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Development and prospective validation of postoperative pain
prediction from preoperative EHR data using attention-based
set embeddings
Ran Liu 1,2,5, Rodrigo Gutiérrez1,2,5, Rory V. Mather1,2,3, Tom A. D. Stone 1,2, Laura A. Santa Cruz Mercado 1,2,4,
Kishore Bharadwaj 1,2, Jasmine Johnson1,2, Proloy Das1,2, Gustavo Balanza 1,2, Ekenedilichukwu Uwanaka 1,2, Justin Sydloski 1,2,
Andrew Chen1,2, Mackenzie Hagood1,2, Edward A. Bittner1,2 and Patrick L. Purdon 1,2✉

Preoperative knowledge of expected postoperative pain can help guide perioperative pain management and focus interventions
on patients with the greatest risk of acute pain. However, current methods for predicting postoperative pain require patient and
clinician input or laborious manual chart review and often do not achieve sufficient performance. We use routinely collected
electronic health record data from a multicenter dataset of 234,274 adult non-cardiac surgical patients to develop a machine
learning method which predicts maximum pain scores on the day of surgery and four subsequent days and validate this method in
a prospective cohort. Our method, POPS, is fully automated and relies only on data available prior to surgery, allowing application in
all patients scheduled for or considering surgery. Here we report that POPS achieves state-of-the-art performance and outperforms
clinician predictions on all postoperative days when predicting maximum pain on the 0–10 NRS in prospective validation, though
with degraded calibration. POPS is interpretable, identifying comorbidities that significantly contribute to postoperative pain based
on patient-specific context, which can assist clinicians in mitigating cases of acute pain.
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INTRODUCTION
Of the 51 million patients who undergo surgery each year in the
United States1, as many as 80% experience acute postoperative
pain2,3, and a majority report inadequate pain relief3. Almost 50%
of patients report severe pain in the first 24 h of surgery4.
Uncontrolled pain hinders postsurgical recovery, prolonging
hospital stays, and increases mortality and the likelihood of
chronic pain5,6. On the other hand, acute pain is commonly
managed with opioids, prescribed to over 80% of surgical
patients1; the risk of opioid use disorder, a present public health
crisis7,8, increases with dosage and duration1. The American Pain
Society recommends that clinicians individualize courses of
treatment for each patient, yet existing assessments are heavily
subjective, and many recommendations lack strong evidence9.
Computational prediction of postoperative pain can provide
quantitative guidance for perioperative pain management, and
focus interventions on cases at greatest risk of acute pain
Existing literature on predicting postoperative pain is somewhat

sparse and limited in scope. Only a handful of studies have
attempted to compare pain across different procedure types4.
Previous studies have used logistic regression to predict the
likelihood of uncontrolled pain in relatively small cohorts of
ambulatory10 and elective11 surgical cases, achieving moderate
levels of performance. However, a major limitation of these studies
is that they rely upon physician evaluations and patient surveys of
anticipated pain12,13, and thus require human input and reflect the
results of human prediction of postoperative pain more so than
computational prediction.
In this study, we present a machine learning method, the

Personalized post-Operative Pain prediction Score (POPS), for

predicting postoperative pain in a wide range of surgeries using
information about patients and procedures from commonly
recorded preoperative electronic health record (EHR) data. We
used neural networks to compute attention-based14,15 set
embeddings from CPT and ICD-10 codes and use these
embeddings in conjunction with structured EHR data to predict
postoperative maximum pain scores on the day of surgery and
four subsequent days. We developed POPS in a large, multicenter
dataset. Furthermore, we validated the model in a prospective
cohort and compared its performance against clinicians’
predictions.

RESULTS
Our model consists of a neural network comprised of an
embedding layer, multi-head self-attention layer15, and a densely
connected feed-forward network (Fig. 1). For each patient, the
network takes as input their set of CPT and ICD-10 codes, and
computes a 256-dimensional vector, which we refer to as the set
embedding. This set embedding is concatenated with a vector of
demographic and preoperative variables and is then passed to the
feed-forward network, which predicts the maximum pain score on
the day of surgery and four subsequent postoperative days. We
developed the prediction model using a multicenter retrospective
dataset, and prospectively evaluated its performance. We also
collected clinician predictions of postoperative pain for surgical
cases in the prospective cohort and compared the performance of
our model’s predictions against clinician predictions.
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Study cohorts and datasets
Our retrospective dataset consists of preoperative electronic
health record data collected for 234,274 adult patients who
underwent surgery between April 1st, 2016, and March 31st, 2020,
across four hospitals: two quaternary care academic medical
centers, Massachusetts General Hospital (MGH) and Brigham and
Women’s Hospital (BWH], and two community hospitals, North
Shore Medical Center (NSMC) and Newton Wellesley Hospital
(NWH). Baseline demographics of the retrospective cohort
encompassing surgical patients from these four hospitals are
presented in Table 1. We included all adult non-cardiac surgical
cases with general anesthesia (inpatient, outpatient, urgent,
emergent, elective) and at least one recorded pain score on the
day of surgery and four subsequent days. Of the patients in our
retrospective study cohort, 130,713 (55.79%) were women;
192,664 (82.24%) were White non-Hispanic. The mean age was
55.9 years (SD 17.0). Orthopedic, general, urological, gynecologi-
cal, and thoracic surgeries were the most common, comprising a
combined 66.8% of surgeries. In the retrospective cohort, 40
patients were excluded because they died during surgery, and
15,853 were excluded because they were admitted to the
intensive care unit immediately after surgery.
We conducted a prospective study at Massachusetts General

