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Harnessing the power of synthetic data in healthcare:
innovation, application, and privacy
Mauro Giuffrè 1,2✉ and Dennis L. Shung1

Data-driven decision-making in modern healthcare underpins innovation and predictive analytics in public health and clinical
research. Synthetic data has shown promise in finance and economics to improve risk assessment, portfolio optimization, and
algorithmic trading. However, higher stakes, potential liabilities, and healthcare practitioner distrust make clinical use of synthetic
data difficult. This paper explores the potential benefits and limitations of synthetic data in the healthcare analytics context. We
begin with real-world healthcare applications of synthetic data that informs government policy, enhance data privacy, and
augment datasets for predictive analytics. We then preview future applications of synthetic data in the emergent field of digital
twin technology. We explore the issues of data quality and data bias in synthetic data, which can limit applicability across different
applications in the clinical context, and privacy concerns stemming from data misuse and risk of re-identification. Finally, we
evaluate the role of regulatory agencies in promoting transparency and accountability and propose strategies for risk mitigation
such as Differential Privacy (DP) and a dataset chain of custody to maintain data integrity, traceability, and accountability. Synthetic
data can improve healthcare, but measures to protect patient well-being and maintain ethical standards are key to promote
responsible use.
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INTRODUCTION
Data is the lifeblood of modern healthcare bearing the potential
to improve patient care by powering clinical research, and
advancing public health initiatives. However, the promise of
real-world data to enable personalized medical care, to guide
policymaking, and to respond to rapidly changing conditions is
tempered by the significant challenges inherent in accessing
high-quality datasets. Synthetic data offers an attractive
alternative that addresses privacy concerns, streamlines data
utility agreements, protocol submissions, and ethics review
approvals, and decreases costs. In light of this potential,
synthetic data has been utilized in other fields such as finance
and economics to evaluate risk management, to optimize
complex portfolios, and to enhance algorithmic trading
particularly when access to real-world financial data is limited
or privacy concerns are raised by financial agencies1. However,
the use of synthetic clinical data to evaluate risk in clinical
decision-making is modulated by the following challenges: the
liability with modeling error is more consequential and the
stakes for patients and providers are high2,3. Healthcare
stakeholders are typically risk-averse and prefer precise
replication of the original healthcare records and have
decreased trust in clinical diagnosis derived from AI-based
prediction models using synthetic datasets3,4. In this article we
review the generation techniques, applications, and definitions
of synthetic data in the context of healthcare and explore
associated privacy issues. We highlight these concerns and
propose strategies to mitigate harm, aiming to harness the full
potential of synthetic data in advancing medical research and
patient care.

WHAT IS SYNTHETIC DATA?
Despite the interest in synthetic data, the field is still developing and
has no clear consensus regarding a unified definition. The absence
of a universally accepted definition of synthetic data leads to
inconsistent use of the term and interpretations that vary across
contexts, thereby affecting reproducibility and transparency in
research involving synthetic data. A working definition has been
recently proposed by the Royal Society and The Alan Turing
Institute, where synthetic data is “data that has been generated
using a purpose-built mathematical model or algorithm, with the
aim of solving a (set of) data science task(s)”5. This proposed
definition is particularly interesting when compared to the
alternative definitions emphasizing the creation of new data values
mirroring the original data’s statistical characteristics6. This new
working definition stresses the functional and intentional aspects of
synthetic data, shifting focus from mere replication of statistical
properties to the strategic use of these artificial constructs in
addressing complex scientific challenges. The main types of
synthetic data in clinical settings include tabular, time-series, or
text-based synthetic data. Additional categories also include
synthetic images, video, or audio simulation.

Synthetic data generation and types
The concept of using synthetic data, originating from
computer-based generation, to solve specific tasks is not novel.
This approach traces back to the foundational work of Stanislaw
Ulam and John von Neumann in the 1940s, focusing on Monte
Carlo simulation methods7. Modern synthetic data generators
range from deep learning structures like Generative Adversarial
Networks (GANs)8 and Variational Auto-encoders (VAEs)9, to
agent-based econometric models10, or stochastic differential
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equations simulating physical or economic systems11. The
growing interest in the medical use of synthetic data has led
companies to develop open source (e.g., Synthea)12 or
commercial (e.g., MDClone’s Synthetic Data Engine)13 tools
that can automate the generation of high-quality and clinically
realistic synthetic datasets.
Regardless of the methodology, the classification of synthetic

