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An interpretable model based on graph learning for diagnosis
of Parkinson’s disease with voice-related EEG
Shuzhi Zhao1,2,3,7, Guangyan Dai1,7, Jingting Li1,7, Xiaoxia Zhu1, Xiyan Huang4, Yongxue Li1, Mingdan Tan1, Lan Wang3,5, Peng Fang3,5,
Xi Chen 1✉, Nan Yan3,5✉ and Hanjun Liu 1,6✉

Parkinson’s disease (PD) exhibits significant clinical heterogeneity, presenting challenges in the identification of reliable
electroencephalogram (EEG) biomarkers. Machine learning techniques have been integrated with resting-state EEG for PD
diagnosis, but their practicality is constrained by the interpretable features and the stochastic nature of resting-state EEG. The
present study proposes a novel and interpretable deep learning model, graph signal processing-graph convolutional networks
(GSP-GCNs), using event-related EEG data obtained from a specific task involving vocal pitch regulation for PD diagnosis. By
incorporating both local and global information from single-hop and multi-hop networks, our proposed GSP-GCNs models
achieved an averaged classification accuracy of 90.2%, exhibiting a significant improvement of 9.5% over other deep learning
models. Moreover, the interpretability analysis revealed discriminative distributions of large-scale EEG networks and topographic
map of microstate MS5 learned by our models, primarily located in the left ventral premotor cortex, superior temporal gyrus, and
Broca’s area that are implicated in PD-related speech disorders, reflecting our GSP-GCN models’ ability to provide interpretable
insights identifying distinctive EEG biomarkers from large-scale networks. These findings demonstrate the potential of interpretable
deep learning models coupled with voice-related EEG signals for distinguishing PD patients from healthy controls with accuracy
and elucidating the underlying neurobiological mechanisms.
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INTRODUCTION
Parkinson’s disease (PD) is a neurodegenerative disorder that
exerts a profound impact on the quality of life for 7–10 million
people worldwide1,2. It is characterized by progressive and diverse
symptoms that involve both motor and non-motor impairments.
However, the pathogenic mechanism of PD remains poorly
understood, with only 20% of cases being attributed to specific
genetic factors3,4. Therefore, the precise and early diagnosis of PD
continues to present considerable challenges, as this holds
significance for effective clinical management.
One promising avenue for PD diagnosis lies in the identification

of reliable biomarkers across various behavior domains, including
handwriting patterns5, motor function6, gait patterns7, and speech
characteristics8. Of particular interest, resting-state electroence-
phalography (EEG) has emerged as a potential diagnostic tool for
PD diagnosis due to its noninvasiveness, cost-effectiveness, and
ability to capture brain activity with high-temporal resolution9–11.
Quantitative EEG (QEEG) measures, including power spectral
density10,11 and spatiotemporal microstates9, have been extracted
as distinctive features to distinguish PD patients from healthy
individuals. More recently, an increasing number of studies on PD
diagnosis have shifted towards integrating deep learning techni-
ques with large-scale EEG networks12,13. For example, Oh et al. 14

utilized a thirteen-layer convolutional neural network (CNN) for
identifying resting-state EEG data from PD patients, achieving a
remarkable classification accuracy (ACC) of 88.25%. Chaturvedi
et al. 15 integrated resting-state EEG parameters with least

absolute shrinkage and selection operator (LASSO) and achieved
an area under the curve (AUC) of 0.76 in PD diagnosis. These
methods, however, rely heavily on their assumption of stationarity
and integrability of the EEG signals9, which may not be valid given
the dynamic nature of PD-related changes in brain activity.
Therefore, the need to capture the stable and time-varying
patterns, which cannot be adequately addressed by the stochastic
resting-state EEG signals, arises as a challenge to extract
discriminative features for distinguishing PD patients from healthy
individuals.
In contrast to resting-state EEG signals, task-related EEG signals

exhibit phase- and time-locked responses to motor and non-
motor tasks and their functional networks/connectivity. This
aspect offers valuable insights into PD-related alterations in neural
activity and extraction of distinct EEG features between PD
patients and healthy controls. A particular area of interest lies in
motor speech disorders, which affect approximately 90% of PD
patients and are considered as one of the premotor symp-
toms16,17. Previous studies have demonstrated that PD patients
are impaired in sensorimotor control of vocal production18–22,
which is manifested as enhanced event-related potential (ERP) P2
responses to pitch perturbations in voice auditory feedback23–25.
This observation suggests the potential of machine learning-based
extraction of salient features from voice-related EEG signals to
obtain robust biomarkers for PD diagnosis. Notably, Shi et al. 26