Hospital, in which 365 adult non-cardiac surgical patients were
enrolled between February 15th, 2023, and March 20th, 2023.
Baseline demographics of the prospective cohort are presented in
Table 2. 183 (50.1%) were women (as a biological attribute – sex);
297 (81.4%) were White non-Hispanic. The mean age was 59.6
years (SD 16.0). General, neurosurgery, orthopedic, and thoracic
surgeries were the most common, comprising a combined 77.8%
of surgeries. Clinicians from the anesthesia team were surveyed at
the beginning of each case, and their predictions on expected
postoperative pain recorded (Supplementary Methods). These
outcomes were also predicted using our model developed on the
retrospective dataset. Only inpatients were included in the
prospective study to allow evaluation of maximum pain score

outcomes beyond the day of surgery. The number of patients with
at least one recorded pain score, with moderate or severe pain,
and the number of patients excluded from evaluation on each
postoperative day is given in Supplementary Table 1. In the
prospective cohort, 20 patients were excluded because they were
admitted to the intensive care unit immediately after surgery;
none died during surgery.
Pain scores in the EHR were recorded numerically, or in text

form. In our retrospective cohort, 222,374 out of 234,274 patients
(94.9%) have at least one numeric pain score; 91,270 (39.0%) have
pain strings. Overall, pain strings comprise 432,042 out of
4,925,886 recorded pain scores (8.8%). In our prospective cohort,
all 365 patients (100%) have numeric pain scores; 130 (35.6%)
have pain strings, and pain strings comprise 541 out of 11,100
recorded pain scores (4.9%). The distribution of recorded pain
scores by type is shown in Supplementary Fig. 1.
The most frequently observed CPT and ICD-10 codes in our

study cohorts are reported in Supplementary Tables 2–5. The
overall distribution of pain outcomes in the retrospective and
prospective cohorts is shown in Supplementary Fig. 2. In the
retrospective cohort, the mean maximum pain score on each day
was 5.2 on Postoperative Day 0, 5.3 on Postoperative Day 1, 5.5 on
Postoperative Day 2, 5.2 on Postoperative Day 3, and 5.2 on
Postoperative Day 4. In the prospective cohort, the mean
maximum pain score on each day was 6.6 on Postoperative Day
0, 6.4 on Postoperative Day 1, 6.1 on Postoperative Day 2, 5.7 on
Postoperative Day 3, and 5.5 on Postoperative Day 4. The
retrospective and prospective cohorts significantly differ in
distributions of outcomes on postoperative days 0–2.
The distribution of the number of pain score observations per

patient on each postoperative day is shown in Supplementary Fig.
3. Outcomes are only available for patients who are present in the
hospital on each postoperative day, and so on later days,
outcomes are conditioned on patients’ length of hospital stay.
The distribution of outcomes for patients grouped by the day of
their last observed pain score is shown in Supplementary Fig. 4.

Age:    41
Sex:    Female
Weight:   65 kg
Height:   1.59m
Race:    White
Preop Pain:   5
Surgery Service:  Orthopedic Surgery
Surgery Urgency:  Elective
Ambulatory status: Inpatient

Demographics and preoperative data

Mean-pooling

(130, 256)

(43)

(256)

(299)

(5)

Concatenate

(130)

Procedure and diagnosis codes

CPT 22552 Arthrodesis, anterior discectomy and interbody fusion
ICD G89.4 Chronic pain syndrome
ICD M43.20 Spinal fusion

(130, 256)

Embedding

Multi-head attention

Feed-forward

Predicted max pain score

Fig. 1 Structure of prediction model. Dimensionality of inputs, outputs, and intermediate representations are indicated in parentheses.
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Average pain scores within each subgroup are decreasing, but
patients with longer stays had higher average pain trajectories.
Supplementary Tables 6–10 report baseline statistics for the
subgroups of patients not excluded on each postoperative day.
Patients present on later days were on average older, had more
comorbidities, higher ASA scores, and were less likely to be opioid
naive.

Retrospective prediction of postoperative pain
In our retrospective cohort, our model achieves moderate
performance in predicting moderate (Fig. 2A, defined as a
maximal pain score above 4 on the 0–10 numeric rating scale

(NRS)16) and severe pain (Fig. 2B, defined as a maximal pain score
above 6 on the NRS). Area under the receiver operating curve
(AUC) ranged between 0.73 and 0.79 on postoperative days 0
through 4 for predictions of moderate pain, and between 0.72 and
0.76 for predictions of severe pain. We also computed perfor-
mance within each of the 10 most frequent surgical services
(Supplementary Tables 11–14). Similar performance was achieved
across services, with best performance in Otolaryngology and
Neurosurgery, and slightly poorer performance in Urology and
Gynecology.
When predicting expected maximum pain on the NRS as a

continuous variable, our model yields a root mean squared error

Table 1. Baseline statistics for the retrospective and prospective cohort.

