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Objective wearable measures correlate with self-reported
chronic pain levels in people with spinal cord stimulation
systems
Denis G. Patterson 1✉, Derron Wilson2, Michael A. Fishman 3, Gregory Moore4, Ioannis Skaribas5, Robert Heros6, Soroush Dehghan7,
Erika Ross7 and Anahita Kyani7

Spinal Cord Stimulation (SCS) is a well-established therapy for treating chronic pain. However, perceived treatment response to SCS
therapy may vary among people with chronic pain due to diverse needs and backgrounds. Patient Reported Outcomes (PROs) from
standard survey questions do not provide the full picture of what has happened to a patient since their last visit, and digital PROs
require patients to visit an app or otherwise regularly engage with software. This study aims to assess the feasibility of using digital
biomarkers collected from wearables during SCS treatment to predict pain and PRO outcomes. Twenty participants with chronic
pain were recruited and implanted with SCS. During the six months of the study, activity and physiological metrics were collected
and data from 15 participants was used to develop a machine learning pipeline to objectively predict pain levels and categories of
PRO measures. The model reached an accuracy of 0.768 ± 0.012 in predicting the pain intensity of mild, moderate, and severe.
Feature importance analysis showed that digital biomarkers from the smartwatch such as heart rate, heart rate variability, step
count, and stand time can contribute to modeling different aspects of pain. The results of the study suggest that wearable
biomarkers can be used to predict therapy outcomes in people with chronic pain, enabling continuous, real-time monitoring of
patients during the use of implanted therapies.
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INTRODUCTION
Chronic pain is a debilitating condition affecting a widespread
population in the United States, estimated at over 50 million
American adults1. Pain that lasts for more than three to six months
is often considered chronic and is influenced by a complex
combination of biopsychosocial factors including but not limited
to emotional, psychological, physical, and social considerations2,3.
Spinal cord stimulation (SCS) is an effective treatment option for
chronic pain and often leads to pain reduction and improvement
in quality of life4–7. Response to therapy over time varies from
person to person and often requires interactive adjustment of
therapy parameters8. Thus, appropriate individual selection and
long-term monitoring are crucial in optimizing the outcomes of
SCS therapy9,10.
The condition of a person with chronic pain is usually evaluated

through several patient-reported outcome (PRO) measures
administrated manually in an in-clinic visit. The current gold
standard for evaluating pain is using unidimensional PROs such as
the Numerical Rating Scale (NRS) or the Visual Analog Scale
(VAS)11,12. Efforts to capture multidimensional aspects of chronic
pain and treatment effects have historically been done through
the addition of other validated PRO questionnaires13,14. To capture
the more comprehensive and multidimensional effects of pain,
people with chronic pain often answer several other question-
naires, such as the Pain Catastrophizing Scale (PCS)15, which
provides insight into the psychological aspects of pain, Oswestry
Disability Index (ODI) for disability and function16, and Patient-
Reported Outcomes Measurement Information System 29 (PRO-
MIS-29) for global health measure17, Patient Health Questionnaire-

9 (PHQ-9) for depression18, and Patient Global Impression of
Change (PGIC)19 for the perception of improvement with different
therapies. These tools rely on the person’s assessment, which is
subject to memory, cognitive, social desirability, and other
psychologically influenced response biases. Additionally, there
are limitations and the potential for subjective bias on the part of
clinical evaluators20. An individual’s perception of pain and its
effect on daily activities and overall health are hard to capture in a
single data point recorded in a clinical visit20. However, frequent
collection of multiple questionnaires at shorter interval visits is
burdensome for people living with chronic pain (and their
clinicians), as it requires up to 54 questions across instruments.
To date, there are no established and validated objective

measures for assessing pain and its impact on the person’s overall
well-being, and objectively quantifying the effect of SCS treatment
on reducing chronic pain. Prior research has emphasized the need
for improved metrics to better characterize an individual’s
response and change in chronic pain levels with neurostimulation
therapies21,22. Recent advances in the development of wearable
technologies enabling objective measurement of movement,
physical activity, and function23–29, gait and posture30–34, neuro-
muscular and physiological data10,30–33, sleep35,36, and behavioral
assesment37,38 have resulted in the emergence of “digital
biomarkers” which could be measured outside the physical
confines of the clinics avoiding some of the bias introduced in
clinic measurements30–33,39,40. Many of these biomarkers from
wearables have shown a potential to objectively measure different
aspects of an individual’s chronic pain and its effect on physical
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activity, sleep, psychological health, and social
participation27,28,31,35,41.
Machine learning (ML) has been extensively used in healthcare