developed four deep learning architectures, namely the CNN, the
Recurrent Neural Network (RNN) and two hybrid models (2D-CNN-
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RNN and 3D-CNN-RNN), for PD diagnosis based on voice-related
EEG signals. Their findings showed that the hybrid models
outperformed the conventional models, achieving accuracies of
82.89% (3D-CNN-RNN), 81.13% (2D-CNN-RNN), 80.89% (CNN), and
76.00% (RNN). This study provides preliminary evidence for the
feasibility of deep learning models with task-related EEG signals to
distinguish PD patients from healthy individuals.
Nevertheless, the complexity of deep learning models has

raised concerns regarding their interpretability, particularly in
understanding what features they can learn from EEG signals and
how they relate to the clinical characteristics of PD patients.
Therefore, there is a growing demand for enhancing the
interpretability of deep learning methods27–29. One promising
interpretable model is the multi-category mutual verification30,
which integrates graph learning and neurophysiological informa-
tion models. The graph convolutional network (GCN), a key
component of the graph learning model, has achieved strong
performance in diagnosing neurodegenerative diseases using
neuroimaging data31. The neurophysiological information model
involves large-scale neural networks for EEG microstate analysis,
which has been successfully used for PD diagnosis with resting-
state data9. However, no studies have yet combined these two
methods to enhance model interpretability in PD diagnosis using
task-related EEG signals.
To this end, the present study proposes a novel knowledge-

guided framework (see Fig. 1), graph signal processing-graph
convolutional networks (GSP-GCNs), to distinguish PD patients
from healthy individuals using large-scale EEG network obtained
from a specific task involving the manipulation of auditory
feedback during vocal production. This framework consists of
four sequential components: GSP, the graph-network module, the
classifier, and the interpretable model. Firstly, the GSP module

analyzes and processes the large-scale EEG networks to identify
dynamic connectivity patterns. Subsequently, the graph-network
module captures these connectivity patterns as key features for
classification. The classifier component then utilizes these
extracted features to discriminate PD patients from healthy
individuals. Lastly, the interpretable model is incorporated to
enhance the interpretability of the framework by providing a
global visualization of essential learned features of the model and
aligning them with voice-related EEG microstates characteristics.
By adopting this innovative approach, our GSP-GCNs framework
aims to provide illustrative information for facilitating the use of
the deep learning model in PD diagnosis with task-related EEG
data.

RESULTS
Comparison of classified performance
The present study proposed four graph-network-based models:
PCC+GCNs, PLV+GCNs, PCC+ GSP-GCNs, and PLV+ GSP-GCNs.
The PCC+ GSP-GCNs model constructs the brain network using
PCC features and employs the GSP-GCNs model as the classifier.
The PLV+ GSP-GCNs model is similar to the PCC+ GSP-GCNs
model, except that it uses PLV features to construct brain
networks. In contrast, the PCC+GCNs and PLV+GCNs models do
not include the GSP module based on the aforementioned
methods.
Table 1 provides the classification performance achieved by our

proposed models and baseline models based on voice-related EEG
signals, and Fig. 2 shows the results of non-parametric Mann-
Whitney tests with Bonferroni correction that compare the
classification performance (ACC and AUC) of these models in
5-fold cross validation. Our PCC+ GSP-GCNs model outperformed

