patients X X X X X X X X X X X X 12
>1M patients X X X X 4
National BioBanks
UK BioBank / All of Us X X X 3
Claims
Medicare X X 2
Private Insurer X X 2
Public Availability Code X X X X X X X X X X X X X X X X X X X X X X X X X 25
Model Weights * X X X 4
*On request
) Evaluation Task Binary Classification
(Status Quo) Mortality x X X xx X X X i E X 1
Heart failure X X X X X X X X 8
Long Length-of-Stay X X X X X X X 7
Readmission X X X X X X 6
Hospitalization X X X 3
Diabetes X X X 3
Mental Health X X X 3
Cancer X X 2
ICU transfer X 1
Mechanical ventilation X 1
Sepsis X 1
Needs surgery X 1
Asthma exacerbation X 1
Lung transplant survival X 1
CKD X 1
Stroke X 1
X-Linked Hypophosphatemia X 1
Chest pathologies X 1
Multi-Class/Label Classification
Diagnosis Codes X X X X X X X X X X X 1"
Treatment Codes X X X 3
Visit Severity X X X 3
Clustering X X X X X 5
Regression / Time-to-Event X X X 3
¢)  Foundation Better predictive performance X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X XX XX 34
Model Benefit Less labeled data X X X X X X X X X X X X X X X X 16
Simplified deployment X X X X 4
Emergent clinical capabilties (]
Multimodality X X X 3
Novel human-Al interfaces X 1

Fig. 3 Overview of FEMRs. A summary of FEMRs and how they were trained, evaluated, and published. Each column is a specific FEMR,
grouped by the primary type of data they were trained on. Columnwise, the FEMRs primarily trained on structured EMR codes (e.g., billing,
medications, etc.) are red (n = 27), those trained on both structured codes and clinical text are orange (n = 3), and models trained only on
clinical text are yellow (n = 4). The last column is the count of entries in each row. An X indicates that the model has that characteristic. An *
indicates that a model partially has that characteristic. a Training data and public availability of each model. The top rows mark whether a
FEMR was trained on a specific dataset, while the bottom-most row records whether a model’s code and weights have been published. Very
few FEMRs have had their model weights published, as they are limited by data privacy concerns and a lack of interoperability between EMR
schemas. b Evaluation tasks on which each model was evaluated in its original paper. From top to bottom, the evaluation tasks are binary
classification, multi-class/label classification, clustering of patients/diseases, and regression tasks like time-to-event. The tasks are presented by
the way they are commonly organized in the literature. FEMRs are evaluated on a very broad and sparse set of evaluation tasks—even the
same nominal task will often have different definitions across papers. ¢ Clinical FM benefits on which each model was evaluated in its original
paper. The underlying tasks presented in this section are identical to those in (b), but here the tasks are reorganized into six buckets that
reflect the six primary FM benefits described in “Benefits of clinical FMs” While almost all FEMRs have demonstrated the ability to improve
predictive accuracy over traditional ML approaches, and a significant number have demonstrated improved sample efficiency, there is scant
evidence for the other four value propositions of clinical FMs.
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specific codes on which it was trained®®. An additional limitation
of relying on coded data is that it contains inconsistencies and
errors®’, and often provides an incomplete picture of patient
state®®, Some FEMRs have tackled this problem by combining
unstructured EHR data (i.e., text) with structured EMR data to
boost performance on specific phenotyping and prediction
tasks®®7%, However, the key unsolved challenge of how to publicly
share pre-trained FEMRs continues to hinder the field’s progress
and precludes the primary value proposition of FMs—namely,
being able to build off a pre-trained model.

Next, we considered the common evaluation frameworks for
clinical FMs. The common thread between most of these
evaluations is that they are relatively straightforward to conduct
in an automated fashoin. While these tasks provide diagnostic
insights on model behavior, they provide limited insight into the
claims of FMs being a “categorically different” technology’'”?, and
offer little evidence for the clinical utility achieved by these
models. Taking inspiration from the broader ML community’s push
towards Holistic Evaluation of Language Models?*, we do a critical
evaluation of the evaluations currently used to evaluate
clinical FMs.

CLaMs

Evaluation of standard tasks and datasets. We collected every
evaluation task that a CLaM was evaluated on in its original
publication in Fig. 2b, and grouped these tasks as they are
commonly reported in the literature. Most CLaMs are being
evaluated on traditional NLP-style tasks such as named entity
recognition, relation extraction, and document classification on
either MIMIC-III (clinical text) or PubMed (biomedical text)”>”4.
Given that clinical text has its own unique structure, grammar,
abbreviations, terminology, formatting, and other idiosyncrasies
not found in other domains’?, it is alarming that roughly half of all
CLaMs surveyed were not validated on clinical text, and thus may
be overestimating their expected performance in a healthcare
setting.

When NLP tasks are sourced from clinical text, they can be
useful measures of a model’s linguistic capabilities. However,
these NLP tasks are greatly limited by their overreliance on the
same handful of data sources’®, small dataset sizes (typically
thousands of examples)’*”®, highly repetitive content’’, and low
coverage of use cases?®. As a result, strong performance on a
clinical NLP task does not provide compelling evidence to a
hospital looking to deploy a CLaM— claiming that “Model A
achieves high precision on named entity recognition on 2,000
discharge notes from MIMIC-III" is very different than “Model A
should be deployed across all of Health System X to identify patients
at risk of suicide”.

