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EHR-Safe: generating high-fidelity and privacy-preserving
synthetic electronic health records
Jinsung Yoon 1✉, Michel Mizrahi1, Nahid Farhady Ghalaty1, Thomas Jarvinen1, Ashwin S. Ravi1, Peter Brune1, Fanyu Kong1,
Dave Anderson1, George Lee1, Arie Meir2, Farhana Bandukwala1, Elli Kanal2, Sercan Ö. Arık 1 and Tomas Pfister1

Privacy concerns often arise as the key bottleneck for the sharing of data between consumers and data holders, particularly for
sensitive data such as Electronic Health Records (EHR). This impedes the application of data analytics and ML-based innovations
with tremendous potential. One promising approach for such privacy concerns is to instead use synthetic data. We propose a
generative modeling framework, EHR-Safe, for generating highly realistic and privacy-preserving synthetic EHR data. EHR-Safe is
based on a two-stage model that consists of sequential encoder-decoder networks and generative adversarial networks. Our
innovations focus on the key challenging aspects of real-world EHR data: heterogeneity, sparsity, coexistence of numerical and
categorical features with distinct characteristics, and time-varying features with highly-varying sequence lengths. Under numerous
evaluations, we demonstrate that the fidelity of EHR-Safe is almost-identical with real data (<3% accuracy difference for the models
trained on them) while yielding almost-ideal performance in practical privacy metrics.
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INTRODUCTION
Electronic Health Records (EHR) provide tremendous potential for
enhancing patient care, embedding performance measures in
clinical practice, and facilitating clinical research. Statistical
estimation and machine learning models trained on EHR data
can be used to diagnose diseases (such as diabetes1, track patient
wellness2, and predict how patients respond to specific drugs3). To
develop such models, researchers and practitioners need access to
data. However, data privacy concerns and patient confidentiality
regulations continue to pose a major barrier to data access4–6.
Conventional methods to anonymize data can be tedious and

costly7,8. They can distort important features from the original
dataset, decreasing the utility of the data significantly, and they
can be susceptible to privacy attacks even when the de-
identification process is in accordance with existing standards9.
Synthetic data open new horizons for data sharing10. With two key
properties, synthetic data can be extremely useful: (1) high fidelity
(i.e., the synthesized data are useful for the task of interest, such as
giving similar downstream performance when a diagnostic model
is trained on them), (2) meets certain privacy measures (i.e., the
synthesized data do not reveal any real patient’s identity).
Generative models have shown notable success in generating

synthetic data11–15. They are trained to synthesize data from a
given random noise vector or a feature that the model is
conditioned on. This comes with the premise, for privacy
preservation, that the data samples synthesized from random
vectors should be distinct from the real ones. Among generative
models, Generative Adversarial Networks (GANs)16 have particu-
larly gained traction as they can synthesize highly realistic samples
from the actual distribution of real data. The notable success of
GANs in synthesizing high-dimensional complex data has been
shown for images17, speech18, text19 and time-series15. Recent
works have also adapted GANs for privacy-preserving data
generation, with methods such as adding noise to model
weights20 or modified adversarial training21.

When it comes to synthetic EHR data generation, there are
multiple fundamental challenges. EHR data contain heterogeneous
features with different characteristics and distributions. There can be
numerical features (e.g., blood pressure) as well as categorical
features, with many (e.g., medical codes) or two (e.g., mortality
outcome) categories. We note that EHR data with images and free-
form text are beyond the scope of this paper. Some of these features
might be static (i.e., not varying during the modeling window), while
others are time-varying, such as regular or sporadic lab measure-
ments or diagnoses. Feature distributions might come from quite
different families—categorical distributions might be highly nonuni-
form (e.g., if there are minority groups), and numerical distributions
might be highly skewed (e.g., a small proportion of values being very
large while the vast majority are small). Ideally, a generative model
should have sufficient capacity to model all these types of features.
Depending on a patient’s condition, the number of visits might vary
drastically—some patients might visit a clinic only once, whereas
some might visit hundreds of times, leading to a variance in
sequence lengths that is typically much higher compared to other
time-series data. There might also be a high ratio of missing features
across different patients and time steps, as not all lab measurements
or other input data might have been collected. An effective
generative model should be realistic in synthesizing missing patterns.
GANs have been extended to healthcare data, particularly for

EHR.22–24 apply various GAN variants on EHR data. However, these
variants have limitations regarding the aforementioned fundamental
aspects of real-world EHR data, such as dealing with missing features,
varying feature length (rather than fixed length), categorical features
(beyond numerical), and static features (beyond time series). These
fundamental challenges require a holistic re-design in GAN-based
synthetic data generation systems. In this paper, our goal is to push
the state-of-the-art by designing a framework that can jointly
represent these diverse data modalities while preserving the privacy
of source training data.
EHR-Safe, overviewed in Fig. 1, generates synthetic data that

maintain the relevant statistical properties of the downstream
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tasks while preserving the privacy of the original data. Our
methodological innovations are key to this—we introduce
approaches for encoding/decoding features, normalizing complex
distributions, conditioning adversarial training, and representing
missing data. We demonstrate our results on two large-scale real-
world EHR datasets: MIMIC-III25–27 and eICU28. We demonstrate
superior synthetic data generation on a range of fidelity and
privacy metrics, often outperforming the previous works by a large
margin.