data is not rigid and often represents a spectrum that ranges from
partially to fully synthetic. Partially synthetic data incorporates
real-world data with synthetic data14. In healthcare, partially
synthetic data has been used as a proxy for real-world data to
protect patient privacy while still allowing researchers to conduct
analyses. For example, Loong et al.15 investigated the use of
partially synthetic data as a proxy for real-world data in large-scale
health surveys. The study reviewed inferential methods for
partially synthetic data, including the selection of high disclosure
risk variables for synthesis, specification of imputation models, and
identification of disclosure risk assessment. The results showed
that partially synthetic data can be used to protect patient privacy
while still allowing researchers to conduct analyses.
Fully synthetic data is created entirely de novo based on

predefined rules, models, or simulations16. It does not rely on or
represent real-world data but is instead designed to replicate the
kinds of complexity and variability that might be seen in real-
world scenarios. Other than data quality, fully synthetic data can
address the issue of data scarcity that may affect both linear and
non-linear models as well as the rapidly proliferating large
language models by creating supplementations to the available
datasets.

APPLICATIONS OF SYNTHETIC DATA IN HEALTHCARE
Synthetic data has the potential to estimate the benefit of
screening and healthcare policies, treatments, or clinical interven-
tions, augment machine learning algorithms (e.g., image classifi-
cation pipelines), pre-train machine learning models that can then
be fine-tuned for specific patient populations, and improve public
health models to predict outbreaks of infectious diseases17–27.
Building upon the potential uses of synthetic data mentioned

earlier, the study by Davis et al.28 serves as a tangible example of
how these datasets can be generated and utilized to investigate
healthcare policy implications, particularly in the context of
demographic aging. The authors explored the use of micro-
simulation techniques to create a synthesized dataset and test
policy options, focusing on the case of health service effects under
demographic aging. The study integrates multiple data sources,
including the New Zealand Health Survey (NZHS), Australian
Health Survey (ANHS), and National Primary Medical Care Survey
(NPMCS) to create a synthetic dataset for microsimulation in
healthcare policy analysis. The process involved imputation
techniques to enrich the representative sample from NZHS with
data from ANHS and NPMCS. Subsequently, the synthesized
dataset could be used to evaluate the impact of various policy
scenarios on health service outcomes, such as variations in
morbidity and disability, community support, and doctor behavior.
These scenarios are presented as binary alternatives, enabling the
exploration of both optimistic and pessimistic policy outcomes on
healthcare demand and resource utilization. Furthermore, the
authors analyzed the impact of demographic aging by re-
weighting the 2002 population to a 2021 projection based on
medium birth, mortality, and migration rates. The average number
of visits increased slightly from 6.7 to 6.9 per year for general
practitioner (GP) users. The researchers tested three components:
morbidity, social support, and practitioner behavior. For the 65+
age group, average GP visits doubled from 8.8 to 15.3 for higher
morbidity scenarios, while social support remained unaffected.
The authors also found that prescription rates for more interven-
tionist GPs were nearly double compared to least interventionist

colleagues. Referral rates for the most interventionist GPs were six
times higher than the most conservative (30% vs. 5%). The use of
synthetic data in this example is an approach that could allow
policymakers to make decisions on resource allocation after
analyzing a range of possible scenarios to gain insights into
healthcare demand and resource utilization.
The broad applicability and adaptability of synthetic datasets

extend beyond their use in policy simulation and across multiple
data modalities. A different but equally innovative approach to
using synthetic data is illustrated in a study by Julia et al. in 2020
leveraged a Natural Language Processing (NLP) model by training
it with synthetic datasets created from patient discharge reports29.
The model effectively targets mental health diseases to predict the
corresponding diagnosis and phenotypes. Electronic Health
Records (EHRs) provide NLP data that can be utilized for specifying
the critical aspects of a patient’s disease and anticipated
pathways. For patients with mental health issues, the EHRs are
typically based on an unstructured text that can be generated
synthetically for training language models to classify complex
diseases. Since mental health information is considered particu-
larly sensitive, the use of synthetic text mitigates the risk for
compromising sensitive information for individual patients.
Synthetic datasets can also be useful in clinical challenges that
involve large populations and epidemiological phenomenon, such
as in the COVID-19 pandemic. Synthetic datasets were useful in
improving the challenge of improving data scarcity in augmenting
data volume in imaging studies in the COVID-19 pandemic30. In
particular, Das et al.31 created conditional synthetic datasets for
chest CT scans to classify COVID-19 patients from a population of
normal individuals and pneumonia patients. The authors demon-
strated that using synthetic datasets could improve the accuracy
COVID-19 detection process compared to the original datasets.
The discussed studies illustrate the multifaceted potential and
adaptability of synthetic data in healthcare. Whether for probing
healthcare policy impacts in an aging demographic, enhancing
NLP models for mental health diagnoses, or bolstering COVID-19
detection in CT scans, synthetic datasets provide invaluable tools
for researchers. By bolstering the volume and variability of
available data, synthetic datasets facilitate more robust and
comprehensive analyses, thereby informing and improving
healthcare strategies, machine learning models, and disease
detection methods.