Statistic Retrospective (%) Prospective (%) p-value

Total patients 234,274 (100.0) 365 (100.00)

MGH 104,972 (44.81) 365 (100.00)

BWH 85,524 (36.51) 0 (0.00)

NSMC 30,720 (13.11) 0 (0.00)

NWH 13,058 (5.57) 0 (0.00)

Demographics

Age, mean (SD) years 55.9 (17.0) 59.6 (16.0) <0.001

Sex 0.0934

Male 103,554 (44.20) 182 (49.86)

Female 130,713 (55.79) 183 (50.14)

Race 0.212

White 192,664 (82.24) 297 (81.37)

Black 11,822 (5.05) 13 (3.56)

Hispanic 9301 (3.97) 21 (5.75)

Asian 7173 (3.06) 9 (2.47)

Other 13,314 (5.68) 25 (6.85)

Height, mean (SD) m 1.69 (0.11) 1.69 (0.12) 0.373

Weight, mean (SD) kg 81.42 (24.46) 83.38 (22.95) 0.105

Opioid naivety 163,971 (69.99) 236 (64.66) 0.0304

Clinical characteristics

ASA <0.001

I 23,133 (9.87) 10 (2.74)

II 113,778 (48.57) 132 (36.16)

III 90,509 (38.63) 215 (58.90)

IV 6483 (2.77) 7 (1.92)

Ambulatory surgery 95,574 (40.80) 0 (0.00)

Inpatient surgery 138,696 (59.20) 365 (100.00)

Elixhauser comorbidity index, median (IQR) 0.0 (0.0, 5.0) 0.0 (0.0, 5.0) 0.549

Surgical service <0.001

Orthopedic Surgery 57,027 (24.34) 62 (16.99)

General Surgery 35,023 (14.95) 104 (28.49)

Urology 24,500 (10.46) 32 (8.77)

Gynecology 22,316 (9.53) 10 (2.74)

Thoracic Surgery 17,586 (7.51) 55 (15.07)

Neurosurgery 16,596 (7.08) 63 (17.26)

Surgical Oncology 13,715 (5.85) 0 (0.00)

Other 47,511 (20.28) 39 (10.68)

MGH Massachusetts General Hospital, BWH Brigham and Women’s Hospital, NSMC North Shore Medical Center, NWH Newton-Wellesley Hospital, ASA American
Society of Anesthesiologists Physical Status Classification System.
P values are reported for two-sided tests of differences in distributions of variables between the retrospective and prospective cohorts. Differences in
distributions of categorical variables (sex, race, opioid naivety, ASA status, surgical service) between the retrospective and prospective cohorts were assessed
using the Chi-squared test. Differences in distributions of normally distributed random variables (age, height, weight) were assessed using the t-test.
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(RMSE) between 2.39 and 2.63 points (Fig. 2C), and a Pearson
correlation coefficient between 0.49 and 0.58 (Fig. 2D). The best
predictive performance across all reported measures was achieved
on postoperative day 1. Good calibration in the retrospective
cohort was observed for all predictions (Supplementary Fig. 5).
For each hospital in the retrospective cohort, we also trained

models using data from only one hospital and evaluated
predictions of postoperative pain for those models on test data
from the remaining three sites (Supplementary Tables 15–18). We
find that our fitted models are relatively robust when predicting
pain for patients from sites unseen during training with little to no
degradation of performance on most postoperative days.

Prospective prediction of postoperative pain
In our prospective cohort, POPS predicts postoperative pain with
performance comparable to that achieved in the retrospective
data, though with poorer performance on postoperative days 0
and 1. AUCs ranged from 0.67 to 0.76 on postoperative days 0
through 4 for predictions of moderate pain (Fig. 3A–E), and
between 0.64 and 0.79 (Fig. 3F–J) for predictions of severe pain.
When predicting expected maximum pain on the NRS as a
continuous variable, POPS achieves RMSEs of 2.19 to 2.53 points
(Fig. 3K) and correlations between 0.31 and 0.54 (Fig. 3L).
Calibration plots showed some deviation between expected and
observed postoperative pain levels for predictions made by POPS
in the prospective cohort (Supplementary Fig. 6), and poor
calibration for predictions made by clinicians (Supplementary

Fig. 7). Supplementary Tables 19–22 report observed/expected
ratios for binarized outcomes, and calibration intercept and slope.
We also evaluated the performance of all single-center models on
our prospective cohort (Supplementary Tables 23–26). We also
computed the total dosage of intraoperative opioid administration
in both cohorts. Patients in the prospective cohort received more
hydromorphone on average than patients in the retrospective
cohort (Supplementary Fig. 8).

POPS outperforms clinicians at predicting postoperative pain
Clinicians surveyed at the beginning of each surgical case in the
prospective cohort achieved AUCs of 0.59 to 0.66 on post-
operative days 0 through 4 for predictions of moderate pain
(Fig. 3A–E) and between 0.58 and 0.63 (Fig. 3F–J) for predictions of
severe pain. POPS achieved significantly better AUCs on post-
operative days 2–4. When predicting expected maximum pain on
the NRS as a continuous variable, clinician predictions have RMSEs
of 2.87 to 3.56 points (Fig. 3K) and correlations between 0.18 and
0.27 (Fig. 3L). POPS achieved significantly better performance than
clinicians by RMSE and correlation on all days.