to provide insights, enhance decision-making, improve patient
outcomes, automate workflows, accelerate medical research, and
enhance operational efficiency by analyzing large amounts of
data42–44. Despite recent research highlighting the importance of
using machine learning techniques in pain research, previous
works have focused on correlating and monitoring symptoms and
side effects of pain with digital biomarkers and not necessarily
predicting the subject-reported outcomes45–47.
Recent advances in wearable technologies and machine

learning algorithms provide a promising opportunity for predict-
ing pain and other subjective measurements of pain48,49. Previous
studies have emphasized machine learning-based classification of
pain intensity, but far less attention has been paid to predicting
pain and its multi-dimensional effects that are usually captured
with multiple patient-reported outcome questionnaires49.
Here, we combined objective measures collected from a custom

smartwatch application with predictive machine learning algo-
rithms to predict commonly used PROs to measure chronic pain
perception. While these objective assessments are not direct
measurements of pain, they have the potential to serve as a highly
accurate tool to evaluate changes in the quality of life and the
level of disability in people with chronic pain and to develop
prediction models to measure response to SCS. The goal of this
study was to predict pain perception with machine learning
models as measured by PROs from objective data measured
before and after the SCS implant collected from commercially
available smartwatches.

RESULTS
Subject participation and compliance
Twenty participants were enrolled as part of this study. Five
patients discontinued participation in the study: one participant
withdrew consent prior to permanent SCS system implantation,
two participants withdrew consent after permanent implantation,
one participant’s participation was terminated by the investigator,
and one participant was excluded from analysis due to a lack of
wearable data. During the study, the median compliance
percentage for completing the PROs through the custom
application on the iPhone was 88.8% (Interquartile range of
66.6% to 100%). The participants had to input PROs in a separate
research phone and were deemed compliant if they completed
PROs at least three times during the baseline and once every

month after the implant for a duration of 6 months. In addition, a
median compliance of 84.7% (Interquartile range of 70.4 to 95.4%)
was achieved for using the smartwatch during the study duration.
Participants were deemed compliant if they wore the watch for at
least 7 days during the baseline and 180 non-consecutive days
after the implant. No significant difference was found in
compliance between completing PROs on the iPhone and wearing
the watch (Wilcoxon rank-sum test). Participants received follow-
up phone calls from clinic staff if they missed providing data for
more than 3 consecutive days or completing PROs on the custom
application. The average age of participants was 52.25 (±9.7) years
at baseline. On average, all participants suffered from 12 years of
chronic pain. Back pain was the primary pain diagnosis of the
majority of the participants (85%) in the presented cohort. Table 1
summarizes the baseline characteristics of the study participants.

SCS therapy improves pain, function, and quality of life in
people with chronic pain
During the course of the treatment, participants showed
improvements in NRS and all other PROs collected through the
wearable application and in-clinic visits (for comparison of the
baseline visit to the last pre-op in-clinic visit). A summary of all
PROs at different time points and a comparison of in-clinic and
application data is presented in Table 2. The average and standard
deviation of in-clinic NRS values dropped from 7.2 (±0.88) at
baseline to 3.14 (±1.83), and 3.34 (±2.12) at the 3- and 6-month
visits, respectively. Moreover, the average daily NRS collected from
the custom watch application was reduced across all participants
(Fig. 1a). Similar improvements were seen for all PROs included in
this study (Table 2). Figure 1b shows improvement seen in PGIC
across all participants based on monthly reported values on the
custom iPhone application. The raw scores for the PROs collected
using the wearable application and in-clinic visits at baseline, 3-
months, and 6-months show significant improvement in PROMIS-
29’s sleep disturbance, social roles, pain interference, and fatigue
compared to baseline (Table 2). The raw scores for the PCS and
ODI showed significant improvements compared to baseline as
well. The improved trend for the values collected through the
digital health custom wearable application is like the improve-
ment trend in the values collected during clinic visits. The sample
size for each comparison is listed for each measurement. All
participants must complete PROs in the clinic as part of the
required case report forms for the study.

Objective data can be used to passively monitor and predict
daily pain level
The physiological and behavioral features collected passively
throughout the study were used to construct a machine learning
model to predict daily categorical pain levels in the participants. A
variety of different machine learning models were attempted for
predicting three categorical levels of pain intensity, with the
random forest model yielding the best predictive performance.
Specifically, the random forest model showed high accuracy in
predicting three intensity levels of mild, moderate, and severe
pain, corresponding to NRS levels of <4, ≥4 & ≤6, and >6,
respectively (F1 Score = 0.768 ± 0.012 and Accuracy =
0.768 ± 0.012, Sensitivity = 0.737 ± 0.016, and Specificity =
0.869 ± 0.007) (Table 3, Supplementary Fig. 1). This model was
driven using objective features as an input and could theoretically
be used to passively monitor daily pain intensity categories in
people with chronic pain.