RESULTS
Datasets
We utilize two real-world de-identified EHR datasets to showcase
the EHR-Safe framework: (1) MIMIC-III (https://physionet.org/
content/mimiciii/1.4/), (2) eICU (https://eicu-crd.mit.edu/
gettingstarted/access/). Both are inpatient datasets that consist
of varying lengths of sequences and include multiple static and
temporal features with missing components.
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Fig. 1 Proposed EHR-Safe framework. a Overall flowchart of generating synthetic data from the original data. In this paper, we mainly focus
on training EHR-Safe and synthesizing synthetic data. b Example of real EHR data containing static and temporal features with numerical and
categorical values. c Example of synthetic EHR data containing static and temporal features with numerical and categorical values. d Overall
block diagram of EHR-Safe. At inference, we only use the trained generator and decoder to generate synthetic data (followed by the red
arrows).
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MIMIC-III. The total number of patients is 19,946. Among more
than 3000 features, we select 90 heterogeneous features that have
high correlations with the mortality outcome (Details can be
found in Supplementary Information). Ninety features consist of
(1) 3 static numerical features (e.g., age), (2) 3 static categorical
features (e.g., marital status), (3) 75 temporal numerical features
(e.g., respiratory rate), (4) 8 temporal categorical features (e.g.,
heart rhythm), and (5) 1 measurement time. The sequence lengths
vary between 1 and 30.

eICU. The total number of patients is 198,707. There are (1)
3 static numerical features (age, gender, mortality), (2) 1 static
categorical feature (condition code), (3) 162 temporal numerical
features, and (4) 1 measurement time. Among 162 temporal
numerical features, we only select 50 features whose average
number of observations is higher than 1 per patient. We set the
maximum length of sequence as 50. For longer sequences, we
only use the last 50 time steps.
For both datasets, we divide the patients into disjoint train and

test datasets with 80 and 20% ratios. We only use the training split
to train EHR-Safe. At inference, we generate synthetic train and
test datasets from random vectors (note that EHR-Safe can
generate an arbitrary amount of synthetic samples). We apply
standard outlier removal methods (by removing the sample
whose values are outside of certain value ranges between 0.1
percentile and 99.9 percentile) to exclude the outliers from the
original datasets. More details on datasets, training and evaluation
can be found in Supplementary Information.

Fidelity
The fidelity metrics assess the quality of synthetically generated
data by measuring the realisticness of the synthetic data
compared with real data (more details are provided in Supple-
mentary Information). Higher fidelity implies that it is more
difficult to differentiate between synthetic and real data. For
generative modeling, there is no standard way of evaluating the
fidelity of the generated synthetic data samples, and often
different works base their evaluations on different methods. In this
section, we evaluate the fidelity of synthetic data with multiple
quantitative and qualitative analyses, including training on
synthetic/testing on real and KS-statistics. More results (including
t-SNE analyses, comparison of distributions, propensity scores, and
feature importance) can be found in Supplementary Information.

Statistical similarity. We provide quantitative comparisons of
statistical similarity between original and synthetic data that
compare the distributions of the generated synthetic data and
original data per each feature (including the missing patterns). For
numeric variables, we report the mean, standard deviation,
missing rates, and KS-statistics. For categorical data, we report
the ratio of each category. We only report the results with the 15
temporal numerical features (with lowest missing rates) and all
static numerical features. Table 1 summarizes the results for
temporal and static numerical features, and most statistics are
well-aligned between original and synthetic data (KS-statistics are
mostly lower than 0.03). Additional results of the top 50 temporal
numerical features and categorical features can be found in
Supplementary Information.

Utility—ML model development on synthetic vs. real data. As one of
the most important use cases of synthetic data is enabling machine
learning innovations, we focus on the fidelity metric that compares a
predictive model performance when it is trained on synthetic vs. real
data. Similar model performance would indicate that the synthetic
data captures the relevant informative content for the task.
We focus on the mortality prediction task29,30, one of the most

important machine learning tasks for EHR. We train four different

predictive models (Gradient Boosting Tree Ensemble (GBDT),
Random Forest (RF), Logistic Regression (LR), Gated Recurrent Units
(GRU)). Table 2 compares the performance of the predictive models.
In most scenarios, they are highly similar in terms of AUC. On MIMIC-
III, the best model (GBDT) on synthetic data is only 0.026 worse than
the best model on real data, whereas on eICU, the best model (RF) on
synthetic data is only 0.009 worse than the best model on real data.
In Supplementary Information, we also provide the algorithmic
fairness analysis across multiple subgroups divided by static
categorical features (such as gender and religion).
Additionally, we evaluate the utility of the synthetic data with a

random subset of features and multiple target variables. The goal is
to evaluate the predictive capability of each dataset regardless of
which features and targets are being used. We choose random
subsets with 30 features and two target variables (mortality and
gender) and test the hypothesis that the performance difference
between the trained models by original and synthetic data is greater
than X. In a practical setting, the choice of X would enable data
owners to define a constraint on the acceptable fidelity of synthetic
data. We report results with X= 0.04 for illustrative purposes. We
obtain the p-value (computed by one sample T-test) that allows us to
reject this hypothesis. As can be seen in Table 2, for MIMIC-III
mortality prediction, we can reject the hypothesis that AUC
difference is greater than 0.04 with p-value smaller than 0.01
(average AUC difference is 0.009). For eICU gender prediction, we
achieve 0.019 average AUC difference with p-value smaller than
0.001.