Synthetic data and digital twins
Synthetic data is also helpful for digital twins, which are virtual
replicas of physical systems or processes that can be used to
simulate and predict their behavior in real time. The use of digital
twins in healthcare is still underdeveloped, but synthetic data
could be used to create personalized models of patients, needed
to optimize treatment plans, and improve patient outcomes. One
area where digital twins are being increasingly used is in hospital
efficiency and operations, where synthetic data is used to create
realistic models that can simulate different scenarios and predict
outcomes. In the creation of a hospital digital twin, synthetic data
can be used to simulate different scenario, such as changes in
patient volume, staff level of training, and equipment availability,
thus hypothetically allowing administrators to optimize staffing
levels and resource allocation, reducing cost and improve patient
outcomes32,33. Synthetic data can also be used to create digital
twins of patients and their trajectories, which can be used to
optimize treatment plans and improve patient outcomes34–37. By
creating a personalized model of a patient, synthetic data can be
employed to simulate different treatment options and predict
their effectiveness, thus improving patient outcomes and possibly
reducing costs.
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Potential pitfalls: bias and interpretability
The incorporation of synthetic data in healthcare has been lauded
for its potential to circumvent the challenges surrounding data
scarcity and privacy. However, this potential carries concerns such
as the risk of bias amplification, low interpretability, and an
absence of robust methods for auditing data quality.
Bias is defined as a systematic discrepancy or persistent

deviation that originates during the data sampling or testing
process. This can lead to an overestimation or underestimation of
the risks associated with specific clinical outcomes. Consequently,
if the primary dataset used to generate synthetic data carries
inherent biases, the synthetic data could unintentionally magnify
these biases. This can result in misinformed or discriminatory
outcomes in medical research and practice, further perpetuating
existing inequalities and placing vulnerable populations at
heightened risk of harm and discrimination38,39. This bias could
originate from the population under study, the techniques
employed to collect data, or the methods used to derive the
new dataset40–42.
For instance, if a synthetic dataset is trained on a dataset of

facial images that majorly includes people from a certain ethnicity,
the synthetic images generated will naturally reflect this
imbalance, thus perpetuating the initial bias. This leads to AI
systems being “blind” to data beyond their training sets, unable to
accurately represent or make fair decisions about the unrepre-
sented categories. This is known as the “out-of-distribution” (OOD)
problem, a key challenge for AI systems working with synthetic
data43. Despite synthetic data may potentially solve this limitation
by oversampling under-represented characteristics, the danger
lies in the risk of overgeneralization and potential creation of non-
existent or incorrect correlations. This artificial augmentation may
in fact worsen the out-of-distribution issue, by falsely representing
certain demographics and their associated medical profiles.
Hence, it is crucial that the generation of synthetic data is
accompanied by scrutiny and consistent evaluations to minimize
these biases. Automatic AI-based methods can be used to address
the OOD problem, such as the incorporation of anomaly detection
techniques which can identify instances that deviate significantly
from the training data distribution, helping to detect and handle
OOD examples44. By flagging or rejecting such examples, AI
systems can avoid making unreliable predictions or decisions.
Bias can also be derived from the generative methods used to