Fig. 1 The schematic diagram of the GSP-GCNs model designed for PD diagnosis. The GSP module is responsible for acquiring
collaborative graph information of both single-hop and multi-hop networks from the EEG signals, while the GCNs module automatically learns
the graph structure by aggregating the information of neighboring nodes. INA incomplete network alignment, GCN graph convolutional
network, GSP graph signal processing.
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the EEGNet model significantly, with an accuracy increase of 7.9%
(82.3% vs. 90.2%), an AUC increase of 7.9% (81.2% vs. 89.1%), a
sensitivity boost of 2.5% (81.5% vs. 84.0%), and a specificity
enhancement of 8.8% (79.6% vs. 88.4%). As well, our proposed
graph-based models exhibit superior performance compared to
previous methods that did not use graph learning26. Specifically,
the PLV+ GSP-GCNs model improved those metrics by 8.2%,
7.7%, 3.6%, and 10.2%, compared to the 3D-CNN-RNN model. In
addition, Table 1 shows the computational complexity of our
proposed models and baseline models. The computational
complexity of the GCNs model is 2*O(nlogn)+O(n2)32,33 while
the computational complexity of the baseline models ranges from
O(n·d2)+O(n2) to 3*O(k·n·d2)+2*O(n·d2)+2*O(n2)26,34–36, where k
denotes the convolution kernel size (greater than 3), d denotes
the time series length (d= 700), and n denotes the number of
channels (n= 64). Accordingly, our GCNs model shows a
considerably lower computational complexity than all baseline
models.
Notably, Table 1 and Fig. 2 also show a comparison of

classification performance across our proposed models. The
GSP-GCNs models exhibited significantly superior performance
compared to the GCNs models, regardless of the feature type. For
example, the PCC+ GSP-GCNs model achieved higher ACC, AUC,
sensitivity, and specificity than the PCC+GCNs model by 6.1%
(84.1% vs. 90.2%), 6.0% (83.1% vs. 89.1%), 5.8% (78.2% vs. 84%),
and 2.4% (86.0% vs. 88.4%), respectively. Similarly, the PLV+ GSP-
GCNs model improved these metrics by 4.1% (84.8% vs. 88.9%),
5.3% (82.2% vs. 87.5%), 7.0% (79.l% vs. 86.l%), and 1.9% (84.3% vs.
86.2%) compared to the PLV+GCNs model. Furthermore, we
employed a cross-validation approach to verify the out-of-
distribution detection capability and stability of the GCNs model.
Figure 3 indicates a consistently low variance of receiver operating
characteristic (ROC) values, all remaining below 0.08 for our
proposed models. These results highlight the potential of GSP
processing in enhancing the classification performance by
balancing the local and global information of single-hop and
multi-hop networks through graph aggregation.

Interpretable GSP-GCN model
The interpretability of the GSP-GCNs framework was assessed in
the present study, aiming to capture global frequency-spatial-
temporal dependencies in the large-scale EEG network and extract
essential information for decoding tasks from the time series data.

We used a modified CAM method to visualize the global
representation learned by our models and generate their saliency
maps in the context of vocal pitch regulation. Figure 4 illustrates
the discriminative distributions of large-scale EEG networks
obtained from the FAF task and learned by the PCC+GCNs and
the PCC+ GSP-GCNs models. The most significant discriminative
distributions were located in the left ventral premotor cortex
(vPMC), superior temporal gyrus (STG), and Broca’s area. These
results suggest that the GSP-GCNs models have the capability to
capture the intrinsic representation of the major brain activity
difference during vocal motor control between PD patients and
healthy controls.
Moreover, we performed microstate analysis on the voice-

related EEG signals from PD patients and healthy controls and
identified five distinct microstates (MS1-MS5) with high energy
fluctuation in the time frame of 0–300ms (see Fig. 5). The most
prominent microstate was the MS5, located in the electrodes near
the left vPMC and Broca’s area in the time frame of 205–315 ms.
This temporal correspondence aligns with the large-scale EEG
networks associated with the P2 component. The microstate
transitioned from MS5 to MS2 during the 260–300ms period of
P2, with MS2 located near the right STG. The network identified in
the MS5 microstate resembles the discriminative distributions
learned by the GSP-GCNs model, further strengthening the
interpretability of our proposed models.

DISCUSSION
The present study proposed a novel, interpretable deep learning
framework based on GSP-GCNs to distinguish from PD patients
from healthy controls using voice-related EEG signals. By
incorporating both local and global information from single-hop
and multi-hop networks, our GSP-GCNs model achieved an
averaged classification accuracy of 90.2% and exhibited a
performance improvement of 9.5% compared to other deep
learning models. Moreover, the interpretability analysis of our
GSP-GCNs models revealed discriminative distributions of large-
scale EEG networks and topographic map of the microstate MS5 in
the P2 time window, primarily located in the left vPMC, STG, and
Broca’s area that have been implicated in PD-related motor
speech disorders. Overall, our proposed GSP-GCNs models offer a
valuable tool for PD diagnosis based on the interpretable results
derived from large-scale voice-related EEG networks.