Privacy
Unlike de-identified data, there is no straightforward one-to-one
mapping between real and synthetic data (generated from
random vectors). However, there may be some indirect privacy
leakage risks built on correlations between the synthetic data and
partial information from real data. We consider three different
privacy attacks that represent known approaches that adversaries
may apply to de-anonymize private data (details are provided in
Fig. 2 and Supplementary Information):

● Membership inference attack: The adversary explores the
probability of data being a member of the training data used
for training the synthetic data generation model31.

● Re-identification attack: The adversary explores the prob-
ability of some features being re-identified using synthetic
data and matching to the training data32.

● Attribute inference attack: The adversary predicts the value
of sensitive features using synthetic data33.

These metrics are highly practical as they represent the
expected risks that currently prevent sharing of conventionally
anonymized data. Furthermore, they are highly interpretable, as
results for these metrics directly measure the risks associated with
sharing synthetic data.
Table 3 summarizes the results along with the ideal achievable

value for each metric. According to the results shown in Table 3, we
observe that the privacy metrics are very close to the ideal in all
cases. The risk of understanding whether a sample of the original
data is a member used for training the model is very close to random
chance. For the attribute inference attack, we focus on the prediction
task of inferring specific attributes (gender, religion and marital
status) using other attributes as features. We compare prediction
accuracy when training a kNN classifier with real data against another
kNN classifier trained with synthetic data. The results demonstrate
that access to synthetic data does not lead to higher prediction
performance on specific attributes as compared to access to the
original data. More results for privacy with different distance metrics
can be found in Supplementary Information.
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DISCUSSION
We provide ablation studies on key components of EHR-Safe in
Table 4 (top): (1) stochastic normalization, (2) explicit mask
modeling, and (3) categorical embedding. All three components
are observed to substantially contribute to the quality of synthetic
data generation. Supplementary Information further illustrates the
impact of stochastic normalization in terms of CDF curves.

In Table 4 (bottom), we compare EHR-Safe to three
alternative methods (TimeGAN15, RC-GAN34, C-RNN-GAN35)
proposed for time-series synthetic data generation. Note that
the alternative methods are not designed to handle all the
challenges of EHR data, such as varying length sequences,
missingness and joint representation of static and time-varying
features (please see Supplementary Information on how we

Table 1. Statistical similarity analyses.

MIMIC-III Dataset

Feature type Feature name Original data Synthetic data KS-Stats

Mean Std Miss rate (%) Mean Std Miss rate (%)

Temporal Heart rate 82.56 17.34 36.53 82.20 15.91 35.74 0.01

Respiratory rate 18.85 5.31 37.88 18.29 4.54 36.72 0.04

calprevflg 1.00 0.00 66.68 1.00 0.00 66.65 0.00

SpO2 97.30 3.38 67.99 97.39 2.27 67.39 0.03

O2 saturation pulse oximetry 96.89 3.12 70.63 96.97 2.41 70.00 0.02

NBP [systolic] 119.86 22.78 78.24 117.53 19.77 79.20 0.04

NBP [diastolic] 56.64 14.75 78.26 56.89 13.20 79.29 0.03

NBP mean 76.01 14.82 78.60 75.16 13.51 79.90 0.03

HR alarm [low] 54.21 8.39 79.43 53.98 5.13 79.43 0.02

HR alarm [high] 120.28 11.86 79.48 120.15 8.75 79.44 0.01

SpO2 alarm [low] 89.73 8.77 33.76 89.54 9.43 33.61 0.02

SpO2 alarm [high] 99.14 7.67 36.53 99.37 6.52 35.74 0.00

Resp alarm [high] 32.77 8.14 37.88 32.17 5.34 36.72 0.03

Resp alarm [low] 8.78 7.57 66.68 8.61 6.64 66.65 0.00

Previous weight (F) 77.70 21.82 67.99 77.97 17.19 67.39 0.06

Static Age 91.33 67.41 0.00 93.05 70.15 0.00 0.02

Gender 0.51 0.49 0.00 0.52 0.49 0.00 0.00

Mortality 0.10 0.30 0.00 0.09 0.29 0.00 0.01

eICU Dataset

Feature type Feature name Original data Synthetic data KS-Stats

Mean Std Miss rate (%) Mean Std Miss rate (%)