Hypothetical example patients derived from clinical
knowledge
We defined three hypothetical example patients with demo-
graphic information, preoperative variables, and CPT and ICD
codes required to compute the POPS (Table 3). Patient

Table 2. Example patients derived from clinical gestalt and resulting model predictions of postoperative pain.

Characteristic Patient 1 Patient 2 Patient 3

Age (years) 41 74 58

Sex Female Male Female

Weight (kg) 65 74 79

Height (m) 1.59 1.68 1.55

Race White Black Asian

Preop Pain Score 5 0 2

Surgery Service Orthopedic Surgery Urology Otolaryngology

Surgery Urgency Elective Elective Non-urgent

Inpatient/Outpatient Inpatient Outpatient Inpatient

Surgery (CPT) Arthrodesis, anterior discectomy and
interbody fusion (22552)

Cystoscopy (52260) Surgical nasal/sinus endoscopy
(31255)

Chronic pain (G89.4) X

Tobacco use (Z72.0) X X

Fibromyalgia (M79.7) X

Sleep disorder (G47.9) X

Depression (F32.A) X

Spinal fusion (M43.20) X

Opioid dependence (F11.29) X

Hypercholesterolemia (E78.00) X

Hypertension (I10) X

Cyst and mucocele of nose and nasal sinus
(J34.1)

X

Hypothyroidism (E03.9) X

Predicted Max Pain (Postop Day 0) 7.93 (7.09, 8.64) 2.51 (1.61, 3.45) 6.38 (5.58, 7.14)

Predicted Max Pain (Postop Day 1) 7.88 (7.10, 8.68) 0.67 (0.00, 1.59) 5.69 (4.86, 6.57)

Predicted Max Pain (Postop Day 2) 7.37 (6.63, 8.14) 1.17 (0.17, 2.19) 5.25 (4.48, 6.13)

Predicted Max Pain (Postop Day 3) 7.19 (6.35, 8.01) 0.92 (0.00, 1.96) 5.13 (4.27, 6.02)

Predicted Max Pain (Postop Day 4) 7.17 (6.17, 8.12) 1.27 (0.27, 2.29) 4.96 (4.07, 5.90)

CPT Current Procedural Terminology.
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information was outlined by an anesthesiologist who aimed to
characterize three archetypical subjects with different expected
postoperative pain profiles based on existing clinical knowledge.
These example patients illustrate the type of data required to
compute POPS and serve as an assessment of face validity.
Patient 1 represents a patient with many known risk factors for

postoperative pain undergoing a relatively painful spinal surgery.
Accordingly, POPS predicts high expected maximum NRS pain
scores ranging from 7.93 on the day of surgery to 7.17 on the
fourth postoperative day.
Patient 2 has no known risk factors and is undergoing a minor

elective urological procedure. POPS predicts a maximum pain
score of 2.51 on the day of the surgery, then a maximum pain
score of around 1 on all subsequent days.
Patient 3 represents an intermediate example with fewer risk

factors than Patient 1. POPS predicts a maximum pain score of
6.38 on the day of surgery, decreasing to 4.96 by the fourth
postoperative day.

Attention weights identify comorbidities which impact pain
Table 4 reports attention weights computed by the multi-head
self-attention layer of the neural network, along with the
estimated effect of each CPT or ICD-10 code on the predicted
postoperative pain of each patient and bootstrapped confidence
intervals. Attention weights indicate the relative importance of
each code in terms of contribution to predicted postoperative
pain levels; Patient 1’s diagnosis of chronic pain syndrome is
identified by POPS as their most impactful comorbidity, associated
with an increase of 0.36 to 0.42 points on the NRS in expected
maximum pain score on each postoperative day compared to an
identical patient without that specific diagnosis. The next most
impactful codes are their spinal fusion, for which they are
undergoing surgery, and the CPT for their arthrodesis with
discectomy, followed by their history of tobacco use and sleep
disorder, with similar attention weights for all four indicating that
these codes are roughly equal in importance. In Patient 2, their
most important comorbidity is their history of opioid dependence,
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Fig. 2 Performance metrics for prediction of postoperative pain in the retrospective cohort. Performance was assessed by AUC for NRS > 4
(A) and >6 (B), RMSE (C), and correlation (D) for POPS, along with a table of metrics (E). Shaded areas, error bars, and values represent
±1 standard deviation. Colors indicate different postoperative days. Boxplots (C, D) represent the median (central line), interquartile range
(bounds of box) and 1 standard deviation (whiskers). RMSE Root-mean square error, NRS Numeric Rating Scale, AUC area under the curve.
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though the direction of effect is not significantly known, whereas
their least important comorbidities are hypercholesterolemia and
hypertension. In Patient 3, their diagnosis of fibromyalgia is
identified by attention weights as their most impactful comorbid-
ity, associated with significant increases in expected maximum
pain score on postoperative days 0 through 3 of 0.26 to 0.28
points.