Evaluation on FM benefits. To illustrate the disconnect between
current evaluation tasks and the loftier promises of clinical FMs,
we reorganized the rows of evaluation tasks from Fig. 2b—
originally presented as they are typically grouped in the
literature—along the six primary FM value propositions from
“Benefits of Clinical FMs". The result is Fig. 2c, which identifies
which CLaMs were evaluated against any of the six core benefits
of clinical FMs. Most CLaMs have only shown evidence for one
FM value proposition: improved predictive accuracy on certain
tasks. However, there is little evidence supporting the other
purported benefits of FMs, such as simplified model deployment
or reducing the need for labeled data. For example, while zero-
and few-shot prompting techniques have been rigorously
studied for general-purpose LLMs as an important method for
achieving improved performance, few ClLaMs have been
evaluated across different prompting strategies and fine-
tuning techniques. In other words, there is a gap in our
understanding of what CLaMs can do versus what CLaMs can do
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that is valuable to a health system and which traditional ML
models cannot do.

FEMRs

Evaluation on standard tasks and datasets. We collected the
original tasks on which each FEMR was evaluated in Fig. 3b and
bucketed them as they are typically presented in the literature.
Evaluation of FEMRs is in an even poorer state than that of CLaMs.
While CLaMs benefit from the NLP community’s adoption of
standardized task formats, FEMRs lack a similar set of “canonical”
evaluations. Instead, FEMRs are evaluated on an extremely sparse
set of tasks with little-to-no overlap across publications. This
makes it highly non-trivial to compare the performance of
different FEMRs.

These tasks are typically grouped by how each task is
formulated, e.g., binary classification v. multi-label classification
v. regression. The most popular prediction tasks are binary
classification tasks such as mortality, heart failure, and long
length-of-stay, but even the same nominal task can have widely
divergent definitions across papers’®.

Evaluation on FM benefits. We reorganized the rows of evaluation
tasks from Fig. 3b along the six primary value propositions of
clinical FMs listed in “Benefits of Clinical FMs”. The result is Fig. 3c,
which shows that almost all evaluations of FEMRs have been
focused on demonstrating their superior predictive accuracy over
traditional ML models. Notably, the ability to use less labeled data
(i.e, sample efficiency) has been fairly well-documented with
FEMRs. However, the other four potential benefits of FMs have
gone largely unstudied. And while evaluations of predictive
accuracy are straightforward to perform, it is not the sole property
of FMs that would justify their adoption by a health system.

Finally, to better quantify the ability of clinical FMs to achieve
the six key benefits of FMs outlined in “Benefits of clinical FMs”, we
propose several improved evaluation metrics and tasks in Fig. 4.
Our suggestions are by no means comprehensive, but rather
meant to spark a further discussion on how to align model
evaluation with the demonstration of clinical value.

1. Better predictive performance: The most thoroughly
studied property of clinical FMs has been their improved
predictive performance on classification and regression
tasks based on AUROC, AUPRC, F1 Score, and Accuracy.
These metrics assume an infinite capacity to act on a
model’s predictions. In reality, clinical workflows are capacity
constrained—a nursing team may only be able to act on a
handful of model predictions per day’®#. Thus, a health
system should only care about a model’'s accuracy on
patients for which it has the capacity to intervene. We,
therefore, recommend that researchers adopt ranking-based
metrics (e.g., Top-K precision/recall/F1, reciprocal ranking,
etc.), which are commonly used for recommendation
systems®'. Additionally, we propose examining not just a
model’s ability to classify patients correctly but also its
calibration across subgroups, fairness, and alignment with
clinical best practices®*?°. The human evaluation may also
be necessary in some cases, such as evaluating a CLaM's
ability to accurately generate answers to clinical questions®?.
Traditional NLP metrics such as ROUGE, METEOR, and BLEU
—which simply count n-gram overlap between generated
and reference text—are known to poorly correlate with
human evaluations of natural language generations®>-8°, We
also lack automated metrics for evaluating the more
qualitative aspects of a model’s “alignment” with human
values (e.g., helpfulness or harmlessness)®®, even as the
importance of human feedback during training has been
repeatedly demonstrated via techniques like Reinforcement
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Metrics: Ranking-based metrics for prediction tasks (Top-K Recall/Precision/F1, NDCG, Reciprocal Rank, etc.); HELM or
Med-PalLM-based benchmarking for NLP tasks (calibration, fairness, risk of harm, scientific accuracy, etc.)

Justification: Almost all clinical workflows are capacity constrained. Thus, what matters is not the overall accuracy of a model across an entire

| population, but rather its accuracy on the subset of patients a hospital has the capacity to treat (e.g. the model's best K predictions).

/
/

/ Metrics: AUROC/AUPRC/F1 @ K training examples; Zero/few-shot evaluation; Labeling effort avoided (USD, time)

‘/ ¢ Less labeled data

Justification: By allowing models to achieve higher performance with less data (e.g. better results at lower values of K), clinical foundation models
/ can substantially reduce the labeling burden of curating datasets in healthcare.