Temporal Noninvasive mean 81.65 16.48 50.47 82.39 15.16 48.61 0.03

Noninvasive systolic 121.97 22.62 50.57 121.79 20.60 48.62 0.02

Noninvasive diastolic 65.34 14.59 50.57 65.80 13.02 48.67 0.03

Bedside glucose 150.86 59.10 81.44 149.28 49.85 84.62 0.04

Potassium 3.98 0.55 91.02 3.92 0.48 91.98 0.04

Hgb 10.35 2.14 91.98 10.47 2.10 92.17 0.04

Glucose 130.45 48.72 91.98 132.15 47.56 92.26 0.03

Ssodium 138.01 4.98 91.66 138.26 4.36 92.37 0.02

Creatinine 1.35 1.20 92.07 1.34 1.11 92.42 0.01

Hct 31.49 6.19 92.10 31.76 6.06 92.43 0.03

BUN 24.37 17.55 92.12 23.23 16.67 92.89 0.04

Calcium 8.42 0.71 92.43 8.39 0.70 92.66 0.03

Bicarbonate 25.44 4.81 92.46 25.21 4.31 93.02 0.03

Platelets x 1000 215.19 104.12 92.74 207.75 94.41 93.30 0.02

WBC x 1000 10.39 4.83 92.81 10.00 4.16 93.53 0.02

Static Age 63.05 17.07 0.00 64.25 16.82 0.00 0.03

Gender 0.54 0.49 0.00 0.54 0.49 0.00 0.00

Mortality 0.049 0.21 0.00 0.048 0.21 0.00 0.00

Analyses on numerical temporal and static features of MIMIC-III and eICU data. KS-stats represent the maximum cumulative distribution function (CDF)
difference between original and synthetic features (we ignore missing components when computing KS-stats).
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modify them for these functionalities). Thus, they significantly
underperform EHR-Safe, as shown in Table 4.
Post-processing can further improve the statistical similarity of

the synthetic data. Perfectly matching the distributions of
synthetic and real data might be particularly challenging for
features with skewness or CDFs with discrete jumps. For some
scenarios where EHR-Safe might have a shortcoming in matching
the distributions, a proposed post-processing method (details can

be found in Supplementary Information) can further refine the
generated data and improve the fidelity results for statistical
similarity. The post-processing method is based on matching the
ratios of samples in different buckets for the real and synthetic
data. Note that this procedure is not a learning-based method (i.e.,
no trainable parameters). With this procedure, we can significantly
improve the statistical similarity—KS-statistics are less or equal to
0.01 for all features. However, the drawbacks are the additional

Table 2. Fidelity results with utility metrics.

Utility with all features

Target Models Metrics MIMIC-III eICU

Train on Real Train on Synth Train on Real Train on Synth

Mortality GBDT AUC 0.762 0.736 0.943 0.938

AP 0.304 0.261 0.600 0.534

RF AUC 0.723 0.710 0.954 0.945

AP 0.276 0.251 0.600 0.580

GRU AUC 0.728 0.667 0.937 0.938

AP 0.278 0.193 0.567 0.528

LR AUC 0.712 0.680 0.872 0.818

AP 0.233 0.207 0.323 0.260

Average AUC 0.731 0.689 0.926 0.909

AP 0.272 0.228 0.522 0.475

Utility with random subsets of features

Target Models Metrics MIMIC-III eICU

Mean-diff p-value (X= 0.04) Mean-diff p-value (X= 0.04)

Mortality RF AUC 0.009 0.000 0.009 0.000

AP 0.035 0.000 0.035 0.098

Gender AUC 0.065 1.000 0.019 0.000

AP 0.046 0.860 0.013 0.000

(Upper) Downstream task performance with four different predictive models and two different settings (train on real vs. train on synthetic) on MIMIC-III and
eICU datasets. Performance is evaluated on the original test sets. The best performance in each column is shown in bold. (Lower) The average absolute
performance difference (in terms of AUC/AP) between training on real vs. synthetic data and the corresponding p-values (computed by one sample T-test) for
predicting mortality and gender with random subsets of features.
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a Membership inference. b Re-identification. c Attribute inference.
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complexity of generating synthetic data and a slight degradation
of the utility metrics (e.g., AUC changed from 0.749 to 0.730 on
MIMIC-III with Random Forest). There is not much difference in the
proposed privacy metrics (e.g., membership-inference attack
metric changed from 0.493 to 0.489 on MIMIC-III).
We demonstrate that EHR-Safe achieves very strong empirical

privacy results when considering multiple practical privacy
metrics. However, EHR-Safe does not provide theoretical privacy
guarantees (e.g., differential privacy) unless its training is modified
by randomly perturbing the models21,36. Note that EHR-Safe
framework can be directly adopted with differential privacy. For
instance, DP-SGD37 can be used to train the encoder-decoder and
WGAN-GP models to achieve a differentially private generator and
decoder with respect to the original data. Since synthetic data are
generated through the differentially private generator and
decoder using the random vector as the inputs, the generated
synthetic data are also differentially private with respect to the
original data. Even though these approaches can be adopted to
EHR-Safe, it may result in a decrease in fidelity as the added noise
would hurt the generative model training.
For the proposed metrics, the specific assumptions and models

might pose limitations. The proposed fidelity metrics that reflect
the downstream machine learning use cases depend on the
model type. For future work, it would be interesting to study
which fidelity metrics would correspond to the performance of the
best achievable model. Similarly, the proposed privacy attacks

employ certain assumptions about the methodology and model of
the attacker (e.g., nearest neighbor search for very high-
dimensional data might be suboptimal). It would be interesting
to understand the theoretically achievable privacy.
Most of our results are very close to the ideal achievable

performance, indicating one could have high confidence in using
our method in the real world. The result that has the most room
for improvement is statistical similarity, as it is not as high for all
features. Reducing this consistently across all features can be done
with further advances in generative modeling.
Various follow-up directions remain important for future work.