DISCUSSION
In this study, we present POPS, a method for computational
prediction of postoperative pain score using routinely recorded
preoperative EHR data. We developed our model using a large,
multicenter dataset which includes two quaternary care academic
medical centers, MGH and BWH, and two community hospitals,
NSMC and NWH. We demonstrated its predictive performance and
showed that it can reasonably generalize between hospitals within
our retrospective cohort.
We prospectively validated POPS at MGH and compared our

model’s predictions of postoperative pain to those made by
clinicians. In predicting moderate or severe pain, our model
performed similarly to clinicians on postoperative days 0 and 1,
and outperformed clinicians by postoperative days 2–4. In
predicting pain on the 0–10 NRS, our model outperformed
clinicians on all days.

POPS relies solely upon variables from the electronic health
record which are available prior to surgery without the need for
clinician assessment, manual chart review, or patient input, and
thus can be potentially applied in all patients scheduled for or
considering surgery without increasing clinician workload.
Predictions provided by our model may help clinicians improve

perioperative pain management. Knowledge of expected post-
operative pain levels provided by POPS could be used by the
anesthesia care team to identify patients who could benefit from a
more detailed pre-operative pain management workup, such as
obtaining a more detailed history of past opioid usage, chronic
pain diagnoses, or other predictors of increased postoperative
pain. It could also be used to inform analgesic strategies within
the operating room, such as the use of long-acting opioids during
surgery so that intraoperative analgesic coverage extends into
postoperative recovery17, or the use of regional analgesia18,19.
Nonetheless, numerical pain scores do not perfectly reflect the
need for pain management and should not be the sole basis for
clinician decision-making20,21. In that sense, POPS is a tool that
may aid planning a priori but must be combined with clinician
evaluations of each individual patient.
Information provided by POPS may also help establish realistic

expectations in terms of postoperative pain with patients22, and
facilitate improved joint decision making by patients and clinicians
in the perioperative period23. In recent work, we found that some
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Fig. 3 Performance metrics for prediction of postoperative pain in the prospective cohort. For POPS and clinician predictions, we present
Receiver Operating Curves (ROCs) for NRS > 4 and >6 with Area Under the Curve (AUC) (A–J), RMSE (K), and correlation (L). Shaded areas, error
bars, and values represent ±1 standard deviation. Boxplots (K, L) indicate the median (central line), interquartile range (bounds of box) and
1 standard deviation (whiskers). RMSE Root-mean square error, NRS Numeric Rating Scale. Red represents POPS while cyan indicate clinician
performance.
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intraoperative opioid administration leads to better short and
long-term pain-related outcomes after surgery24. However, it
remains unclear how much opioid administration is optimal at an
individual level. Individualization of pain management using
predicted postoperative pain may mean less intraoperative opioid
administration for patients with low predicted pain, and greater
intraoperative opioid usage for patients with higher predicted
pain. Future studies may evaluate whether the implementation of
this score can lead to reductions in acute postoperative pain,
reductions in postoperative opioid administration, or improve-
ments to patient satisfaction and quality of recovery.
Our model is interpretable and can identify the most important

ICD-10 and CPT codes within each patient’s specific context, as
well as their effects upon postoperative pain. This may aid in
personalization of pain management strategies. In example
Patient 3, our model identified the most informative codes as
their history of fibromyalgia, their presenting diagnosis of a nasal
cyst, and the scheduled removal procedure (Table 4). For instance,
it has been well established that fibromyalgia is associated with
worse postoperative pain25 and more opioid requirements26,27.
For patient 1, the presence of preoperative chronic pain diagnosis
was a clear driver of a higher postoperative pain predicted by the
model, which is in agreement with previous studies28,29. In
addition, the age and sex of this patient are known risk factors for
greater postoperative pain29.
The majority of existing studies (Table 4) on predicting

postoperative pain have been conducted on relatively small
cohorts13,30–32 and lack external validation10,33–35, which limits
their generalizability. Recent concerns have been raised regarding

a lack of methodological rigor in the development of clinical risk
predictors36. Furthermore, these models often predict postopera-
tive pain for only one specific type of surgery, rather than for a
general surgical population, which renders their usage in clinical
practice impractical.
Recently, Armstrong et al. conducted a study using logistic

regression on preoperative variables to predict severe pain after
major surgery in the UK Perioperative Quality Improvement
Programme dataset12, which is a large dataset encompassing
multiple procedure types and a general surgical population.
Despite their model including variables derived from question-
naires which must be administered to patients by a clinician, our
method’s performance exceeds their reported values.
Another large study of general surgical patients by Hur et al.37

used gradient boosting of decision trees38 to predict post-
operative opioid use based on ICD and CPT codes in preoperative
insurance claims data, with relatively modest predictive value.
Nonetheless, their study suggests that there is value in using
preoperative data to predict postoperative pain-related outcomes.
Modeling outcomes using CPT and ICD-10 codes requires an

effective numerical representation. Studies by other groups on
predicting postoperative outcomes using coding data from the
EHR typically encode the presence or absence of a selected set of
codes as binary variables37,39–42. However, this often necessitates
identifying a priori a set of specific ICD-10 or CPT codes as
candidate markers of risk, a process which we have found
frequently overlooks codes with predictive value, or does not well
align with actual coding practices found at a given institution.
Without judicious selection of codes, this representation generates

Table 4. Comparison of POPS against methods found in our literature review of preoperative prediction of postoperative pain.