Table 1. Classification performance and computational complexity of different deep learning models based on voice-related EEG signals, where k
represents the convolution kernel size, d represents the time series length, and n represents the number of channels.

Models Evaluation Criterion

ACC AUC Sensitivity 1-Specificity Computational Complexity

Baseline Models CNN 79.6% 78.1% 80.2% 77.5% 4*O(k·n·d2)+O(n2)

RNN 75.2% 74.2% 80.1% 75.3% O(n·d2)+O(n2)

2D-CNN-RNN 81.6% 79.5% 78.6% 80.2% O(k·n·d2)+O(n·d2)+O(n2)

3D-CNN-RNN 82.1% 81.2% 83.1% 78.2% 2*O(k·n·d2)+O(n·d2)+O(n2)

EEGNet 82.3% 81.2% 81.5% 79.6% 3*O(k·n·d2)+O(n2)

Cascade model 80.4% 83.2% 82.1% 77.2% 3*O(k·n·d2)+2*O(n·d2)+2*O(n2)

Parallel model 81.1% 80.2% 82.3% 79.8% 3*O(k·n·d2)+O(n2)

GCNs PCC+GCNs 84.1% 83.1% 78.2% 86.0% 2*O(nlogn)+O(n2)

PLV+GCNs 84.8% 82.2% 79.1% 84.3% 2*O(nlogn)+O(n2)

PLV+GSP-GCNs 88.9% 87.5% 86.1% 86.2% 2*O(nlogn)+O(n2)

PCC+GSP-GCNs 90.2% 89.1% 84.0% 88.4% 2*O(nlogn)+O(n2)

ACC accuracy, AUC area under curve, CNN convolutional neural network, RNN recurrent neural networks, GSP graph signal processing, GCN graph convolutional
network, PCC Pearson correlation coefficient, PLV phase locking value.
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A growing body of studies has concentrated on the develop-
ment of PD diagnosis by integrating resting-state EEG with
machine learning techniques12–14,37–39. Recently, several deep
learning models have been proposed for PD diagnosis using
different resting-state EEG datasets (e.g. the public UNM dataset,
public SanDiego dataset). For example, Oh et al. 14 proposed a
thirteen-layer CNN model while Lee et al. 39 proposed a hybrid
CNN-RNN model, achieving classification accuracies of 88.25% and
99.2% in distinguishing PD patients form healthy controls,
respectively. In addition, Shah et al. 38 developed a dynamical
system generated hybrid network (DGHNet) for successful
categorization of on-medication vs. off-medication PD patients
with a classification accuracy of 99.2%. Nevertheless, the
practicality of these models is constrained by the prolonged
training period, the large datasets requirement, and the lack of
interpretability of specific EEG features in PD diagnosis. Further-
more, the stochastic nature of resting-state EEG poses challenges
in capturing the distinct patterns of PD-related brain activity.
In attempts to address these limitations, Shi et al. 26 developed

four deep learning architectures (i.e. CNN, RNN, 2D-CNN-RNN, 3D-
CNN-RNN) using voice-related EEG signals during vocal pitch
regulation for PD diagnosis and achieved classification accuracies
ranging from 76.00% to 82.89%. Hassin-Baer et al. 40 applied
machine learning models for the diagnosis of early-stage PD using
the event-related EEG signals during visual Go/No-Go and auditory
Oddball cognitive tasks, achieving an AUC of 0.79 and identifying
a total of 15 EEG features. In the present study, our proposed the
GSP-GCNs models used voice-related EEG signals similar to Shi
et al. 26 and achieved classification accuracies ranging from 84.1%
to 90.2%, indicating a remarkable performance superiority over
those models proposed by Shi et al. 26. Furthermore, our
PCC+ GSP-GCNs model also outperformed other models (see
Table 1 and Fig. 2), including the EEGNet model, that do not use
graph learning. Taken together, these findings demonstrate the
effectiveness of deep learning models with graph learning and
voice-related EEG signals for PD diagnosis.
Our proposed GSP-GCNs models, integrated with voice-related