/" Metrics: Cost to train model/generate each prediction (USD, memory, FLOPSs); Cost savings from avoided IT integration/

|| simplified model

Foundation
Model
Benefits

\

\

W\

\ 5@

‘\\) \ Emergent clinical

i\ applications
\ Justification: To prove that clinical FMs unlock use cases previously infeasible with traditional ML, researchers must clearly define such

\ \ applications and evaluate FMs on their associated outcomes. Most existing tasks (NER, readmissions risk, etc.) simply rehash well-trodden ground.

| Multimodality

maintenance (USD, FTEs); Data preprocessing avoided (time, lines of code)

deployment Justification: One of the biggest benefits of foundation models in other domains is that they have substantially lowered the barrier for building
Al-enabled services by offering predictions via API as an ML-as-a-Service (MLaaS) offering.

Datasets: Tasks which assess novel clinical use cases (e.g. insurance appeal acceptance rate, SOAP note generation accuracy,
clinical trial patient matching success rate, etc.)
Methods: Clinical workflow diagrams that connect model outputs to users, actions, and outcomes

i\ Datasets: Tasks that demand multimodal reasoning (e.g. text, images, codes) to achieve state-of-the-art results
\ Methods: Ablations on including/excluding different modalities

| Justification: Though many datasets already contain multimodal data, most evaluation tasks are capable of being solved using only one data

| modality. New tasks should be developed that explicitly require demonstration of multimodal reasoning for high performance.

\ Datasets: Tasks that use "prompting"-based inputs; Tasks focused on active learning capabilities

\“ Novel human-Al
interfaces

Learning from Human Feedback®’. This is especially worry-
ing in medical settings, where patient safety is paramount.
CLaMs that might impact clinical decisions should be
evaluated much more rigorously than automated metrics
can provide, across axes such as agreement with scientific
consensus, minimization of the extent and risk of harm,
possibility of bias, and the clinical utility of the advice?82,
Less labeled data: The simplest way for researchers to
demonstrate how clinical FMs exhibit improved sample
efficiency is to replace evaluation metric “X” with the more
nuanced metric “X using K training examples”. For example,
replacing “AUROC” with “AUROC using 1000 labeled radiology
reports for fine-tuning.” Ideally, a clinical FM would enable
similar model performance at low values of K as at high
values of K. Another way to demonstrate improved sample
efficiency is to measure zero-shot and few-shot model
performance, in which a model is given either zero or
<100 examples, respectively, for the task on which it is
evaluated. Researchers should also consider measuring the
performance difference between fine-tuning versus prompt-
ing, where the former has been known to achieve higher
accuracy, but the latter represents a much simpler and more
flexible deployment option (as the model weights remain
frozen)®®, One could also measure the total dataset
annotation time saved by using a clinical FM, measured in
terms of dollars or hours.

Simplified model deployment: To quantify the value of
FMs in lowering the barrier for building task-specific
models'®, one possible metric is the cost of hardware/
compute/memory needed to train a model or generate a
prediction. More broadly, we can measure the overall cost
savings of using a clinical FM in terms of full-time
equivalents (FTEs) or resource hours saved when down-
stream models (e.g., risk of inpatient mortality) are built on
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Methods: Observational user studies (SUS scores, user satisfaction and engagement, human feedback)

Justification: It is impossible to know how effectively humans will interact with clinical FMs without actually observing clinicians interacting with
these models. Such studies must attempt to replicate the underlying clinical workflow as realistically as possible.

Fig. 4 Better evaluations of clinical FMs. Proposals for how to demonstrate the value of CLaMs and FEMRs for achieving the six primary value
propositions of FMs to health systems over traditional ML models.

top of a clinical FM versus training a task-specific model
from scratch. We recognize, however, that this evaluation
may be the most challenging to conduct, as it requires buy-
in from the business, clinical, and IT units of a health system.
Health systems with dedicated ML Operations (“MLOps”)
teams may be better positioned to realize these benefits®.
Emergent clinical applications: Clinical FMs can perform
entirely novel tasks thought to be beyond the reach of
machines even just a year ago, e.g., summarizing MRI
reports in patient-accessible terms, writing discharge
instructions, or generating differential diagnoses*°!. “Emer-
gence” is a term of art used by ML researchers to describe
the phenomenon by which FMs trained on large datasets
are able to perform tasks that were impossible for smaller
ML models to accomplish’. While this greatly broadens the
range of clinical problems addressable via machine learning,
it is still unproven whether these capabilities provide
tangible utility to health systems in production settings®2.
Thus, we must explicitly define the scenarios in which the
emergent capabilities of clinical FMs achieve their purported
benefits. For example, LLMs such as GPT-4 can produce new
USMLE exam questions, which are indistinguishable from
human-authored questions. However, whether the use of
these questions results in better-prepared medical students,
or a lower burden for creating exam questions, remains to
be quantified®>.