The EHR data of this paper’s focus are heterogeneous structured
data, and we show significant advancement over the prior state-
of-the-art that focused on more limited data types. A natural
extension is to integrate the generative modeling capability for
text and image data, as modern EHR datasets often contain both.
Realistic generation of text and image data would require high
capacity and deep decoders. However, such decoders would come
with extra training challenges, and effective training of them could
require a much higher number of data samples. In addition, extra
training difficulties would arise due to the fact that training
dynamics for different modalities are different. Utilizing foundation
models that are pre-trained on publicly available data is shown to
be one of the key drivers of the recent research progress for deep
learning on image and text data (including generative modeling).
However, publicly available general purpose image and text

Table 4. Comparisons with alternatives.

Models Fidelity Privacy

MIMIC-III eICU MIMIC-III eICU

AUC AP AUC AP Membership Inference

Upper bound—using real data 0.723 0.276 0.954 0.600 0.500 0.500

EHR-Safe 0.710 0.251 0.945 0.580 0.496 0.489

EHR-Safe variants Without stochastic normalization 0.674 0.226 0.918 0.533 0.505 0.509

Without explicit mask modeling 0.691 0.231 0.883 0.333 0.511 0.497

Without categorical embedding 0.681 0.223 0.935 0.569 0.492 0.510

TimeGAN 0.576 0.147 0.726 0.241 0.513 0.508

Alternatives RC-GAN 0.554 0.129 0.684 0.245 0.506 0.514

C-RNN-GAN 0.567 0.146 0.671 0.229 0.511 0.494

Downstream task performances (mortality prediction with RF model) and membership inference metrics (0.5 as the ideal case) with three different variations
of EHR-Safe and three alternative models.

Table 3. Privacy risk evaluation across three different metrics.

Privacy metrics MIMIC-III eICU

No privacy risk EHR-Safe No privacy risk EHR-Safe

Membership inference 0.500 0.496 0.500 0.489

Re-identification 0.049 0.061 0.068 0.085

Attribute inference Specific attributes With original data EHR-Safe With original data EHR-Safe

Gender 0.696 0.681 0.678 0.669

Marital status 0.628 0.620 - -

Religion 0.639 0.619 - -

For membership inference, the ideal value is random guessing (i.e., 0.5) whether an original sample has been leveraged for training the synthetic data
generation model. For the re-identification, the ideal case is to replace the synthetic data with holdout original data, which is disjoint with the training data.
For attribute inference attack, we set three static features (gender, race, medical status—note that eICU only has a gender attribute) as the specific attributes
and report the prediction AUC. The baseline scenario is measured by performing feature prediction using the original data. For multi-class data such as marital
status or religion, we compute the pairwise AUCs across all possible categories and report their average values.
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datasets often come from very different domains, and their
relevance to real-world EHR data would be low.
In this paper, we verify the performance of EHR-Safe on two

healthcare provider datasets which consist of admitted patients.
An important follow-up work would be on applying EHR-Safe on
out-patient medical datasets from primary care or insurance
companies. Scaling synthetic data generation for a complete EHR
dataset with many features is another important future work.
From a modeling perspective, there is no fundamental limitation
for scaling—EHR-Safe can be trained to generate a very high
number of features without hitting computational issues. How-
ever, we expect degradation in the generation quality for rarely-
observed features (e.g., almost 90% of the MIMIC-III features are
measured less than 1 time per visit, on average). Weak data
coverage would constitute the fundamental challenge.
In conclusion, we propose a generative modeling framework for

EHR data, EHR-Safe, that can generate highly realistic synthetic EHR
data that are robust to privacy attacks. EHR-Safe is based on
generative adversarial networks modeling applied to the encoded
representations of the raw data. We introduce multiple innovations in
the EHR-Safe architecture and training mechanisms that are
motivated by the key challenges in EHR data. These innovations
enable EHR-Safe to demonstrate high fidelity (almost-identical
properties with real data when desired downstream capabilities are
considered) with almost-ideal privacy preservation.