Study Retrospective
cohort size

Prospective
cohort size

Patient
interaction

Distribution of surgical
services

Outcome Performance

POPS (ours) 243,274 365 No Orthopedic: 24.3%
General: 15.0%
Urology: 10.5%
Gynecology: 9.5%
Thoracic: 7.5%
Neurosurg.: 7.1%
Surg. Oncology: 5.9%
Other: 20.3%

Moderate and severe
pain on postop days
0–4

0.72–0.79 AUC

Armstrong et
al. 2023

17,079 Yes General: 62.0%
Urology: 15.6%
Thoracic: 7.5%
Orthopedic: 5.5%
Neurosurg.: 3.1%
Gynecology: 1.7%
Vascular: 0.7%
Other: 3.9%

Severe pain on first
postop day

0.66 optimism-
corrected c-statistic

Van Driel et
al. 2022

344 150 Yes Orthopedic: 45.3%
General: 20.9%
Vascular: 19.5%
Other: 14.2%

Persistent post-
surgical pain at 3
months

0.7 AUC

Rehberg et
al. 2017

198 Yes Surg. Oncology: 100%,
only breast cancer
surgeries

Max pain on first
postop day

0.82 AUC

Hur et al. 2021 112,989 No Unreported, 13 common
procedures

30-day refill, new
persistent use

0.66–0.68 AUC

Janseen et
al. 2008

549 1035 Yes Unreported, non-cardiac
surgery

Severe pain 1 h after
surgery

0.65 AUC

Kallman et
al. 2003

1416 Yes Unreported, non-cardiac
surgery

Severe pain 1 h after
surgery

0.73 AUC

Sommer et
al. 2010

1490 No Unreported, non-cardiac
surgery

Mean pain (VAS) > 4 0.74–0.78 AUC

AUC Area under the receiver operating curve.
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extremely high-dimensional sparse vector representations, which
are poor inputs43 to both logistic regression and gradient boosting
models44.
Our method utilizes the attention-based deep multiple instance

learning framework of Ilse et al.14, and uses multi-head self-
attention15 as a drop-in component which we select for its good
empirical performance across a wide range of applications.
Multiple instance learning is a paradigm which assigns labels to
collections of datapoints rather than individual elements, where
typically only a subset of those elements is informative. Variants of
these methods are able to scale to sets of over a billion
elements45, though in this application, there is only one procedure
code and at most a few dozen comorbidities per patient. We
model each patient’s collection of CPT and ICD-10 codes as an
unordered set; without positional embeddings, multi-head atten-
tion learns a permutation-invariant set embedding which
represents the information contained in each individual diagnosis
or procedure as well as interactions between each pair of codes.
Attention weights computed by the network can identify the most
informative individual contributors in each patient’s set of codes.
Empirically, predictions made by POPS appear robust across a

wide range of surgeries, patient populations, and between
hospitals. We achieve this performance with a relatively simple
network architecture with few enough parameters that it can be
trained on a single GPU in a few minutes. Inference using a trained
model requires negligible computational resources.
In the prospective cohort, the performance of our model in

predicting postoperative pain levels was poorer than that
achieved in the retrospective cohort on postoperative days 0
and 1. Model calibration and the distribution of outcomes
indicates that there has been some drift in the distribution of
postoperative pain outcomes between the retrospective and
prospective cohorts; the prospective cohort who underwent
surgery in 2023 had higher postoperative pain on average than
those in the retrospective dataset between 2016–2020. A change
over time in the composition of general surgical patients could be
responsible for the differences in predictive performance of our
model; there is a higher fraction of general surgery, neurosurgery,
and thoracic surgery cases in the prospective cohort than in the
retrospective dataset, which may represent on average more
inherently painful cases. While we attempted to obtain a
representative sample of surgical cases in our prospective study,
it is also possible that some sampling bias was introduced in the
process of enrolling patients. For example, two operating rooms at
MGH with MRI machines could not be accessed for our
prospective study, potentially skewing the distribution of cases.
Finally, the fact that patients in the retrospective cohort received
overall less intraoperative hydromorphone (Supplementary Fig. 8)
may indicate that patients in the prospective cohort underwent
more painful surgeries. Alternatively, this difference in intraopera-
tive opioid administration may reflect a change in practice
patterns that could also influence the postoperative pain
trajectories of the prospective cohort24. Changes in practice likely
occurred over the 3-year gap46; the COVID-19 pandemic resulted
in fewer elective procedures performed and has had lasting
effects on the distribution of surgical cases47,48. Therefore, periodic
refitting may be necessary to maintain good performance and
calibration. As the variables which POPS relies upon are routinely
collected and can be extracted from the EHR without the need for
manual chart review, this does not necessarily pose a difficult
obstacle.
Predictions made by POPS outperformed those made by

clinicians of the anesthesia team. The difference in performance
increased after postoperative day 1, particularly for predictions of
moderate and severe pain. One possible cause for this is that
anesthesiologists typically do not receive information about
patient recovery beyond the first postoperative day, especially
for low-risk surgeries.