Multimodality: Currently, the majority of evaluation tasks
span one data modality’®, even though models that
simultaneously use multiple data modalities show substan-
tial gains®. There is a strong unmet need for evaluation
scenarios which explicitly require multimodal representa-
tions. Many datasets already include multimodal data (e.g.,
MIMIC-III, elCU, private EMRs, etc.), but evaluation tasks are
not constructed in ways that require the demonstration of
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multimodal reasoning across both structured data and
unstructured text. A great example of datasets that
accomplish this are the Holistic Al Framework (HAIM), which
builds on top of MIMIC-Il to enable truly multimodal
evaluation scenarios®.

6. Novel human-Al interfaces: Human evaluation and usabil-
ity studies are needed to quantify the utility of interacting
with FMs via prompts'. Metrics include user satisfaction,
engagement, system usability scale scores, qualitative
interview feedback, and the time/effort required to achieve
stated goals®®~8, Measuring the skill level necessary to
operate a model can also shed light on its ability to
empower providers to perform a multitude of roles. For
FEMRs, an accepted paradigm for “prompting” does not yet
exist, so developing a framework for prompting a patient’s
medical history would represent a significant step forward.
One exception is the Clinical Decision Transformer, which
used a desired clinical end state (e.g., normal A1C levels) as a
prompt to generate medication recommendations®.

DISCUSSION

Our review of 50 CLaMs and 34 FEMRs shows that most clinical
FMs are being evaluated on tasks that provide little information on
the potential advantages of FMs over traditional ML models. While
there is ample evidence that clinical FMs enable more accurate
model predictions, Figs. 2, 3 show that minimal work has been
conducted to validate whether the other, potentially more
valuable benefits of FMs will be realized in healthcare. These
benefits include reducing the burden of labeling data, offering
novel human-Al interfaces, and enabling new clinical applications
beyond the reach of traditional ML models, among others
outlined in “Benefits of Clinical FMs”. To help bridge this divide,
we advocate for the development of new evaluation tasks,
metrics, and datasets more directly tied to clinical utility, as
summarized in Fig. 4.

While we focused this review on FMs developed specifically for
clinical data, we recognize that there has been significant recent
progress in adapting general-purpose LLMs to medical knowledge
tasks''. As these general-purpose models continue to improve,
the need and value of having clinical-specific models remain an
open question®2. However, it is worth emphasizing that the
evaluation of these general-purpose LLMs suffers from the same
exact limitations as evaluations of clinical LLMs, and the critiques
described in this review still apply. While general-purpose LLMs
continue to improve on specific clinical tasks, e.g. clinical
knowledge and board certification benchmarks, it remains unclear
how well they perform for broader applications in the hospital and
what is achievable without training on some degree of in-domain
data (e.g. EHRs). For example, the fact that GPT-4 passes the
USMLE does not necessarily mean the model is useful for the
types of questions clinicians care about in practice®?. We believe
more work needs to be done to assess the clinical reasoning
capabilities of these general-purpose systems, and to develop a
better theoretical understanding of how a model’s skills in other
domains strengthen or worsen its performance on clinical tasks.
There are also considerations beyond overall accuracy, such as
scalability and inference cost, that may have different trade-offs in
smaller, more targeted clinical-specific FM deployments®.

In addition to the potential benefits listed in “What are Clinical
FMs?”, FMs present numerous risks that must also be considered
and investigated. Data privacy and security are significant
concerns with FMs, as they may leak protected health information
through model weights or prompt injection attacks'®'°". FMs are
also more difficult to interpret, edit, and control due to their
immense size'%%. They require high up-front costs to create, and
while these costs can be amortized over multiple downstream
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applications, their value may take longer to realize than a smaller
model developed for a single high-value task'%. Additionally, FMs
may fall under Software-as-a-Medical-Device guidelines regulating
their usage in the clinic'®. And similar to traditional ML models,
FMs are susceptible to biases induced by miscalibration or
overfitting'®®, as well as inducing “automation bias” in which
clinicians defer to a model’s outputs even when they are obviously
incorrect'®. Developing frameworks for determining a model’s
overall worth remains indispensable”®.

Despite these challenges, clinical FMs hold immense promise
for solving a diverse range of healthcare problems. We invite the
research community to develop better evaluations to help realize
their potential for benefiting both patients and providers?2,

DATA AVAILABILITY

We do not have any data beyond what is depicted in the Figures of this paper.

Received: 21 March 2023; Accepted: 13 July 2023;
Published online: 29 July 2023

REFERENCES

1. Bommasani, R. et al. On the opportunities and risks of foundation models.
Preprint at arXiv: 2108.07258 (2021).

2. Brown, T. B. et al. Language models are few-shot learners. Preprint at
arXiv:2005.14165 (2020).

3. Esser, P., Chiu, J.,, Atighehchian, P., Granskog, J. & Germanidis, A. Structure and
content-guided video synthesis with diffusion models. Preprint at arXiv:
2302.03011 (2023).

4. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold.
Nature 596, 583-589 (2021).

5. Jiang, Y. et al. VIMA: general robot manipulation with multimodal prompts.
Preprint at arXiv: 2210.03094 (2022).

6. Eysenbach, G. The role of ChatGPT, generative language models, and artificial
intelligence in medical education: a conversation with ChatGPT and a call for
papers. JMIR Med Educ. 9, e46885 (2023).