METHODS
This research follows Google AI principles (https://ai.google/
principles/), reviewed by Google Health Ethics Committee and
solely publicly available datasets are used.
The overall EHR-Safe framework is illustrated in Fig. 1d. To

synthesize EHR data, we adopt generative adversarial networks
(GANs). EHR data are heterogeneous (see Fig. 1b), including time-
varying and static features that are partially available. Direct
modeling of raw EHR data is thus challenging for GANs. To
circumvent this, we propose utilizing a sequential encoder-
decoder architecture to learn the mapping from the raw EHR
data to low-dimensional representations and vice versa.
While learning the mapping, esoteric distributions of various

numerical and categorical features pose a great challenge; for
example, some values or numerical ranges might be much more
common, dominating the distribution, while the capability of

modeling rare cases is crucial. Our proposed methods for feature
mapping are key to handling such data by converting to
distributions for which the training of encoder-decoder and GAN
are more stable and accurate. The mapped low-dimensional
representations, generated by the encoder, are used for GAN
training, and at test time, they are generated, which are then
converted to raw EHR data with the decoder. Algorithm 1
overviews the training procedure for EHR-Safe. In the following
subsections, we explain the key components.

Feature representations
EHR data often consist of both static and time-varying features. Each
static and temporal feature can be further categorized into either
numeric or categorical. Measurement time for time-varying features
is another important feature. Overall, the five categories of features
for the patient index i are: (1) measurement time as u, (2) static
numeric feature (e.g., age) as sn, (3) static categorical feature (e.g.,
marital status) as sc, (4) time-varying numerical feature (e.g., vital
signs) as tn, (5) time-varying categorical feature (e.g., hearth rhythm)
as tc. The sequence length of time-varying features is denoted as T(i).
Note that each patient record may have a different sequence length.
With all these features, given training data can be represented as:

D ¼ fsnðiÞ; scðiÞ; fuτðiÞ; tnτ ðiÞ; tcτðiÞgTðiÞτ¼1g
N

i¼1;
(1)

where N is the total number of patient records.
EHR datasets often contain missing features as patients might

visit clinics sporadically, and not all measurements or information
are collected completely at all visits. In order to generate realistic
synthetic data, missingness patterns should also be generated in a
realistic way. Let’s denote the binary mask m with 1/0 values
based on whether a feature is observed (m= 1) or not (m= 0). The
missingness for the features is represented as

DM ¼ fmnðiÞ;mcðiÞ; fmn
τ ðiÞ;mc

τðiÞgTðiÞτ¼1g
N

i¼1:
(2)

Note that there is no missingness for measurement time—we
assume time is always given whenever at least one time-varying
feature is observed.
Figure 3 visualizes how the raw data are converted into four

categories of features: (1) measurement time, (2) time-varying
features, (3) mask features, (4) static features.

Fig. 3 Converting raw data into multiple feature categories. Illustration of converting the raw data into multiple categories of features. The
missing values of time-varying features are shown with N/A. Observed/missing values are represented with 1/0 in the mask features.
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Encoding and decoding categorical features
Handling categorical features poses a unique challenge beyond
numerical features, as meaningful discrete mappings need to be
learned. One-hot encoding is one possible solution; however, if
some features have a large number of categories (such as the
medical codes), the number of dimensions would significantly
increase, hurting the GAN training and data efficiency38. We
propose encoding and decoding categorical features to obtain
learnable mappings to be used for generative modeling. We first
encode the categorical features (sc) into one-hot encoded features
(sco)—here, we use the notation with static categorical feature but
it is the same with temporal categorical features. Then, we employ
a categorical encoder (CEs) to transform one-hot encoded features
into the latent representations (sce):

sce ¼ CEs½sco� ¼ CE½sco1 ; :::; scoK �; (3)

where K is the number of categorical features. Lastly, we use the
multi-head decoders (½CFs1; :::; CFsK �) to recover the original one-hot
encoded data from the latent representations.

ŝcok ¼ CFsk ½sce� (4)

Both encoder (CEs) and multi-head decoders (½CFs1; :::; CFsK �) are
trained with softmax cross entropy objective: (Lc):

min
CEs ;CFs1;:::;CF

s
K

XK

k¼1

LcðCFsi ½CE½sco1 ; :::; scoK ��; scoi Þ: (5)

We use separate encoder-decoder models for static and temporal
categorical features. The transformed representations are denoted
as sce and tce, respectively.

Algorithm 1. Pseudo-code of EHR-Safe training.
Input: Original data D ¼ fsnðiÞ; scðiÞ; fuτðiÞ; tnτ ðiÞ; tcτðiÞgTðiÞτ¼1g

N

i¼1
1: Generate missing patterns of D: DM ¼ fmnðiÞ;mcðiÞ;

fmn
τ ðiÞ;mc

τðiÞgTðiÞτ¼1gNi¼1
2: Transform categorical data (sc, tc) into one-hot encoded data

(sco, tco)
3: Train static categorical encoder and decoder:

min
CEs;CFs1;:::;CF

s
K

XK

k¼1

LcðCFsi ½CE½sco1 ; :::; scoK ��; scoi Þ (6)

4: Train temporal categorical encoder and decoder:

min
CEt ;CFt1;:::;CF

t
K

XK

k¼1

LcðCFti ½CE½tco1 ; :::; tcoK ��; tcoi Þ (7)

5: Transform one-hot encoded data (sco, tco) to categorical
embeddings (sce, tce)

6: Stochastic normalization for numerical features (sn, tn, u) (see
Algorithm 2)