Objective data can be used to passively monitor and predict
other aspects of pain
To holistically predict the well-being of people with chronic pain,
we used the objective measures collected from the custom watch

Table 1. Baseline characteristics of study participants.

Baseline Characteristics N (%) or mean (± SD)

Gender

Male 15 (75%)

Female 5 (25%)

Age

Years 52.25 (±9.77)

Pain Duration

Years 12.3 (±11.7)

Etiology

Radiculopathy 5 (25%)

Non-surgical Back Pain 4 (20%)

Failed Back Surgery Syndrome 8 (40%)

Complex Regional Pain Syndrome Type I 3 (15 %)

SD standard deviation.
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app to predict categories of common PROs for chronic pain
assessments. We developed 11 machine learning models to
predict score categories from PROs collected throughout the
study (PGIC, PCS total score, 7 domains of PROMIS-29, ODI total
score, PHQ-9 total score) using objective features. The results of
PRO modeling and evaluation metrics for each of the PROs are
shown in Table 3. All models had high accuracy and F1 score
indicating the application of digital biomarkers in predicting
categories of these subjective measures for chronic pain. In
addition to pain intensity, these models could be used to predict
different dimensions of pain including emotional aspects using
depression, anxiety, and fatigue (PROMIS-29, PHQ-9) models,

physical function aspects using physical activity (PROMIS-29)
model and sleep aspects using sleep disturbance (PROMIS-29)
model. The PCS model could help with predicting pain
catastrophizing in people with chronic pain while the PGIC model
could help with predicting individual response to therapy and be
used as a tool to find the right candidates for spinal cord
stimulation. Most models achieved high sensitivity and specificity,
but the datasets for PROMIS-29 domains of physical function and
sleep disturbance were highly imbalanced. This was resolved by
use of the synthetic minority oversampling technique (SMOTE).
However, a remaining limitation was the limited number of data
points in minority classes and a lack of sleep data from the

Fig. 1 Improvement in PROs collected from the custom wearable application. a The weekly average of NRS scores across all participants
during the study; 0 indicates the permanent implant date; the baseline period values (−1 to 0 month) are the weekly average of NRS pulled
from the watch application; statistical testing indicates a comparison to pre-implant pain scores per subject and is calculated using the
Wilcoxon signed-rank test on median values; *p ≤ 0.05, **p ≤ 0.001. b Monthly average of PGIC scores for all participants during the study; NRS
numerical rating scale, PGIC patient global impression of change, CI confidence intervals.

Table 2. Scores for PROs collected in the study.

Score

PRO Baseline In Clinic Baseline In App 3-month In Clinic 3-month In App 6-month In Clinic 6-month In App

NRS 7.2 ± 0.8 (n= 15) 6.6 ± 1.5 (n= 15) 3.1 ± 1.8 * (n= 14) 3.5 ± 2.1 ** (n= 15) 3.3 ± 2.1 * (n= 15) 3.4 ± 1.9 * (n= 10)

PGIC N/A N/A 5.7 ± 1.4a (n= 14) 5.1 ± 1.9a (n= 8) 5.0 ± 1.7a (n= 15) 4.8 ± 2.0a (n= 10)

PCS 25.2 ± 11.5 (n= 15) 26.9 ± 10.6 (n= 14) 13.5 ± 11.9 * (n= 14) 10.1 ± 8.8 * (n= 10) 18.5 ± 15.9 (n= 15) 14.0 ± 11.7 * (n= 10)

PHQ-9 N/A 10.5 ± 5.6 (n= 14) N/A 4.0 ± 3.6 (n= 7) N/A 4.8 ± 3.8 (n= 9)

ODI 51.6 ± 15.8 (n= 15) 56.0 ± 15.9 (n= 13) 32.0 ± 16.9 * (n= 14) 29.8 ± 20.6 * (n= 9) 34.7 ± 18.0 * (n= 14) 33.5 ± 20.1 * (n= 9)

PR-29 - Physical
Function

33.5 ± 4.5 (n= 15) 32.5 ± 3.9 (n= 14) 40.4 ± 6.6 * (n= 13) 33.1 ± 6.7 (n= 8) 41.9 ± 8.5 * (n= 15) 32.4 ± 4.9 (n= 8)