Another possibility is that postoperative days 0 and 1 are more
influenced by intraoperative management than subsequent
days10. For instance, a patient who receives intraoperative
analgesics, or other interventions for pain management early in
the postoperative recovery phase, may exhibit less pain than
expected based on preoperative information. Once the effects of
these interventions subside, the patient’s postoperative pain
trajectory may regress to the mean. Consequently, if anesthesia
care providers are making predictions that are primarily driven by
their treatment plan, this would explain the drop in accuracy of
clinician predictions past postoperative day 1, and the increase in
model prediction performance.
There are inherent limitations to the degree to which post-

operative pain can be predicted using only preoperative data.
Intraoperative management of nociception may have causal
effects on postoperative pain trajectories49,50, and we have shown
in previous work that patterns of intraoperative opioid adminis-
tration have changed over time24. Other factors such as surgical
duration51, technique, or blood loss52 may also influence pain
trajectories, and it is important to note that POPS predicts
postoperative pain after standard-of-care treatment. Preoperative
data alone is unable to account for variance in postoperative pain
introduced by these variables. Moreover, pain is an inherently
subjective phenomenon. The perception of pain varies on an
individual basis in ways that cannot be fully accounted for and are
not fully understood at present, and pain scales including the NRS
are dependent upon patient self-report. Yet, POPS achieves
reasonably good predictive performance on a difficult problem
using only commonly available preoperative EHR data. Although
our model outperformed clinicians’ predictions and reported
performance metrics of other models in the literature, direct
comparison against these methods on the same patients and
outcomes was not possible with the available data. Our power
calculations for required sample size are only a rough approxima-
tion. By using residual variance from the population mean, we
don’t factor in clinicians’ ability to use preoperative information to
predict postoperative pain. On the other hand, we also assume
that clinicians have perfect knowledge of the population outcome
distribution and are perfectly calibrated in their predictions.
Depending on the clinical setting, these factors could lead to an
underestimation or overestimation of required sample size.
Nonetheless, we were able to find significant differences in
performance in our prospective study. Because our model is not
causal, learned associations between CPT or ICD-10 codes and
postoperative pain outcomes may be confounded. Moreover,
while attention weights broadly identify the most informative CPT
or ICD-10 codes, due to collinearities between codes or low
prevalence of specific combinations of codes, the estimated effect
of a particular code may be uncertain. For example, though
Patient 3’s history of depression has a significantly positive effect
on expected pain on postoperative days 1–3, the associated ICD-
10 code has a lower attention weight than other codes whose
effect is not significant. Finally, although our model was
developed using data from multiple centers, all study hospitals
were from the greater Boston area, and therefore our study cohort
may not be fully representative of the general surgical population
in the United States. Coding practices specific to those institutions
or the period over which data was collected may influence our
results.
In conclusion, POPS provides a method for computational

prediction of postoperative pain that could be applied in patients
scheduled for a broad range of surgeries without increasing
clinician burden and achieves state-of-the-art performance on a
difficult prediction task. Our prospective study also shows the
possible necessity of periodic model refitting after changes in
patient population or practice patterns to maintain good
performance and calibration. Overall, this work may aid in guiding
interventions and further screening resources towards patients at
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high risk of high postoperative pain outcomes. In conjunction with
our continuing work on characterizing the effects of intraoperative
interventions on pain-related outcomes, we ultimately seek to
further the development of objective pain management protocols
to improve practice in perioperative pain management.

METHODS
A transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD)53 checklist for this
study is included in Supplementary Methods. There are two
components to this study: a retrospective component with
random split-sample development and validation, and a prospec-
tive component with validation only. The protocol for the
retrospective component of this study and a waiver of informed
consent for participants were approved by the Massachusetts
General Hospital (MGH) institutional review board (IRB
#2020P000301). Our prospective validation protocol was also
approved by the MGH IRB (#2022P002958). Clinicians provided
informed consent before participation in the prospective study.
Study protocols are further detailed in Supplementary Methods.
No deviations from these protocols occurred.

Data extraction, processing, and study population
Our retrospective study included adult patients who underwent
non-cardiac surgery with general anesthesia across two quatern-
ary care academic medical centers, MGH and BWH, and two
community hospitals, NSMC and NWH, between April 1st, 2016,
and March 31st, 2020. We excluded patients admitted to the
Intensive Care Unit immediately after the surgery and patients
who died during the surgery.
Our prospective study included adult patients who underwent

inpatient non-cardiac surgery with general anesthesia at MGH
between February 15th, 2023, and March 20th, 2023. We excluded
patients undergoing ambulatory surgery, non-elective surgery, or
cardiac surgery. We also excluded patients admitted to the
Intensive Care Unit immediately after the surgery and patients
who died during the surgery.
Clinicians from the anesthesia team were surveyed at the

beginning of each case, and their predictions on expected
postoperative pain recorded (Supplementary Methods). We also
recorded their role (attending, resident, or CRNA), years of
experience (<5, 5–10, and >10 years), and gender. The research
team did not intervene in the clinical management of these
patients.
We employed data from patient electronic health records, and