7. Wei, J. et al. Emergent abilities of large language models. Preprint at arXiv:
2206.07682 (2022).

8. Kung, T. H. et al. Performance of ChatGPT on USMLE: Potential for Al-assisted
medical education using large language models. PLoS Digit. Health 2, €0000198
(2023).

9. Gilson, A. et al. How does ChatGPT perform on the United States medical
licensing examination? The implications of large language models for medical
education and knowledge assessment. JMIR Med. Educ. (2023)

10. Liévin, V., Hother, C. E. & Winther, O. Can large language models reason about
medical questions? Preprint at arXiv: :2207.08143 (2022).

11. Nori, H., King, N., Mc Kinney, S. M., Carignan, D. & Horvitz, E. Capabilities of GPT-4
on medical challenge problems. Preprint at arXiv: 2303.13375 (2023).

12. Jeblick, K. et al. ChatGPT makes medicine easy to swallow: an exploratory case
study on simplified radiology reports. Preprint at arXiv: 2212.14882 (2022).

13. Macdonald, C., Adeloye, D., Sheikh, A. & Rudan, I. Can ChatGPT draft a research
article? An example of population-level vaccine effectiveness analysis. J. Glob.
Health 13, 01003 (2023).

14. Pang, C. et al. CEHR-BERT: Incorporating temporal information from structured EHR
data to improve prediction tasks. Machine Learning for Health. PMLR (2021)

15. Choi, E.,, Bahadori, M. T, Schuetz, A., Stewart, W. F. & Sun, J. Doctor Al: predicting
clinical events via recurrent neural networks. Preprint at arXiv: 1511.05942
(2015).

16. Prakash, P. K. S., Chilukuri, S., Ranade, N. & Viswanathan, S. RareBERT: transformer
architecture for rare disease patient identification using administrative claims.
AAAI 35, 453-460 (2021).

17. Cascella, M., Montomoli, J., Bellini, V. & Bignami, E. Evaluating the feasibility of
ChatGPT in healthcare: an analysis of multiple clinical and research scenarios. J.
Med. Syst. 47, 33 (2023).

18. Shen, Y. et al. ChatGPT and other large language models are double-edged
swords. Radiology 307, 230163 (2023).

19. Wojcik, M. A. Foundation models in healthcare: opportunities, biases and reg-
ulatory prospects in Europe. In Electronic Government and the Information Sys-
tems Perspective: 11th International Conference, EGOVIS 2022 Proceedings 32-46
(Springer-Verlag, 2022).

Published in partnership with Seoul National University Bundang Hospital



20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

Blagec, K., Kraiger, J., Frihwirt, W. & Samwald, M. Benchmark datasets driving
artificial intelligence development fail to capture the needs of medical profes-
sionals. J. Biomed. Inform. 137, 104274 (2023).

Donoho, D. 50 years of data science. J. Comput. Graph. Stat. 26, 745-766 (2017).
Topol, E. When M.D. is a machine doctor. https://erictopol.substack.com/p/
when-md-is-a-machine-doctor (2023).

Robert, P. 5 Ways ChatGPT will change healthcare forever, for better. Forbes
Magazine (13 February 2023).

Liang, P. et al. Holistic evaluation of language models. Preprint at arXiv [cs.CL]
(2022).

Mobhsen, F., Ali, H., El Hajj, N. & Shah, Z. Artificial intelligence-based methods for
fusion of electronic health records and imaging data. Sci. Rep. 12, 17981 (2022).
BigScience Workshop, et al. BLOOM: a 176B-Parameter open-access multilingual
language model. Preprint at arXiv [cs.CL] (2022).

Bubeck, S. et al. Sparks of artificial general intelligence: early experiments with
GPT-4. Preprint at arXiv [cs.CL] (2023).

Agrawal, M., Hegselmann, S., Lang, H., Kim, Y. & Sontag, D. Large language
models are few-shot clinical information extractors. Preprint at arXiv [cs.CL]
(2022).

Singhal, K. et al. Large language models encode clinical knowledge. Preprint at
arXiv [cs.CL] (2022).

Chintagunta, B., Katariya, N., Amatriain, X. & Kannan, A. Medically aware GPT-3 as
a data generator for medical dialogue summarization. In Proc. Second Workshop
on Natural Language Processing for Medical Conversations 66-76 (Association for
Computational Linguistics, 2021).

Huang, K. et al. Clinical XLNet: Modeling Sequential Clinical Notes and Predicting
Prolonged Mechanical Ventilation. Proceedings of the 3rd Clinical Natural Lan-
guage Processing Workshop (2020).

Lehman, E. et al. Do we still need clinical language models? Preprint at arXiv
[cs.CL] (2023).

Moradi, M., Blagec, K., Haberl, F. & Samwald, M. GPT-3 models are poor few-shot
learners in the biomedical domain. Preprint at arXiv [cs.CL] (2021).

Steinberg, E. et al. Language models are an effective representation learning
technique for electronic health record data. J. Biomed. Inform. 113, 103637
(2021).