PR-29 - Social Roles 38.1 ± 6.3 (n= 15) 37.4 ± 6.5 (n= 15) 47.0 ± 7.8 * (n= 13) 47.9 ± 9.9 * (n= 10) 46.6 ± 10.2 (n= 15) 44.8 ± 10.9 (n= 10)

PR-29 - Depression 51.7 ± 7.0 (n= 15) 56.9 ± 8.5 (n= 15) 51.3 ± 7.1 (n= 13) 50.3 ± 7.2 (n= 10) 50.7 ± 8.9 (n= 15) 52.7 ± 10.2 (n= 10)

PR-29 - Anxiety 50.5 ± 17.8 (n= 15) 55.5 ± 16.1 (n= 15) 45.1 ± 18.5 (n= 13) 38.7 ± 17.2 (n= 10) 41.7 ± 18.9 (n= 15) 39.6 ± 18.9 (n= 10)

PR-29 - Fatigue 60.3 ± 6.6 (n= 15) 61.5 ± 7.1 (n= 15) 53.1 ± 8.11 * (n= 13) 50.6 ± 5.6 * (n= 10) 54.4 ± 10.9 * (n= 15) 52.8 ± 9.3 (n= 10)

PR-29 - Sleep
Disturbance

58.7 ± 7.2 (n= 15) 55.7 ± 3.7 (n= 15) 50.8 ± 8.3 * (n= 13) 49.8 ± 3.1 * (n= 10) 49.2 ± 10.4 * (n= 15) 50.0 ± 3.8 * (n= 10)

PR-29 - Pain
Interference

67.9 ± 6.1 (n= 15) 68.2 ± 5.7 (n= 15) 59.3 ± 8.3 * (n= 13) 57.1 ± 8.3 * (n= 10) 58.2 ± 8.4 * (n= 15) 60.0 ± 10.7 (n= 10)

Scores are shown as mean ± standard deviation (Number of participants); The significance is calculated using the two-sided Wilcoxon signed-rank test on
median values for in-app data throughout that month and every single value for in-clinic data; The asterisk shows the statistically significant differences
(*p ≤ 0.05; **p ≤ 0.001).
NRS numerical rating scale, PR-29 patient-reported outcomes measurement information system 29, PCS pain catastrophizing scale, PHQ-9 patient health
questionnaire-9, ODI Oswestry disability index, PGIC patient global impression of change, SD standard deviation.
aThe categorical values of PGIC are shown as numbers from 1 to 7 (low improvement to high improvement).
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smartwatch as an input for predicting sleep disturbance. This
limitation likely explains the low specificity for physical function
and low sensitivity for the sleep model (Table 3).

Important biomarkers for pain
The feature importance for modeling three levels of pain intensity
and SHAP (SHapley Additive exPlanations) values are plotted in
Fig. 2. The figure includes the feature importance for the model
built with objective features (a and b). Several wearable
biomarkers such as heart rate, step count, and stand time were
shown to be important predictors of pain and various aspects of it.
The feature importance analysis of the model using objective
biomarkers depicts those physiological biomarkers from the
Apple® Watch that played an important role in modeling three
categorical levels of pain (e.g., heart rate, heart rate variability, step
count, and stand time). The number of days pre/post implant was
also found to be a prominent feature for predicting pain, likely due

to the time it takes for SCS therapy to be adjusted to optimal
settings post-implant. The device programming features that were
pulled from the patient’s SCS controller app were also among the
important features. Participants who reported more variation of
pain score had a higher engagement with the patient controller
app (i.e., they visited the patient controller application more often
to adjust therapy settings).
Furthermore, there was a correlation between the median heart

rate (as an important feature) and pain intensity demonstrating
that on days with lower pain levels, participants experienced lower
heart rate values during the day (Fig. 3)50.
The feature analysis for the other predictive models for other

aspects of pain showed the same pattern as the predictive model
for pain levels, and features such as heart rate, heart rate
variability, step count, and stand time were identified as top
predictors. The number of months post-implant also appeared as
one of the top features in most of the PRO models, suggesting a
gradual wash-in of the therapy effect over time. Moreover, these

Table 3. Evaluation metrics for machine learning modeling of PROs using objective features.