EEG, present a significant advancement over other deep learning
models for PD diagnosis in several aspects. A significant strength
lies in their capacity to combine the global and local properties of
brain functional networks using single-hop and higher-order
networks, enabling the aggregation of information from the nodes
of the functional brain networks and the extraction of features for
graph learning. Another strength is the use of GCN models for
graph data, which have advantages over other convolutional

neural networks, such as capturing complex node relationships,
adapting to different graph properties, and handling large-scale
network data. In contrast, the CNN-based approaches only focus
on local features due to their limited perceptual field but ignore
the global correlations among EEG signals. Similarly, the CNN-RNN
approaches only capture the sequential relationships of EEG
signals while overlooking the relevance of the EEG connectivity
network. On the other hand, resting-state EEG signals are
stochastic in nature and fail to capture the functional specificity
of brain activity related to PD when compared to task-related EEG
signals. The present study used a task that involves auditory-
motor integration for vocal pitch regulation, which reveals the
neural processes involved in the coordination of sensory and
motor systems for speech production. These processes have been
demonstrated to be impaired in PD21–25. Therefore, our GSP-GCNs
models provide a novel way for PD diagnosis using voice-related
EEG signals and deep learning techniques, which is more reliable
and feasible than previous methods.
More importantly, the analysis that revealed comprehensive

global frequency-spatial-temporal dependencies within the exten-
sive EEG network demonstrated the interpretability of our
proposed models, providing insights into how our models learn
from voice-related EEG signals and how they relate to the neural
processes underlying impaired auditory-vocal integration in PD.
Upon visualizing the overall representation acquired by our
models and their corresponding saliency maps during vocal pitch
regulation, the most prominent discriminatory distributions were
located in the left vPMC, STG, and Broca’s area. These regions have
been well-established as integral to speech motor control41–46.
This consistency suggests that our GSP-GCNs models capture
distinct patterns of brain activity during vocal motor control
between PD patients and healthy controls.
EEG microstate analysis has been proven valuable in the

diagnosis of Alzheimer’s disease47 and schizophrenia13 by
revealing the spatiotemporal dynamics of brain activity. In the
present study, the microstate analysis of voice-related EEG signals
identified five distinct microstates (MS1-MS5), with MS5 being of
particular significance. Our observation of distinct MS5 microstate
between PD patients and healthy controls is in line with previous
studies that have shown associations of specific EEG microstates
with vocal tract muscles and motor cortex activity48,49 as well as
speech fluency in PD patients50. MS5 corresponds to the large-
scale EEG networks that align with the P2 component
(205–315 ms). This ERP component has been thought to reflect
a complex stage of auditory-motor transformation for controlling

Fig. 2 Heatmaps showing statistical differences in classification performance between models. The left and right panels show the resutls
of non-parametric Mann-Whitney tests comparing the GCNs model and conventional deep learning models in 5-fold cross validation for
classification performance corresponding to ACC and AUC, respectively. Each cell in the heatmap represents the statistical significance of
differences between the models, with light blue indicating no significance, red indicating a significant difference, and dark red denoting a
higher level of significance.

S. Zhao et al.

4

npj Digital Medicine (2024)     3 Published in partnership with Seoul National University Bundang Hospital



vocal production that demands higher-level cognitive proces-
sing51,52. In particular, enhanced P2 responses to vocal pitch
perturbations have been linked to impaired auditory-vocal
integration in PD patients when compared to healthy con-
trols23–25. Notably, the spatial localization of MS5 coincided with
the left vPMC and Broca’s area (see Fig. 4), regions that have been
recognized as significant contributors to enhanced P2 responses
during vocal pitch regulation in PD patients compared to healthy
controls23. More interestingly, this network representation of MS5
microstate also showed a resemblance to the discriminative
distributions learned by the GSP-GCNs model, lending further
support to the interpretability of our proposed models to unravel
specific brain patterns during speech tasks relevant to PD.
Therefore, this interpretability analysis highlights the novelty and
significance of our approach in facilitating a more profound
understanding of the neural mechanisms underlying PD. Such
interpretability is crucial27,28, ensuring that the models are not just
“black boxes” but provide meaningful insights into the neural
dynamics underpinning PD.
The proposed GSP-GCNs models have important clinical

implications for PD diagnosis. They offer the potential to improve
the diagnostic accuracy by extracting interpretable features from
large-scale voice-related EEG networks. They also contribute to
reducing the subjective bias and variability across patients,
thereby promoting a more objective and consistent assessment
of PD. Moreover, they hold the promise to facilitate the treatment