extracted demographics (age, weight, height, sex, race) and
preoperative variables (preoperative pain score, surgery service,
surgery urgency, and inpatient or ambulatory status). ICD-10
codes recorded prior to the date of surgery and CPT codes
associated with each surgery were also extracted from the EHR,
along with outcome data. EHR data for all patients was extracted
from the Mass General Brigham (MGB) institutional Enterprise
Data Warehouse (EDW) system and analytical platform.
From the set of CPT and ICD-10 codes present across all patient

records in the retrospective dataset, a dictionary of all codes
present in at least 1 in 10,000 records was built, comprised of
5,802 unique codes (999 CPT, 4,803 ICD-10). For each patient, their
set of unique codes present both in the dictionary and their
electronic health records was computed.

Outcomes
The outcome studied were the maximal post-operative pain
scores reported by patients on the day of the surgery (Post-
operative Day 0), and on the four subsequent days (Postoperative
Day 1 through 4). Pain is generally assessed using the Numeric
Rating Scale (NRS)54, although in some cases is reported as strings.

In these cases, we converted strings into numeric variables using 6
categories (“no pain” - 0, “mild pain” - 2, “moderate pain” - 4,
“severe pain” - 6, “very severe pain” - 8, and “worst possible pain” -
10). If multiple pain scores were recorded on a given day for a
single patient, the highest value was kept. Since pain scores were
extracted directly from the EHR, no blinding was required.

Network Structure
Set embeddings were computed using a neural network
consisting of an embedding layer, which accepts as inputs the
indexed set of CPT and ICD-10 codes of a given patient, and
computes a 130 by 256 zero-padded matrix representation, where
each row corresponds to the embedding of a specific CPT or ICD-
10 code (Fig. 1). This is passed to a multi-head self-attention layer
with mean pooling15. For each patient, this layer produces a single
256-dimensional vector which represents the information con-
tained within their set of CPT and ICD-10 codes, which we refer to
as the set embedding.
The set embedding is then concatenated with the normalized

vector of patient demographic information and preoperative
variables and passed to a densely connected feed-forward
network. This feed-forward network predicts maximum post-
operative pain score on the day of surgery (Postoperative Day 0),
and on four subsequent days (Postoperative Days 1–4).

Model Development
Patients in the retrospective dataset were sampled uniformly at
random into training (81% of patients, n= 190,014), validation (9%
of patients, n= 20,867), and test sets (10% of patients, n= 23,393).
The validation set was used for model selection. Reported
performance for the retrospective component of our study was
evaluated on the test sets. The prospective cohort (n= 365) was
only used for model evaluation. We also developed hospital-
specific models, in which models were trained and selected using
data from only a single hospital. We also evaluated performance
on only the subset of the test set that was drawn from single
hospitals.
Network parameters were learned through batch gradient

descent with a batch size of 128. For binarized outcomes
(moderate and severe pain, i.e. NRS > 4 and NRS > 6 respectively),
our training objective function was binary cross-entropy. For
continuous outcomes, our training objective function was mean
squared error.
The training dataset was augmented by duplicating each

patient without CPT codes. Without augmentation, the distribu-
tion of patients without CPT codes in the training set is limited to
patients who underwent uncommon procedures. This impacts the
computed impact of CPT codes in Table 3. The validation and test
sets were not augmented.

Hypothetical example patients
We defined three hypothetical example patients with demo-
graphic information, preoperative variables, and CPT and ICD
codes required to compute the POPS (Table 3). Patient informa-
tion was outlined by an anesthesiologist who aimed to
characterize three archetypical subjects with different expected
postoperative pain profiles based on existing clinical knowledge.
Attention weights for each patient’s CPT and ICD-10 codes were

computed using our fitted model. The effect of each individual
code was estimated for these patients by computing the
difference in predicted outcomes for an identical patient with
that code removed from their set.

Statistical methods
Statistical significance of differences in area under receiver
operating curves was assessed using Delong’s test55. Williams’
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test was used to assess statistical significance of differences in
Pearson’s correlation coefficients56. The Wilcoxon rank-sum test
was used to assess significance of differences in root mean
squared error. Differences in pain score distributions between the
retrospective and prospective cohorts were assessed using the
Chi-squared test. Differences in distributions of categorical
variables between the retrospective and prospective cohorts were
assessed using the Chi-squared test. Differences in distributions of
normally distributed random variables (age, height, weight) were
assessed using the t-test. Confidence bounds were computed by
bootstrap.
Power calculations were performed using G*Power 3.1.9.7 to

estimate the minimum number of patients required for our
prospective study to identify significant differences in predictive
performance between clinicians and our model. We computed the
required sample size and parameters estimated from the empirical
residual distribution of our model-based predictions of post-
operative pain in the retrospective cohort. To estimate the residual
distribution of clinician predictions, we computed the residual
distribution for predicting the population mean pain for every
patient. For a power of 0.90 and an α of 0.05 in a paired signed-
rank test of performance between our model and clinician
predictions, we estimated a required sample size of 365 patients.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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