7: Train encoder-decoder model using Equation (11)
8: Generate original encoder states e using trained encoder (E),

original data D and missing patterns DM
9: Train generator (G) and discriminator (D) using WGAN-GP

max
G

min
D

1
N

XN

i¼1

Dðe½i�Þ � 1
N

XN

i¼1

Dðê½i�Þ þ η½ðjj∇Dð~e½i�Þjj � 1Þ2�

(8)

Output: Trained generator (G), trained decoder (F), trained
categorical decoder (CFs, CFt)

Stochastic normalization for numerical features
One prominent challenge for training GAN is mode collapse38, i.e.,
the generative model overemphasizes the generation of some
commonly observed data values. Especially for distributions where

the mass probability is condensed within a small numerical range,
this can be a severe issue. For EHR data, such distributions are
indeed observed for many features.
Some numerical clinical features might have values from a

discrete set of observations (e.g., high respiratory pressure
values coming as multiples of 5—35, 40, 45, etc.) or from highly
nonuniform distributions, yielding cumulative distribution
functions (CDFs) that are discontinuous or with
significant jumps.
Directly generating such numerical features coming from highly

discontinuous CDFs can be challenging for GANs, as they are
known to suffer from mode collapse and would have the
tendency to generate common values for all samples. To
circumvent this issue and obtain high fidelity, we propose a
normalization/renormalization method, shown in Algorithms 2
and 3, that map the raw feature distributions to and from a more
uniform distribution that is easier to model with GANs. An
example application would be like: (1) estimate the ratio of each
unique value in the original feature; (2) transform each unique
value into the normalized feature space with the ratio as the
width—if we have 3 original values: (1, 2, 3) and their
corresponding ratios as (0.1, 0.7, 0.2); (3) map 1 into [0, 0.1] range
in a uniformly random way; for 2, we map into [0.1, 0.8]; for 3, we
map into [0.8, 1.0].

Algorithm 2. Pseudo-code of stochastic normalization.
Input: Original feature X
1: Uniq(X) = Unique values of X, N = Length of (X)
2: lower-bound = 0.0, upper-bound = 0.0, X̂ ¼ X
3: for val in Uniq(X) do
4: Find index of X whose value = val as idx(val)
5: Compute the frequency (ratio) of val as ratio(val) =

Length of idx(val) / N
6: upper-bound = lower-bound + ratio(val)
7: X̂[idx(val)] ~Uniform(lower-bound, upper-bound)
8: params[val] = [lower-bound, upper-bound]
9: lower-bound = upper-bound
10: end for
Output: Normalized feature (X̂), normalization parameters

(params)

Algorithm 3. Pseudo-code of stochastic renormalization.
Input: Normalized feature (X̂), normalization parameters

(params)
1: X ¼ X̂
2: for param in params.keys do
3: Find index of X̂ whose value is in [param.values] as

idx(param)
4: X[idx(param)] = param
5: end for
Output: Original feature X

As shown in Supplementary Information, the proposed
stochastic normalization can be highly effective in transforming
features with discontinuous CDFs into approximately uniform
distributions while allowing for perfect renormalization into the
original feature space. We demonstrate that the impact of
normalization is significant for EHR-Safe to improve results in
Table 4.
We also note that the stochastic normalization method is

highly effective for handling skewed distributions that might
correspond to features with outliers. Stochastic normalization
maps the original feature space (with outliers) into a normal-
ized feature space (with uniform distribution), and then the
applied renormalization recreates the skewed distributions
with outliers.
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Encoder-decoder architecture
Given the described encoding scheme for numerical and
categorical features, next, we describe the employed architecture
for jointly extracting the representations from multiple types of
data, including static, temporal, measurement time, and mask
features. We propose to encode these heterogeneous features
into joint representations from which the synthetic data samples
are generated. High-dimensional sparse data are challenging to
model with GANs, as they might cause convergence stability and
mode collapse issues, and they might be less data efficient38 To
address this, using an encoder-decoder model is beneficial as it
condenses high-dimensional heterogeneous features into latent
representations that are low dimensional and compact.
The encoder model (F) inputs the static data (sn, sce), temporal data

(tn, tce), time data (u), and mask data (mn;mc;mn
τ ;m

c
τ ) and generates

the encoder states (e), as shown in Fig. 4 and below equations.

e ¼ Eðsn; sce; tn; tce; u;mn;mc;mn
τ ;m

c
τÞ (9)

The decoder model (G) inputs these encoded representations (e)
and aims to recover the original static, temporal, measurement
time, and mask data.

ŝn; ŝce; t̂
n
; t̂

ce
; û; m̂n; m̂c; m̂n

τ ; m̂
c
τ ¼ FðeÞ (10)

If the decoder model can recover the original heterogeneous
data correctly, it can be inferred that e contains most of the
information in the original heterogeneous data.
For temporal, measurement time and static features, we use

mean square error (Lm) as the reconstruction loss. Note that we
compute the errors only when the features are observed. For the
mask features, we use the binary cross entropy (Lc) as the
reconstruction loss because the mask features consist of binary
variables. Thus, our full reconstruction loss becomes:

min Lcðm̂n;mnÞ þ Lcðm̂c;mcÞ þ Lcðm̂n
τ ;m

n
τ Þ þ Lcðm̂c

τ ;m
c
τÞþ

λ½Lmðû; uÞ þ Lmðmnŝn;mnsnÞ þ Lmðmc ŝce;mcsceÞ þ Lmðmn
τ t̂

n
;mn

τ t
nÞ þ Lmðmc

τ t̂
ce
;mc

τt
ceÞ�;
(11)

where λ is the hyper-parameter to balance the cross entropy loss
and mean squared loss.