PRO Accuracy
(mean ± SD)

F1 Score
(mean ± SD)

Sensitivity
(mean ± SD)

Specificity
(mean ± SD)

Precision
(mean ± SD)

AUC – ROC
(mean ± SD)

NRS 0.768 ± 0.012 0.768 ± 0.012 0.737 ± 0.016 0.869 ± 0.007 0.775 ± 0.021 0.889 ± 0.032

PGIC 0.827 ± 0.063 0.821 ± 0.058 0.657 ± 0.094 0.904 ± 0.059 0.709 ± 0.169 0.873 ± 0.081

PCS 0.837 ± 0.025 0.796 ± 0.048 0.600 ± 0.284 0.935 ± 0.057 0.744 ± 0.158 0.893 ± 0.076

PHQ-9 0.852 ± 0.030 0.835 ± 0.037 0.620 ± 0.198 0.913 ± 0.045 0.703 ± 0.121 0.864 ± 0.061

ODI 0.697 ± 0.042 0.657 ± 0.045 0.667 ± 0.053 0.852 ± 0.029 0.701 ± 0.075 0.862 ± 0.064

PR-29 - Physical
Function

0.884 ± 0.001 0.830 ± 0.001 0.978 ± 0.029 0.533 ± 0.339 0.942 ± 0.041 0.784 ± 0.173

PR-29 - Social Roles 0.817 ± 0.035 0.812 ± 0.038 0.664 ± 0.110 0.896 ± 0.057 0.796 ± 0.082 0.883 ± 0.014

PR-29 - Depression 0.887 ± 0.054 0.884 ± 0.053 0.687 ± 0.115 0.893 ± 0.047 0.646 ± 0.0966 0.888 ± 0.027

PR-29 - Anxiety 0.843 ± 0.045 0.839 ± 0.046 0.766 ± 0.110 0.888 ± 0.037 0.755 ± 0.067 0.915 ± 0.032

PR-29 - Fatigue 0.864 ± 0.067 0.850 ± 0.076 0.678 ± 0.078 0.920 ± 0.058 0.746 ± 0.142 0.889 ± 0.041

PR-29 - Sleep
Disturbance

0.948 ± 0.001 0.923 ± 0.001 0.350 ± 0.390 0.970 ± 0.032 0.437 ± 0.390 0.877 ± 0.102

PR-29 - Pain
Interference

0.846 ± 0.061 0.845 ± 0.061 0.833 ± 0.095 0.816 ± 0.078 0.844 ± 0. 0.058 0.917 ± 0.032

AUC-ROC area under the receiver operating characteristic (ROC) curve, NRS numerical rating scale, PR-29 patient-reported outcomes measurement information
system 29, PCS pain catastrophizing scale, PHQ-9 patient health questionnaire-9, ODI Oswestry disability index, PGIC patient global impression of change, SD
standard deviation.

Fig. 2 Important features from ML modeling for pain. a The average of feature importance for modeling pain levels using objective data
across 10 runtimes. The standard deviation is shown with a line in the bar plot. b A sample of SHAP (SHapley Additive exPlanations) values for
one run time. RMSSD: The root mean square of successive inter-beat intervals of heartbeats differences. SDANN: The standard deviation of the
average inter-beat intervals without artifacts for each 5-minute interval over a 24-hour recording of heart rate variability. SDNNI: The average
of the standard deviations of all inter-beat intervals without artifacts for each 5-minute interval over a 24-hour recording of heart rate
variability.
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results from pain and PRO modeling indicated that heart rate
variability can contribute to the understanding of pain. Further
investigations showed that participants with lower pain intensity
have a higher heart rate variability which is seen in people with
chronic pain41,51. Finally, the total number of programming
changes, the target stimulation amplitude (from programming
data), and the local weather temperature and precipitation were
among the top predictors in most of PRO models. This suggests
that the programming setting and weather may influence the
daily pain level reported by patients52–54.

DISCUSSION
SCS treatment is an effective therapy that can provide much-
needed pain relief, improve physical activity and social participa-
tion, and ultimately enhance the quality of life for people dealing
with chronic pain. Here we report, the results of this research
which further support the efficacy of SCS by showing an
improvement in average pain relief post-implant across partici-
pants accompanied by average improvement in the quality-of-life
metrics including physical activity, social roles anxiety, fatigue,
sleep disturbance, and pain interference. Objective measures to
monitor each individual’s progress over the period of treatment
could help with increasing therapeutic efficacy and better
adoption of new technologies. Our approach in this paper is to
highlight the feasibility of using objective data from a wearable
device to not only create a model for predicting categorical pain
intensity but also to predict other outcome quality-of-life outcome
measures typically measured in clinics. These results suggest that
a machine learning model can use passive data to predict and
categorize participants based on NRS, PCS, PROMIS-29 domains,
ODI, PHQ-9, and PGIC. This is an important and distinct
improvement over just categorizing participants using unidimen-
sional scales.
The smartwatch compliance that passively collected partici-