Guo, L. L. et al. EHR foundation models improve robustness in the presence of
temporal distribution shift. Sci. Rep. 13, 3767 (2022).

Fei, N. et al. Towards artificial general intelligence via a multimodal foundation
model. Nat. Commun. 13, 3094 (2022).

Si, Y. et al. Deep representation learning of patient data from Electronic Health
Records (EHR): a systematic review. J. Biomed. Inform. 115, 103671 (2021).
Rajpurkar, P., Chen, E., Banerjee, O. & Topol, E. J. Al in health and medicine. Nat.
Med. 28, 31-38 (2022).

Xiao, C,, Choi, E. & Sun, J. Opportunities and challenges in developing deep
learning models using electronic health records data: a systematic review. J. Am.
Med. Inform. Assoc. 25, 1419-1428 (2018).

Davenport, T. & Kalakota, R. The potential for artificial intelligence in healthcare.
Future Health. J. 6, 94-98 (2019).

Bohr, A. & Memarzadeh, K. The rise of artificial intelligence in healthcare
applications. Artif. Intell. Healthcare 25 (2020).

Howard, J. & Sebastian, R. Universal Language Model Fine-tuning for Text
Classification. Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (2018).

Chen, L. et al. HAPI: a large-scale longitudinal dataset of commercial ML API
predictions. Preprint at arXiv [cs.SE] (2022).

Huge ‘foundation models’ are turbo-charging Al progress. The Economist (15
June 2022).

Canes, D. The time-saving magic of Chat GPT for doctors. https:/
tillthecavalryarrive.substack.com/p/the-time-saving-magic-of-chat-gpt?
utm_campaign=auto_share (2022).

Steinberg, E., Xu, Y., Fries, J. & Shah, N. Self-supervised time-to-event modeling
with structured medical records. Preprint at arXiv [cs.LG] (2023).

Kline, A. et al. Multimodal machine learning in precision health: a scoping
review. NPJ Digit. Med. 5, 171 (2022).

Baevski, A. et al. Data2vec: A general framework for self-supervised learning in
speech, vision and language. International Conference on Machine Learning.
PMLR (2022).

Girdhar, R. et al. ImageBind: one embedding space to bind them all. Preprint at
arXiv [cs.CV] (2023).

Boecking, B. et al. Making the most of text semantics to improve biomedical
vision--language processing. Preprint at arXiv [cs.CV] (2022).

Radford, A. et al. Learning transferable visual models from natural language
supervision. Preprint at arXiv [cs.CV] (2021).

Published in partnership with Seoul National University Bundang Hospital

M.

Wornow et al.

52

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

npj

. Huang, S-C, Pareek, A, Seyyedi, S., Banerjee, I. & Lungren, M. P. Fusion of
medical imaging and electronic health records using deep learning: a sys-
tematic review and implementation guidelines. NPJ Digit. Med. 3, 136 (2020).
Acosta, J. N, Falcone, G. J., Rajpurkar, P. & Topol, E. J. Multimodal biomedical Al.
Nat. Med. 28, 1773-1784 (2022).

Wei, J. et al. Chain-of-thought prompting elicits reasoning in large language
models. Advances in Neural Information Processing Systems (2022).

Lee, S, Da Young, L., Im, S., Kim, N. H. & Park, S.-M. Clinical decision transformer:
intended treatment recommendation through goal prompting. Preprint at arXiv
[cs.Al] (2023).

Johnson, A. E. W. et al. MIMIC-Ill, a freely accessible critical care database. Sci.
Data 3, 160035 (2016).

Wolf, T. et al. Transformers: State-of-the-Art Natural Language Processing.
EMNLP 2020 (2020).

Sushil, M., Ludwig, D., Butte, A. J. & Rudrapatna, V. A. Developing a general-
purpose clinical language inference model from a large corpus of clinical notes.
Preprint at arXiv [cs.CL] (2022).

Li, F. et al. Fine-tuning bidirectional encoder representations from transformers
(BERT)-based models on large-scale electronic health record notes: an empirical
study. JMIR Med. Inf. 7, 14830 (2019).

Yang, X. et al. GatorTron: a large clinical language model to unlock patient
information from unstructured electronic health records. Preprint at bioRxiv
https://doi.org/10.1101/2022.02.27.22271257 (2022).

Pollard, T. J. et al. The elCU Collaborative Research Database, a freely available
multi-center database for critical care research. Sci. Data 5, 180178 (2018).

Li, Y. et al. Hi-BEHRT: hierarchical transformer-based model for accurate pre-
diction of clinical events using multimodal longitudinal electronic health
records. IEEE J. Biomed. Health Inform. 27 (2022).

Zeltzer, D. et al. Prediction accuracy with electronic medical records versus
administrative claims. Med. Care 57, 551-559 (2019).

Rasmy, L., Xiang, Y., Xie, Z., Tao, C. & Zhi, D. Med-BERT: pretrained contextualized
embeddings on large-scale structured electronic health records for disease
prediction. npj Digit. Med. 4, 86 (2021).