derive the synthetic dataset. There are considerable challenges
associated with interpreting synthetic data generation models,
including the black-box nature of generation algorithms, limita-
tions in the evaluation metrics, and the potential for overfitting or
underfitting. This lack of transparency can erode trust in the
generated synthetic data, making it difficult for healthcare
professionals and researchers to make reliable conclusions or
informed decisions based on the data45. Explainable AI (XAI)
techniques play a crucial role in ensuring the interpretability and
transparency of AI systems, particularly when dealing with
synthetic data. XAI methods enable users to understand the
underlying mechanisms and decision-making processes of AI
models, providing insights into the input-output relationships and
the presence of biases46. In the context of healthcare, XAI
techniques such as SHAP (SHapley Additive exPlanations) have
been used to interpret the predictions made by machine learning
models, ensuring transparency and accountability in decision-
making47. XAI methods allow users to scrutinize and understand
the decisions made by AI systems, which is particularly crucial in
domains where decision-making should be transparent, such as
healthcare47. In the context of synthetic data, XAI techniques can
help assess if the synthetic data maintains the desired input-
output relationships similar to those found in real data46. By using
XAI methods, it becomes possible to identify biases and assess the
extent to which the synthetic data represents real-world scenarios.

However, it is important to note that XAI methods are not without
challenges. The interpretability of AI models and the explanations
provided by XAI techniques can be subjective and context-
dependent48. Different stakeholders may have different require-
ments and interpretations of what constitutes a satisfactory
explanation48. Additionally, the trade-off between accuracy and
interpretability should be carefully considered, as more interpre-
table models may sacrifice some level of predictive performance49.
A significant challenge that arises in the realm of synthetic data

pertains to the necessity for robust auditing methods, particularly
when XAI methods prove insufficient in evaluating the accuracy
and representativeness of the data. The crux of the issue lies in the
fact that conventional techniques used to generate synthetic data
may inadequately capture the rich complexity and diverse array of
real-world medical scenarios. Consequently, the development of
novel auditing methods becomes imperative to ensure the true
representativeness of synthetic data. One potential approach to
auditing methods involves leveraging advanced statistical techni-
ques and machine learning models to accurately assess the
similarity between synthetic and real-world datasets. Techniques
such as distribution matching50, correlation analysis51, and
dimensionality reduction52 can capture the intricate correlations
and patterns inherent in real-world medical scenarios, enhancing
the data’s representativeness.
Another strategy would involve creating domain-specific

evaluation metrics and benchmark datasets, particularly tailored
for healthcare applications. By curating benchmarks that accu-
rately represent a wide spectrum of real-world medical scenarios,
researchers and practitioners can effectively compare the
performance of various synthetic data generation techniques53.
It’s also important to involve patients and healthcare professionals
in the development and validation of synthetic data to ensure its
relevance and representation of real-world medical scenarios. By
involving human input, AI systems can learn from the expertize
and domain knowledge of humans to improve their performance.
This human-in-the-loop approach can help address the challenges
posed by synthetic data scenarios and enhance the reliability and
robustness of generative models54.
Lastly, transparency in the form of clear documentation of the

data generation process, potential limitations, and data biases can
help identify actual and potential errors. In balancing the benefits
of synthetic data with the challenges of bias, interpretability, and
the need to audit data quality, it becomes crucial to prioritize
patient well-being and maintain ethical standards in healthcare.

PRIVACY CONCERNS AND REGULATORY AGENCIES
Synthetic data poses serious risks to data privacy and protection.
As argued in a recent scoping review55, privacy is not something
to be considered on as an afterthought once a system has already
been designed and deployed; a “privacy-by-design” mindset
should proactively be applied, particularly when working with
clinical data. The key challenge is to ensure that synthetic data
derived from sensitive medical information does not unintention-
ally disclose identifiable details about individuals or lead to re-
identification, violating privacy and data protection principles.