of speech impairment in PD by modulating activity of the brain
regions observed in microstate analysis through the use of non-
invasive brain stimulation techniques such as transcranial
magnetic or electrical stimulation25,53–55. Therefore, our GSP-
GCNs models not only represent an advancement in PD diagnosis
but also may pave the way for effective treatment approaches.
Online detection of clinical diseases is a challenging task that

requires high accuracy and low latency for brain signals. However,
most existing EEG systems for PD diagnosis are based on offline
analysis of resting-state data, which suffers from high noise and
low stability in real-time EEG signals due to factors such as subject
concentration and device inconsistencies. Previous studies have
demonstrated the effectiveness and adaptability of GCN models in
real-world scenarios across various domains, such as online
recommender systems56, traffic flow prediction57, and online
animal tracking58. The present study proposed a hybrid approach
that combined the computing capabilities of offline systems with
the real-time responsiveness of online systems based on the
voice-related EEG signals. In this framework, the offline system
constructed the large-scale EEG networks to extract the features of
specific ERP components, while the online system applied the
GSP-GCNs model to enable real-time evaluation. This strategy
achieved a balance between high accuracy and low latency in
classification, allowing us to detect unique patterns within task-
related EEG signals for online PD diagnosis.

Fig. 3 The ROC curves of the GCNs models. Panels a–d show the ROC curves for the PCC+GCNs, PLV+GCNs, PCC+GSP-GCNs, and
PLV+ GSP-GCNs models, respectively. The solid blue line represents the average performance across different test sets using 5-fold cross-
validation, while the other colored lines show the performance of individual test set. The gray shaded area indicates the variance range of the
average ROC curve.
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This claim is supported by a posteriori verification of the
proposed models (see Supplementary Fig. 1), which compares the
performance of different deep learning models based on the
random selection of trials from a pool of 100 trials for a voting
selection process. Remarkably, the post-validation performance of
our models exhibits only slight declines (4.1–4.9%) when
compared to the results presented in Table 1. In contrast, previous
studies59,60 have reported that online detection systems based on
the brain signals typically experience an approximate 10%
reduction in accuracy compared to their offline counterparts.
Moreover, the GSP-CNSs models outperform both conventional
deep learning models and previous EEG-based online detection
systems59,60 in stochastic posterior performance and computa-
tional complexity (see Table 1 and Fig. 2). Therefore, our proposed
models have high potential for online detection scenarios due to
their high accuracy, low computational complexity, and objective
evaluation.
There are several limitations in the present study that warrant

further investigation. First, our sample size was relatively small due

to difficulties in obtaining task-related EEG data under controlled
experimental conditions and specialized equipment requirements,
which may limit the generalizability and robustness of our models.
Second, our models performed the connectivity analysis of large-
scale EEG networks at the electrode level, which cannot provide
precise anatomical sources that generate the EEG signals.
Incorporating source localization analysis for constructing EEG
connectivity network is therefore needed in future studies to
provide a more accurate representation of functional interactions
within the brain. Also, the exclusive use of GCN models in the
present study may not be suitable for all types of graph data.
Future studies should consider alternative methodologies (e.g.
graph attention networks, graph neural ordinary differential
equations) for graph learning. Lastly, our models focused on a
specific task that involves vocal motor control for PD diagnosis.
Other tasks, such as cognitive control, may reveal different brain
activity patterns and network dynamics that can be informative
for PD diagnosis.

Fig. 4 The saliency maps of the discriminative biomarkers learned by the GCNs models for the FAF task. The numbers ranging from 1 to
64 correspond to the electrodes according to the international EEG 10-20 system. Panels a–d show the distribution of the contribution
network for the PCC+GCNs model, the PCC+ GSP-GCNs model, the PLV+GCNs model, and the PLV+ GSP-GCNs model, respectively. Nodes
with a redder hue indicate greater contributions to the model, and edges with a blacker hue indicate higher contributions.
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Fig. 5 The distribution of microstate classes corresponding to grand-averaged ERP in the FAF task for PD and HC groups. Different colors
represent different microstates. Five microstates clustered by k-means algorithm are shown in the first row, average time potential fluctuations
with emphasis on P2 component are shown in the second row, global field power is shown in the third row, and functional activity
distributions within microstates and EEG networks associated with P2 component are shown in the bottom. GFP global field power, MS
microstate.