Zeng, X., Linwood, S. L. & Liu, C. Pretrained transformer framework on pediatric
claims data for population specific tasks. Sci. Rep. 12, 3651 (2022).

Hur, K. et al. Unifying heterogeneous electronic health records systems via text-
based code embedding. Conference on Health, Inference, and Learning, PMLR
(2022).

Tang, P. C, Ralston, M., Arrigotti, M. F., Qureshi, L. & Graham, J. Comparison of
methodologies for calculating quality measures based on administrative data
versus clinical data from an electronic health record system: implications for
performance measures. J. Am. Med. Inform. Assoc. 14, 10-15 (2007).

Wei, W.-Q. et al. Combining billing codes, clinical notes, and medications from
electronic health records provides superior phenotyping performance. J. Am.
Med. Inform. Assoc. 23, e20-e27 (2016).

Rajkomar, A. et al. Scalable and accurate deep learning with electronic health
records. npj Digit. Med. 1, 1-10 (2018).

Lee, D,, Jiang, X. & Yu, H. Harmonized representation learning on dynamic EHR
graphs. J. Biomed. Inform. 106, 103426 (2020).

Ateev, H. R. B. A. ChatGPT-assisted diagnosis: is the future suddenly here?
https://www.statnews.com/2023/02/13/chatgpt-assisted-diagnosis/ (2023).
Raths, D. How UCSF physician execs are thinking about ChatGPT. Healthcare
Innovation (17 February 2023).

Fries, J. et al. Bigbio: a framework for data-centric biomedical natural language
processing. Advances in Neural Information Processing Systems 35 (2022).

Gao, Y. et al. A scoping review of publicly available language tasks in clinical
natural language processing. J. Am. Med. Inform. Assoc. 29, 1797-1806 (2022).
Leaman, R, Khare, R. & Lu, Z. Challenges in clinical natural language processing
for automated disorder normalization. J. Biomed. Inform. 57, 28-37 (2015).
Spasic, I. & Nenadic, G. Clinical text data in machine learning: systematic review.
JMIR Med. Inf. 8, €17984 (2020).

Yue, X., Jimenez Gutierrez, B. & Sun, H. Clinical reading comprehension: a
thorough analysis of the emrQA dataset. In Proc. 58th Annual Meeting of the
Association for Computational Linguistics 4474-4486 (Association for Computa-
tional Linguistics, 2020).

McDermott, M. et al. A comprehensive EHR timeseries pre-training benchmark.
In Proc. Conference on Health, Inference, and Learning 257-278 (Association for
Computing Machinery, 2021).

Shah, N. Making machine learning models clinically useful. JAMA 322, 1351
(2019).

Wornow, M., Gyang Ross, E., Callahan, A. & Shah, N. H. APLUS: a Python library
for usefulness simulations of machine learning models in healthcare. J. Biomed.
Inform. 139, 104319 (2023).

npj Digital Medicine (2023) 135


https://erictopol.substack.com/p/when-md-is-a-machine-doctor
https://erictopol.substack.com/p/when-md-is-a-machine-doctor
https://tillthecavalryarrive.substack.com/p/the-time-saving-magic-of-chat-gpt?utm_campaign=auto_share
https://tillthecavalryarrive.substack.com/p/the-time-saving-magic-of-chat-gpt?utm_campaign=auto_share
https://tillthecavalryarrive.substack.com/p/the-time-saving-magic-of-chat-gpt?utm_campaign=auto_share
https://doi.org/10.1101/2022.02.27.22271257
https://www.statnews.com/2023/02/13/chatgpt-assisted-diagnosis/

npj

M. Wornow et al.

10

82.

83.

84,

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

npj

. Tamm, Y.-M., Damdinov, R. & Vasilev, A. Quality metrics in recommender sys-
tems: Do we calculate metrics consistently? Proceedings of the 15th ACM Con-
ference on Recommender Systems (2021).

Dash, D. et al. Evaluation of GPT-3.5 and GPT-4 for supporting real-world
information needs in healthcare delivery. Preprint at arXiv [cs.Al] (2023).
Reiter, E. A structured review of the validity of BLEU. Comput. Linguist. 44,
393-401 (2018).

Hu, X. et al. Correlating automated and human evaluation of code documentation
generation quality. ACM Trans. Softw. Eng. Methodol. 31, 1-28 (2022).

Liu, Y. et al. G-Eval: NLG evaluation using GPT-4 with better human alignment.
Preprint at arXiv [cs.CL] (2023).

Thomas, R. & Uminsky, D. The problem with metrics is a fundamental problem
for Al. Preprint at arXiv [cs.CY] (2020).

Bai, Y. et al. Training a helpful and harmless assistant with reinforcement
learning from human feedback. Preprint at arXiv [cs.CL] (2022).

Gao, T, Fisch, A. & Chen, D. Making pre-trained language models better few-
shot learners. Preprint at arXiv [cs.CL] (2020).

Kaufmann, J. Foundation models are the new public cloud. ScaleVP https://
www.scalevp.com/blog/foundation-models-are-the-new-public-cloud (2022).
Kashyap, S., Morse, K. E., Patel, B. & Shah, N. H. A survey of extant organizational
and computational setups for deploying predictive models in health systems. J.
Am. Med. Inform. Assoc. 28, 2445-2450 (2021).