Regulatory blind spots and proposals
At present, there is no clear legislation surrounding the use of
synthetic data56 and current data protection regulations such as
the General Data Protection Regulation (GDPR) and the Health
Insurance Portability and Accountability Act (HIPAA) are limited in
their ability to address all the potential risks associated with
synthetic data57. The two sets of regulations follow the principle
that all patients must give their consent before their data are
processed or shared, with exceptions when data processing is
mandatory, such as for payment or treatment purposes. The
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simplest method of privacy protection is to remove all fields that
could directly and uniquely identify an individual as recom-
mended by HIPAA, which identified 18 such items (e.g., name,
social security number, phone number). This was deemed
sufficient to de-identify data until the middle of the 2000s, and
following the HIPAA Privacy Rule 45 CFR 164, such data is no
longer considered Protected Health Information (PHI)58. The
underlying premise was that the disclosure did not pose a
material risk to privacy once these 18 types of information were
deleted, and the disclosing entity did not actually know that the
data in the de-identified dataset could be used to identify an
individual. However, it has recently become evident that a variety
of other data fields can be used to identify people59. GDPR
expands the scope of protected information beyond the definition
of PHI, using the term “personal data”, which relates to any
information related to an identified or identifiable natural
individual. While HIPAA is limited to information generated by
healthcare providers related to the medical treatment of patients,
the GDPR refers to a natural individual as an entity that can be
identified directly or indirectly by other indicators such as
physiological, genetic, mental, and cultural identity58. The GDPR
delineates two forms of data de-identification: pseudonymization
and anonymization. Data pseudonymized under GDPR, which is
still subject to its legal constraints, often resembles de-identified
data under HIPAA. Encrypted with a patient key, data could be de-
identified under HIPAA, but it would only be pseudonymized
under GDPR, and thus still subject to its regulations. Full
anonymization under GDPR is hard to achieve and offers minimal
analytical value. Using GDPR-protected data necessitates sub-
stantial legal compliance, especially for non-EU entities60. Identify-
ing what constitutes “identifiable” data is complicated by re-
identification potential. Recent studies have disproved the that
de-identification definitively prevents re-identification, citing
examples of predictability using accessible personal details. While
the challenges of synthetic data regulation are not confined to the
field of medical research alone, they also permeate into other
facets of healthcare, like the development of medical devices. The
work by Chen et al.61 sheds light on this broader perspective,
underscoring the crucial role of regulatory bodies in facilitating
the judicious application of synthetic data in healthcare,
specifically within the arena of medical devices incorporating
artificial intelligence and machine learning algorithms. The
Artificial Intelligence Synthetic Data for Medical Devices (AISAMD)
program, a joint venture between the US Food and Drug
Administration (FDA) and Standards and Technology (NIST),
endeavors to create a framework for the utilization of synthetic
data for evaluating such medical devices62. This initiative under-
scores the potential of synthetic data in machine learning for
medical applications while stressing the need for stringent
validation methods and guidelines for responsible usage in
regulatory submissions. This regulation of synthetic data, bears
implications not just for patient privacy and data security, but also
for the advancement of technological innovation in healthcare.
However, incorporating the ethical and legal challenges63

associated with synthetic data sharing and usage often straddle
the definitions set by existing data protection regulations, thereby
creating a regulatory blind spot. This loophole could potentially be
exploited by malicious entities, leading to discriminatory use of
synthetic data and exacerbating health disparities, undermining
efforts to improve patient outcomes. Given this regulatory
ambiguity, it behooves systems to revise current data protection
legislation with precise definitions and more stringent controls for
synthetic data. The proposed measures include updating data
protection regulations to encompass synthetic data, establishing a
centralized regulatory body for oversight, and promoting trans-
parency and accountability in the development and application of
synthetic data. Additionally, it is equally important that future
research continues to explore potential privacy risks associated

with synthetic data and devise strategies for mitigating these risks.
This research should also scrutinize the technical, social, and
ethical implications of synthetic data usage in healthcare, offering
a holistic examination of this emergent field.

The opportunity of differential privacy. Brauneck et al.63 recently
reviewed privacy-enhancing technologies (PETs) from a legal
standpoint to engage in a thoughtful discussion of how GDPR
legislation in the European Union (EU) relates to commonly used
PETs including federated learning (FL), secure multiparty compu-
tation (SMPC), and differential privacy (DP). DP a concept first
proposed in 2006 by Dwork et al.64, is gaining broad acceptance as
a solid, practical, and trustworthy privacy framework and its
application has been also explored with synthetic data65–67. DP is a
precise mathematical constraint that ensures the privacy of
individual pieces of information in a database while answering
queries about the aggregate. The concept of DP is based on the
notion of adding noise to the data to protect the privacy of
individuals. This noise introduction is governed by two parameters
—epsilon and delta. Epsilon is a parameter that controls the
amount of noise added to the data by varying the privacy budget,
which represents the maximum amount of privacy loss that can be
tolerated. A smaller value of epsilon indicates a higher level of
privacy protection, but it also results in a higher level of noise in
the data. Delta is a parameter that controls the probability of a
privacy breach. It is a measure of the probability that the privacy of
an individual is compromised. A smaller value of delta indicates a
lower likelihood of a privacy breach but also results in higher noise
in the data. The choice of the Epsilon parameter to achieve a
balance between privacy and statistical utility may result difficult,
with researchers proposing the institution of an “Epsilon Registry”
to help make informed implementation choices68. As argued by
Ficek et al.69 despite its robust protections, DP has not yet seen
widespread adoption in the health sector. The focus so far has
been primarily on creating predictive algorithms, sanitized data
publishing, and training machine learning algorithms, particularly
in the areas of genomics, neuroimaging, and personal device-
derived health data streams. However, significant gaps are crucial
for epidemiology and clinical research, especially for explanatory
modeling and statistical inference. Another challenge is the
privacy-utility trade-off; hence, experimental deployment and
real-world case studies are required to understand this better.
Bridging this gap between the theoretical robustness of