pant’s physiological signals highlights the importance of wear-
ables in new technology adoption. The collection of PROs through
the custom application and use of a smartwatch provides frequent
data required for validating these predictive models. The objective
data from wearables can be used to develop predictive algorithms
for long-term passive monitoring of symptoms and reducing the
burden of completing PROs in the future. It is noteworthy to
mention that patients in this study are selected based on their
comfort level with technology and willingness to engage in digital
health activities. The study’s device compliance rates may
overestimate real-world use because patients are actively mon-
itored, and clinical staff call them if they miss completing PROs or
providing data for more than three days.

There are distinguishing differences in the features extracted
from the Apple® Watch during the baseline period compared to
post-SCS treatment across all participants. These differences
indicate physical and physiological changes in people with
chronic pain which are measured using a wearable watch. For
example, in the physical aspect of pain, the average total stand
time increases after implant across all participants which suggests
higher activity and social engagement in people with chronic pain
treated with SCS. Additionally, the average daily stand time
follows the NRS improvement in participants, suggesting that
better pain relief leads to a higher average standing time
throughout the day. The predictive models accurately predict
three levels of daily pain and various aspects of pain captured by
commonly used and validated PROs using objective data as
inputs. The feature importance analysis reveals activity metrics,
heart rate, and heart rate variability as important predictors of
pain. The number of days pre/post implant is another crucial
feature, indicating that participants take time to experience a
lower pain level, and the change in pain intensity is not
immediate. This suggests that participants experience varying
levels of pain relief depending on the timing of their SCS implants
until their pain levels reach a more stable state. Monitoring of
patient data using passive means may help in the future by
informing optimization of settings with a closed-loop SCS system
and choosing the appropriate window to change the SCS
configuration based on the pain level.
Chronic pain often affects other dimensions of an individual’s

life such as sleep, physical function, psychological health, and
quality of life. The study outcomes demonstrate improvement of
different aspects of pain in people with chronic pain after spinal
cord stimulation therapy and the potential use of wearables to
capture these measures objectively since different pain domains
such as physical function, social behavior, and sleep can be
quantified through wearable sensing55–57. The predictive models
of PROs developed in this study could be used to monitor an
individual’s progress through the SCS continuum and decrease
the burden of completing PROs in the app or the clinic. The
predictive model for PGIC developed with high accuracy can be
used for patient selection and to provide therapy to people with
chronic pain for whom SCS is more effective.
The main strength of this work is developing predictive models

to predict pain and other aspects of it using objective data. We
develop a large set of biomarkers and build accurate and robust
models that could be used to characterize pain and well-being in
people with chronic pain. One limitation of the current study is the
small sample size for developing machine learning models which
can affect the generalizability of our predictions given the
variability across different patients. To mitigate this, we randomize
the training and testing data 10 times and report the average
model performance. The short-term application of this work is a
population model that can be personalized to each patient using
some of their initial data. But in the longer term, with more data
and a more diverse dataset, we may be able to generate
population models that operate without personalization.
Another limitation of the study is the lack of reliable sleep data

as an important predicting factor for pain, due to the inadequate
time resolution and the fact that only binary values are provided
for sleep data. Additionally, the amount of physical activity
information is limited for this version of the watch compared to
future generations and clinically validated sensors which could
affect our ability to predict pain levels and categories of PRO
measures. Moreover, the imbalanced datasets for PROMIS-29
physical function, and sleep disturbance with a few data points in
the minority class limit us in building robust models with high
specificity and sensitivity in predicting these two domains of
PROMIS-29.
There are multiple confounding factors such as post-surgery

recovery time, inactivity due to surgery, effects of medication, and

Fig. 3 The average of heart rate median values correlates with
the NRS score. The weekly average of heart rate median values
across all participants during the study along with the weekly
average of NRS scores; NRS numerical rating scale, CI confidence
intervals.
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other factors that can affect the interpretation of wearable
features selected (e.g., heart rate, step count) for this study.
Including daily averages and variations of the features as input to
the model could decrease such effects. In addition, the pain
modeling is performed using data up to 6 months post-implant to
have a more robust prediction. The validity of all the features of
the model needs to be further studied to better understand the
nature of the relationship between the predictor and a patient’s
pain level and to rule out potential confounding factors. This study
is designed to demonstrate feasibility in a small patient
population but future studies including a larger sample size of
people with chronic pain are required to overcome these
limitations. In addition, improvements in future generations of
wearable devices can provide access to additional sensors and
data; resulting in helping with the robustness of predictive models
aimed at solving complex modeling of individual’s pain.
In summary, with increasing the availability of both consumer