S. Zhao et al.

7

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2024)     3 



In conclusion, the present study proposed a novel deep
learning framework based on GSP-GCNs for PD diagnosis using
voice-related EEG signals. Our models can capture the global
frequency-spatial-temporal dependencies among large-scale EEG
networks, achieving a remarkable 90.2% classification accuracy
and outperforming other deep learning models by 9.5%. More-
over, our models revealed the discriminative distributions of large-
scale EEG networks and topography of microstate MS5 for PD
diagnosis in terms of interpretability. These findings highlight the
promise of interpretable deep learning models with task-related
EEG signals in advancing PD diagnosis.

METHODS
Task-related EEG Dataset
Fifty-two patients diagnosed with idiopathic PD (24 females and 28
males; mean age= 64.23 ± 5.30 years) according to the diagnostic
criteria of the UK Parkinson’s disease Society Brain Bank61 and
forty-eight sex- and age-matched healthy controls (HC) (23 females
and 25 males; mean age= 63.37 ± 5.41 years) participated in this
study. All of them were right-handed, native Mandarin speakers.
PD patients in the present study met the following inclusion
criteria: no more than mild dementia (Mini-Mental State Examina-
tion [MMSE] > 26), no other neurological disease, no history of
neurosurgical treatment, laryngeal surgery or pathology, swallow-
ing disorders. PD patients were kept on their antiparkinsonian
medication, but they were tested during their off-medication state
(i.e. 12 h off anti-PD medication). All participants provided
informed consent, and the research protocol was approved by
the Institutional Review Board of The First Affiliated Hospital at Sun
Yat-sen University in accordance with the Code of Ethics of the
World Medical Association (Declaration of Helsinki).
Task-related EEG data were acquired during a task based on the

frequency altered feedback (FAF) paradigm62. In brief, participants
were instructed to produce a sustained vowel sound (/u/) for a
duration of 5–6 s while hearing their voice unexpectedly pitch-
shifted downwards by 200 cents (100 cents = one semitone) for a
duration of 200ms. Each vocalization consisted of 4–5 perturba-
tions that were presented in a pseudorandomized manner.
Participants produced 20–25 consecutive vocalizations, resulting
in a total of 100 trials. More details regarding experimental designs
for the FAF tasks can be found in previous studies23,25.
While participants performed the vocal production experiment,

the EEG signals were scalp-recorded using a 64-electrode
Geodesic Sensor Net connected to a Net Amps 300 amplifier
(Electrical Geodesics Inc.) at a sampling frequency of 1 kHz using
NetStation software (v.4.5, Electrical Geodesics Inc.). During the
offline analysis, the EEG signals were band-filtered (1–20 Hz) and
segmented with a window of −200 ms before and 500ms after
the perturbation onset. An artifact detection procedure was
applied to the segmented epochs to exclude those bad trials from
further analysis. And artifact-free trials were re-referenced to the
average of the electrodes on each mastoid, averaged, and
baseline-corrected to generate an overall cortical ERP response.

System framework
Figure 1 shows the overall framework of knowledge-guide graph
convolutional networks, which consists of four modules: EEG
network, GSP, GCN, and interpretable module. Firstly, the EEG
network module constructs a graph of dynamic brain activity using
electrodes as nodes and functional connections between electrodes
as edges63,64. Subsequently, the GSP module applies a strategy based
on incomplete network alignment (iNEAT)65 and Sparse Graph66 to
reorganize the local and global information in the EEG network. Next,
the GCNs module learns graph representations for personalized
diagnosis by aggregating information from neighboring nodes,
capturing intrinsic features from the complex EEG network for PD

diagnosis. In addition, the interpretable module uses a modified
saliency map derived from the backpropagation algorithm67 to
visualize the prominent EEG network in each individual pattern and
then compares it with the large-scale EEG network obtained from
microstate analysis. The details of each module are described below.

EEG network definition. The EEG network is modeled by a graph
G(V,E), where vi represents the ith channel of EEG in a node set V
while eij represents the strength of functional connection between
nodes vi and vj in an edge set E. Specifically, a single-channel EEG
data records a sequence of time-series ri∈[1,n]=[si1,si2,…,sik]∈Rk,
where k= T xf denotes the number of time points (f represents the
frequency range, and T represents the consecutive order of time
series). The EEG signal can be represented as a tensor XT
=[r1;r2;…;rn]∈Rnχk, and G(V,E) can be represented as an adjacency
matrix. Functional connectivity matrices (V) are calculated using
Pearson Correlation Coefficient (PCC) or Phase Locking Value
(PLV). The PCC between brain signals in different channels is
defined by Eq. (1), where rfpi ðtÞ corresponds to the low energy
fluctuation within the frequency band fp (4–12 Hz) from the ith
electrode of the EEG signals.