differential privacy and its practical implementation in the health
sector, groundbreaking efforts such as the one by Jordon et al.70

have started to emerge, utilizing differential privacy in the context
of synthetic data generation. Their novel approach incorporates a
modification to the Private Aggregation of Teacher Ensembles
(PATE) methodology, incorporating it into GANs for the creation of
privacy-preserving synthetic data. Named PATE-GAN, this system
utilizes a generator network for synthetic data production from
random noise, which is then appraised by a discriminator network.
This innovative approach replaces the single discriminator net-
work with multiple teacher networks. Each network is trained on a
separate segment of the initial dataset and provides feedback to
the generator. This aggregation ensures a balance in model
influence and upholds robust differential privacy. PATE-GAN has
proven superior to conventional, yet outdated benchmarks, such
as Differential Private-GAN (DP-GAN)71 and excels in generating
synthetic data that closely resemble the original dataset. To
evaluate the similarity of synthetic samples with the original data,
the authors propose a new metric, termed “synthetic similarity.”
This cutting-edge technique offers enhanced performance and a
unique evaluation metric, making it adaptable across a variety of
datasets and applications. In essence, PATE-GAN constitutes a
significant stride forward in the realms of machine learning and
privacy. In summary, PATE-GAN, through its innovative approach
to differential privacy and the introduction of a unique “synthetic
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Fig. 1 Highlights on Synthetic Data and their application in healthcare research, reviewing bias, quality, and privacy concerns. Despite
the first attempt to generate synthetic data dates bate to the 1940s, current state of the art methods use Generative Adversarial Networks
(GANs) or Variational Auto-encoders (VAEs). In terms of classification, synthetic data encompasses a spectrum that ranges from partially to fully
synthetic. While partially synthetic incorporates real-world data, fully synthetic data are generated de novo. As reported in the text, synthetic
data can have several applications in healthcare research, including imaging, infective disease prevention and outbreaks prediction, and
digital twins. However, the lack of robust methods to audit the perpetration of bias, accuracy, and representativeness of real-world medical
scenarios, has severely limited interpretability, use and trust from the healthcare sector. One of the greatest concerns related to synthetic data
involves patients’ privacy. Current regulations from General Data Protection Regulation (GDPR) and the Health Insurance Portability and
Accountability Act (HIPAA) are not sufficient or up-to-date to cover possible leakage of patients’ information from synthetic dataset. In this
context, differential privacy may result valuable, but its usage has been limited by the privacy-utility trade-off. The definition of a clear chain of
custody, can ensure integrity, security, and data privacy throughout data lifecycle providing transparency, traceability, and accountability at
each stage.
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similarity” metric, represents a major advancement in the
intersection of machine learning and data privacy, enabling the
production of high-quality synthetic data that balances privacy
protection with utility across various datasets and applications.
In conclusion, as privacy-enhancing technologies evolve to

meet the challenges posed by data privacy regulations and the
need for practical implementation in health research, differential
privacy emerges as a robust, reliable, and promising approach.
Despite its current limitations, particularly in the context of
explanatory modeling and statistical inference, its adoption in
cutting-edge frameworks such as PATE-GAN highlights its
versatility and potential. PATE-GAN’s innovative approach, the
introduction of the “synthetic similarity” metric, and the ability to
generate high-fidelity synthetic data show a significant advance-
ment in the delicate balance between data privacy and utility.