and research-grade wearable devices and accessing sophisticated
machine learning techniques, the opportunity of developing novel
methods to passively monitor the daily changes in people with
chronic pain and predict their pain states becomes more
achievable. The ability to identify patients passively with waning
therapy, or other painful clinical events (such as a fall), would help
bring them back in for evaluation and thereby drive improvement
in their long-term outcomes. Wearables can objectively measure
many features which are influenced by participants’ chronic pain
such as activity, sleep, psychological health, and social participa-
tion. Adding objective measurements could improve the accuracy
of classification models and enable us to move toward a more
personalized therapy with a limited burden on both people with a
chronic pain and clinicians.

METHODS
Study design and baseline characteristics
Data were extracted as a sub-study of the prospective, multi-
center, international REALITY (Long-Term Real-World Outcomes
Study on Patients Implanted with a Neurostimulator) study
(NCT03876054; March 15, 2019). Prior to initiating the study,
Western Institutional Review Board approval was received for the
study sites and all participants were provided with written
informed consent. The study inclusion criteria for REALITY were
designed with few restrictions on the pain indication as allowed
by the regulatory bodies in each geographical region and
according to standard clinical practice to replicate the range of
complex participants that would be seen in everyday medical
practice. The sub-study was designed to compare changes in pain
and physical function, and behavioral markers before and
6 months after SCS implantation. The sub-study participants were
asked to wear a smartwatch and answer multiple PROs frequently
on a custom-designed application in addition to the regular in-
clinic visits. Study visits occurred at enrollment, baseline, three-
and six-month post-implantation.

Data collection
Demographics were collected at baseline and included the
duration of pain, work status, exercise level, and the number of
previous surgeries. PRO measures to assess pain intensity (NRS),
physical function and disability (ODI), emotional distress and
depression (PCS), and global health (PROMIS-29 and PGIC) were
collected at baseline and each follow-up study visit. All sub-study
participants were provided with an Apple ® Watch (Series 3) at
enrollment. Participants were prompted to enter NRS scores
collected on the investigational custom watch application
daily from baseline until six months after the implant. The watch
application was given access to HealthKit data and passively
collected several HealthKit metrics for activity, behavior, and

cardiac measures such as heart rate, heart rate variability, step
count, stand time, and distance walking/running. The subject
needed to access the watch application at least once a day. Once
participants selected their current pain level from 0 (no pain) to 10
(the worst pain imaginable) in the custom watch application, the
app then sent the NRS data to a secured cloud storage. The watch
application is an iOS-based application that pulls Healthkit data
from the Apple Watch. As soon as a user rates the pain intensity
on the UI, the app is activated, and physical activity and heart rate
data are collected in the background. The UI screen shows the
elapsed time from the start of the data collection to the subject.
The REALITY iPhone custom application is a companion to the
watch application and installation of the REALITY wearable
application on the iPhone will automatically install the watch
application on the paired Apple® Watch. The iPhone application is
an iOS-based application to collect behavioral data from subjects.
PROs such as PROMIS-29, ODI, PCS, and PHQ-9 were collected on a
regular basis through the phone application (3 times before
implant and once every month after the implant for a period of
6 months). PGIC was collected monthly for 6 months after the
implant.

Statistical analysis
The normality of PROs data was assessed using the Shapiro-Wilk
test. The two-sided Wilcoxon signed-rank test was used to
measure the significance of the change in PROs pre- versus
post-implant on median values. The two-sided Wilcoxon rank-sum
test for the independent non-normal sample was used to measure
the significance of compliance with completing PROs on the
phone and the watch application. P-values less than 0.05 are
considered as the significance level.