Abdullah, I. S, Loganathan, A., Lee, R. W. ChatGPT & doctors: the Medical Dream
Team. URGENT Matters (2023).

Lee, P., Goldberg, C. & Kohane, |. The Al Revolution in Medicine: GPT-4 and Beyond.
(Pearson, 2023).

Fleming, S. L. et al. Assessing the potential of USMLE-like exam questions
generated by GPT-4. Preprint at medRxiv https://doi.org/10.1101/
2023.04.25.23288588 (2023).

Husmann, S., Yéche, H., Ratsch, G. & Kuznetsova, R. On the importance of clinical
notes in multi-modal learning for EHR data. Preprint at arXiv [cs.LG] (2022).
Soenksen, L. R. et al. Integrated multimodal artificial intelligence framework for
healthcare applications. NPJ Digit. Med. 5, 149 (2022).

Peng, S., Kalliamvakou, E., Cihon, P. & Demirer, M. The impact of Al on developer
productivity: evidence from GitHub copilot. Preprint at arXiv [cs.SE] (2023).
Noy, S. et al. Experimental evidence on the productivity effects of generative
artificial intelligence. Science https://economics.mit.edu/sites/default/files/inline-
files/Noy_Zhang_1.pdf (2023).

Perry, N., Srivastava, M., Kumar, D. & Boneh, D. Do users write more insecure
code with Al assistants? Preprint at arXiv [cs.CR] (2022).

Zhang, X., Zhou, Z., Chen, D. & Wang, Y. E. AutoDistill: an end-to-end framework
to explore and distill hardware-efficient language models. Preprint at arXiv
[cs.LG] (2022).

El-Mhamdi, E.-M. et al. SoK: on the impossible security of very large foundation
models. Preprint at arXiv [cs.LG] (2022).

Carlini, N. et al. Quantifying memorization across neural language models.
Preprint at arXiv [cs.LG] (2022).

Mitchell, E., Lin, C,, Bosselut, A,, Manning, C. D. & Finn, C. Memory-based model
editing at scale. Preprint at arXiv [cs.Al] (2022).

Sharir, O., Peleg, B. & Shoham, Y. The cost of training NLP models: a concise
overview. Preprint at arXiv [cs.CL] (2020).

Yaeger, K. A, Martini, M., Yaniv, G., Oermann, E. K. & Costa, A. B. United States
regulatory approval of medical devices and software applications enhanced by
artificial intelligence. Health Policy Technol. 8, 192-197 (2019).

Digital Medicine (2023) 135

105. DeCamp, M. & Lindvall, C. Latent bias and the implementation of
artificial intelligence in medicine. J. Am. Med. Inform. Assoc. 27, 2020-2023
(2020).

106. Wickens, C. D., Clegg, B. A, Vieane, A. Z. & Sebok, A. L. Complacency and
automation bias in the use of imperfect automation. Hum. Factors 57, 728-739
(2015).

ACKNOWLEDGEMENTS

M.W. is supported by an NSF Graduate Research Fellowship. MW, Y.X,, RT, J.F, ES.,
S.F., MAAP, and N.H.S. also acknowledge support from Stanford Medicine for this
research.

AUTHOR CONTRIBUTIONS

MW, Y.X,, J.F., and N.H.S. conceptualized and designed the study; M.W.,, Y.X,, and R.T.
extracted data; MW, Y.X,, B.P., RT,, J.F,, and N.H.S. conducted the analysis and wrote
the manuscript. MW, Y.X,, B.P.,, RT, J.F, N.H.S., and M.A.P. revised the manuscript. E.S.
and S.F. contributed to the analysis. All authors approved the final version of the
manuscript and take accountability for all aspects of the work.

COMPETING INTERESTS

B.P. reports stock-based compensation from Google, LLC. Otherwise, the authors
declare that there are no competing interests.

ADDITIONAL INFORMATION

Correspondence and requests for materials should be addressed to Michael Wornow.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

Published in partnership with Seoul National University Bundang Hospital


https://www.scalevp.com/blog/foundation-models-are-the-new-public-cloud
https://www.scalevp.com/blog/foundation-models-are-the-new-public-cloud
https://doi.org/10.1101/2023.04.25.23288588
https://doi.org/10.1101/2023.04.25.23288588
https://economics.mit.edu/sites/default/files/inline-files/Noy_Zhang_1.pdf
https://economics.mit.edu/sites/default/files/inline-files/Noy_Zhang_1.pdf
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	The shaky foundations of large language models and foundation models for electronic health records
	Introduction
	What are clinical FMs?
	Clinical language models (CLaMs)
	Foundation models for electronic medical records (FEMRs)
	Benefits of clinical FMs

	State of published clinical FMs
	CLaMs
	Training data
	Model availability
	Takeaways

	FEMRs
	Training data
	Model accessibility
	Takeaways

	CLaMs
	Evaluation of standard tasks and datasets
	Evaluation on FM benefits

	FEMRs
	Evaluation on standard tasks and datasets
	Evaluation on FM benefits


	Discussion
	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