Establishing a digital chain-of-custody
Despite the promise of DP to mitigate risk, it is not a panacea. The
healthcare community must consider safeguards on the diffusion
of synthetic datasets by developing and implementing appro-
priate regulations. For example, it is crucial to establish a robust
digital chain of custody to ensure the integrity, security, and
privacy of data throughout its lifecycle and it must encompass
data sharing, storing, and disposal to provide transparency,
traceability, and accountability at each stage.
The application of a digital chain of custody in data sharing is

crucial for ensuring the integrity, security, and accountability of
shared data. The digital chain of custody refers to the process and
documentation that tracks the custody and movement of data from
its collection to its final destination72,73. Digital chain of custody
applications and software have been developed to document and
track digital evidence, ensuring its integrity and providing a verifiable
record of its custody72,73. Blockchain technology has also been
utilized to enhance the chain of custody in data sharing. Blockchain-
based systems provide a decentralized and immutable ledger that
records the transactions and movements of data74. For example,
Wang et al.75 proposed a chain-of-custody system is needed to
document the sequence of custody of sensitive big data. They
designed a prototype of a block-chain big-data sharing system (BBS),
where a user can register a dataset with BBS for sharing. To acquire
the shared file an authenticated and authorized recipient must use
transactions and interacts with BBS across four stages including file
transfer request, encrypted data transfer, file key retrieval, and file
decryption. Each transaction is recorded in the ledger and serve as
chain of custody to document the trail of the data.
This example, among others, has been previously employed to

share real-world data, but there is no current process in place for
synthetic datasets. The digital chain of custody should begin with
generating synthetic data, outlining the methodologies and
techniques used to create the data, as well as any privacy-
preserving measures implemented, such as differential privacy.
This information should be documented and accompany the
synthetic data as it moves through various stages of its lifecycle.
During data sharing, a secure and controlled process should be
established for transferring synthetic data between different
parties, such as healthcare providers, researchers, and policy-
makers. This process should include the use of encryption, secure
authentication, and access control mechanisms to protect the data
from unauthorized access or tampering. Furthermore, each data-
sharing transaction should be logged, detailing the data transfer’s
sender, receiver, timestamp, and purpose. For data storage, the
chain of custody should ensure that synthetic data is securely
stored using encryption and access control mechanisms to protect
it from unauthorized access, modification, or leakage. Data storage
locations and associated security measures should be documented
and regularly audited to confirm compliance with established data
protection standards and regulations. Finally, when it comes to

data disposal, a clear protocol should be in place for the secure
deletion or destruction of synthetic data once it is no longer
needed. It involves using secure erasure methods to prevent the
recovery of deleted data and maintaining disposal records that
detail the time, method, and reason for data destruction.
In addition to these measures, it is vital to implement

regulations that mandate a comprehensive research proposal
evaluation before granting access to synthetic data. It ensures that
the research plan is robust, genuine, and has a clear data analysis
objective. Furthermore, researchers should be required to provide
timed-release updates on the progress of their analysis and usage
of the synthetic data, fostering transparency and allowing for
better monitoring and evaluation of the data’s impact. Imple-
menting these regulatory requirements makes it possible to
mitigate potential risks associated with the misuse of synthetic
data while promoting responsible research practices and max-
imizing the benefits of synthetic data in healthcare.

DISCUSSION & CONCLUSION
AI applications in medicine can improve research capabilities and
create cost-effective solutions but require careful consideration of
potential biases in synthetic data to ensure accurate representation
and adequate safeguards for privacy such as differential privacy and
a digital chain of custody. As summarized by Fig. 1, the creation and
application of synthetic data should be tailored to specific use cases.
In healthcare, significant privacy concerns underscore the need for
the implementation of privacy-preserving techniques to protect
sensitive medical data. We propose the concept of a digital chain of
custody for synthetic data to ensure data integrity, security, and
confidentiality throughout its lifecycle. To navigate these intricacies,
collaborative efforts between the healthcare community and
regulatory agencies are imperative in developing and implementing
laws and regulations governing synthetic data. Moreover, to
establish comprehensive guidelines and best practices for the
responsible use of synthetic data in medicine and healthcare, it is
crucial for healthcare providers, researchers, technology developers,
and patients to be actively engaged and collaboratively involved.
In conclusion, while synthetic data possess the potential to

revolutionize healthcare by offering improved research cap-
abilities and cost-effective solutions, overcoming the challenges
related to biased information, data quality concerns, and
potential privacy risks are of paramount importance. This calls
for the healthcare community’s active participation in discus-
sions and collaborations with regulatory bodies, technology
developers, and patients, thus fostering a proactive approach to
harness the transformative power of synthetic data. Such a
process will prioritize patient well-being and uphold ethical
standards in medicine and healthcare.
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