Data preprocessing and featurization
Apple® HealthKit provided features for step counts, stand time,
walking/running distance, sleep, heart rate and heart rate
variability, and the number of flights climbed. Post-processing of
the data showed that there are a high number of missing values
for sleep and flights climbed acquired through the HealthKit app.
We removed these measures for further analysis in this manu-
script. We used a threshold that was calculated based on the
number of data points recorded each day to discard days with
inadequate data points, or sparse data. Specifically, a threshold
was determined by using 5% of the median value derived from
the daily number of data points within the same pain level. We
removed data from days that had fewer data points than the
threshold. To balance feature weights and handle missing data for
low-resolution features on the Apple® Watch, we used a daily
window for data points with the same pain level in our analyses.
Statistical features such as maximum, minimum, sum, mean,
standard deviation, 25th, 75th, and 90th percentiles were extracted
from the daily windowed data. Furthermore, since there were
many missing data points in the heart rate variability (HRV) of the
Apple® HealthKit data and the inter-beat interval was not
accessible, heart rate was used to estimate this time interval in
order to calculate HRV in three different methods, 1) the root
mean square of successive inter-beat intervals of heartbeats
differences (RMSSD), 2) the standard deviation of the average
inter-beat intervals without artifacts (NN intervals) for every 5 min
over a 24 h-period of HRV recording (SDANN), and 3) mean of the
standard deviations of all the NN intervals for every 5 min over a
24 h-period of HRV recording (SDNNI)58.
Different data streams were used and aggregated for compre-

hensive analyses and to provide a deeper understanding of digital
biomarkers contributing to participant’s therapy outcomes. The
SCS device programming information was also pulled from the
patient’s controller application (Abbott, Plano, TX). However,
programming data from the patient controller application on
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the phone had missing values due to retention policies. Therefore,
we imputed programming data using the minimum value for each
programming feature. Additionally, we used publicly available
datasets for weather information (https://www.ncei.noaa.gov/)
based on the location of participants, moon phase (https://
www.timeanddate.com/), and the stock market data of three
popular stocks, NASDAQ Composite, DIJA, and S&P 500 (https://
finance.yahoo.com/). The stock market data was also imputed
when the market was closed, and the price on the last day was
used to fill the missing prices. The features with high correlation
(>0.90) were removed from the dataset and the remaining
features were used for developing machine learning models.

Predictive models using machine learning
The machine learning models were developed on Apple®

HealthKit data, programming data, and other features discussed
in the data collection and featurization section. Daily NRS values
and weekly scores for each PRO were used as the main output
variables for the predictive machine learning models.
Several ML techniques such as Logistic Regression59, Support

Vector Machine60, K-Nearest Neighbors61, Random Forest62, and
Catboost63 were implemented on the dataset for predicting daily
pain values as well as other PROs and their performance was
compared on the testing data, and random forest, a tree-based
model, provided the best performance and interpretability of
features (Supplementary Table 1). Additionally, SHAP (SHapley
Additive exPlanations)64,65 technique was used to calculate the
contribution of features. Of the total data available, 80% of the
data was used for training and 20% for the testing phase.
The random forest model was developed using digital biomarkers

collected from the Apple® Watch, programming data from the

patient controller, and other features such as weather data based on
the participant’s primary residence zip code. To increase the
robustness of predictions among the training sets, the random
forest model was trained 10 times using randomly selected 80% of
the input data available. The reported outcomes were then
averaged across all 10 different runs. Figure 4 shows the machine
learning pipeline for predicting pain and other PRO measurements.
A balanced number of training sets for each class of output

variable were considered and NRS and other PROs were grouped
into different classes. We categorized NRS values into three
groups: mild (NRS < 4), moderate (NRS ≥ 4 and NRS ≤ 6), and
severe (NRS > 6) pain; PROMIS-29 into two groups, physical
function, and social roles were grouped as responders (T-score ≥
40) and non-responders (T-score < 40), depression anxiety, fatigue,
sleep disturbance, and pain interference into two groups of
responders (T-score ≤ 60), and non-responders (T-score > 60);14,66

PCS into two groups of catastrophizing (total score ≥ 30), and non-
catastrophizing (total score < 30); PHQ-9 into two groups of
responders (total score ≤ 9) and non-responders (total score >
9)18, ODI into three classes of high responders (≤ 20), low
responders (> 20 & ≤ 40), and non-responders (> 40);67 PGIC, into
two groups of responders (Moderately better, Better, and A great
deal better) and non-responders (No change, Almost the same, A
little better, and Somewhat better). The synthetic minority
oversampling technique (SMOTE)68 was used to address imbal-
anced datasets for PROMIS-29 physical function and sleep
disturbance for building their predictive models.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Fig. 4 Feature engineering and predictive modeling pipeline. The patient-reported outcomes (PROs) of numerical rating scale (NRS),
patient-reported outcomes measurement information system 29 (PROMIS-29), pain catastrophizing scale (PCS), patient health questionnaire-9
(PHQ-9), Oswestry disability index (ODI), patient global impression of change (PGIC) are outputs of machine learning models.
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