Adversarial training
The trained encoder model is used to map raw data into
encoded representations, that are then used for GAN training

so that the trained generative model can generate realistic
encoded representations that can be decoded into realistic
raw data.
We first utilize the trained encoder to generate original encoder

states (e) using the original raw data—the original dataset gets
converted into De ¼ feðiÞgNi¼1. Next, we use the generative
adversarial network (GAN) training framework to generate
synthetic encoder states ê to make synthetic encoder states
dataset D̂e . More specifically, the generator (G) uses the random
vector (z) to generate synthetic encoder states as follows.

ê ¼ GðzÞ (12)

Then, the discriminator D tries to distinguish the original encoder
states e from the synthetic encoder states ê. As the GAN
framework, we adopt Wasserstein GAN39 with Gradient Penalty40

due to its training stability for heterogeneous data types. The
optimization problem can be stated as:

max
G

min
D

1
N

PN

i¼1
Dðe½i�Þ � 1

N

PN

i¼1
Dðê½i�Þ þ η½ðjj∇Dð~e½i�Þjj � 1Þ2�

where ~e½i� ¼ ϵe½i� þ ð1� ϵÞê½i� and ϵ � U½0; 1�;
(13)

where η is WGAN-GP hyper-parameter, which is set to 10. Figure 4
describes the proposed GAN model with generator and discrimi-
nator architectures based on multi-layer perceptron (MLP).

Inference
The inference process of EHR-Safe is overviewed in Algorithm 4.
After training both the encoder-decoder and GAN models, we can
generate synthetic heterogeneous data from any random vector.
Note that only the trained generator and decoder are used for
inference.
As shown in Fig. 5, the trained generator uses the random

vector to generate synthetic encoder states.

ê ¼ GðzÞwhere z � Nð0; IÞ (14)

Then, the trained decoder (F) uses the synthetic encoder states as
the inputs to generate synthetic temporal (̂t

n
; t̂

ce
), static (ŝn; ŝce),

time (û), and mask (m̂n; m̂c; m̂n
τ ; m̂

c
τ ) data.

ŝn; ŝce; t̂
n
; t̂

ce
; û; m̂n; m̂c; m̂n

τ ; m̂
c
τ ¼ FðêÞ (15)

Representations for the static and temporal categorical features
are decoded using the decoders in Fig. 6 to generate synthetic
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Fig. 4 Block diagram of EHR-Safe training. Blue and purple blocks indicate trainable components, and gray blocks are non-trainable. Three pairs
of encoder-decoder models are trained based on the reconstruction losses. The generator and discriminator models are trained by GAN loss.
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static categorical (̂sc) data and temporal categorical (̂t
c
) data.

ŝc ¼ CFsðŝceÞ; t̂c ¼ CFt ð̂tceÞ (16)

The generated synthetic data are represented as:

D̂ ¼ fŝnðiÞ; ŝcðiÞ; fûτðiÞ; t̂nτ ðiÞ; t̂
c
τðiÞg

T̂ðiÞ
τ¼1g

M

i¼1
(17)

D̂M ¼ fm̂nðiÞ; m̂cðiÞ; fm̂n
τ ðiÞ; m̂c

τðiÞgT̂ðiÞτ¼1g
M

i¼1
(18)

Note that with the trained models, we can generate an arbitrary
number of synthetic data samples (even more than the original
data).

Algorithm 4. Pseudo-code of EHR-Safe inference.
Input: Trained generator (G), trained decoder (F), the number of

synthetic data (M), trained categorical decoder (CFs, CFt)
1: Sample M random vectors z � Nð0; IÞ
2: Generate synthetic embeddings: ê ¼ GðzÞ
3: Decode synthetic embeddings to synthetic data:

ŝn; ŝce; t̂
n
; t̂

ce
; û; m̂n; m̂c; m̂n

τ ; m̂
c
τ ¼ FðêÞ

4: Decode synthetic categorical embeddings: ŝc ¼ CFsðŝceÞ;
t̂
c ¼ CFt ð̂tceÞ

5: Renormalize synthetic numerical data (ŝn; t̂
n
; û) (see Algo-

rithm 3)
Output: Synthetic data D̂ ¼ fŝnðiÞ; ŝcðiÞ; fûτðiÞ; t̂nτ ðiÞ;

t̂
c
τðiÞgT̂ðiÞτ¼1gMi¼1 and synthetic missing pattern

D̂M ¼ fm̂nðiÞ; m̂cðiÞ; fm̂n
τ ðiÞ; m̂c

τðiÞgT̂ðiÞτ¼1g
M

i¼1
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