PCCðrfpi ; rfqj Þ ¼
1
Ns

XNs

k¼1

rfpi ðkÞrfqj ðkÞ (1)

PLV, defined in Eq. (2), measures the synchronization between
phases of brain regions.

PLV rfpi ; r
fq
j

� �
¼ eimΔ+r tð Þ

D E���
��� ¼ 1

Ns

XNs

k¼1

eim +i kð Þ�+j kð Þð Þ
�����

����� (2)

Δ+r tð Þ is the instantaneous phase calculated by Hilbert
transform from the original signal rf ðtÞ.
The traditional GCNs focus on the local network structure

rather than the global network distribution. To overcome this
limitation, the present study incorporated a GSP method,
including the iNEAT algorithm and Sparse Graph, into the
GCNs. This integration allows us to capture both the local and
global information within the EEG network. The iNEAT
component selects edge features based on the hub and link
properties of nodes, while the sparse graph component adjusts
node weights according to edge weights. These methods
enable a reorganization of the EEG network to obtain a new
network that contains important nodes and edges while
reducing or eliminating noisy ones. This reorganization is an
important step in the GSP process for enhancing the data
quality, as evidenced in previous studies on graph learning68,69.
Although the iNEAT algorithm integrates both the local and
global information within the large-scale EEG network, it may
result in an issue of over completeness in fusion information.
To overcome this limitation, the present study introduced the
Sparse Graph operation, which performs sparse decomposition
and dictionary generation on the graph signal, to remove
redundant information.
Two graph networks, G1 from a single-hop network (k= 1)

and G2 from a multi-hop network (k= 8), were generated for
each individual using the k-nearest neighbor method65. The
adjacency matrices A1 and A2 were calculated to obtain the
permutation matrix S. To optimize the global graph informa-
tion of the single-hop network, a graph matching-based
method was proposed to solve a Non-deterministic Polynomial
problem according to the principle of topology consis-
tency70,71.

min
S

jjA2 � STA1Sjj2F (3)

where jj � jjF is the Frobenius norm of the corresponding matrix.
The random walk-based method was used to capture
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collaborative graph information from both single- and multi-hop
networks based on the Kronecker product graph72,73.

S ¼ α A1 � A2ð ÞSþ 1� αð Þh (4)

where h is the vectorization of the prior similarity matrix H via the
sine function between mean adjacency matrices in different
groups, and � is the operation of Kronecker product graph.
The iNEAT algorithm, which combines the strengths of the

graph matching-based method and the random walk-based
method65, was used in the present study. This algorithm
effectively integrates the graph structure information from both
single- and multi-hop networks within large-scale EEG networks.
The optimization objective function is defined as follows:

min
s

α sT D� A1 � A2ð Þsþ ð1� αÞjjD1
2 s� hð Þjj2F (5)

where s represents the vectorization of the similarity matrix S.
D ¼ D1 � D2 and D1 and D2 are the diagonal degree matrix
corresponding to A1, and A2. In addition, a permutation matrix
was used to reorganize the EEG signals through channel-wise
operations at the individual level.
The Sparse Graph operation, defined in Eq. (6), aims to enhance

the discriminative ability between groups and reduce the
standard deviation across the trials. In Eq. (6), the parameter of
xei represents the EEG signal of eth electrode from the ith subject,
while the graph matrix we

i is calculated through the iNEAT
algorithm to learn the collaborative graph information.

We ¼ argmin
We

Pn

i¼1

1
2 jjxei � Xe

i w
e
i jj22

� �
þ⋋1jjBe

g�Wejj
2;1

þ⋋2
Pn

i;j¼1
segijjjwe

gi �we
gjjj22

þ⋋3jjBe
t�Wejj2;1 þ⋋4

Pn

i;j¼1
setij jjwe

ti � we
tjjj22

(6)

Where Be
g ¼ ½beg1; ¼ ; begi; ¼ ; begn� is a weighting matrix with

elements being begi ¼ ½be;1gi ; ¼ ; be;e�1
gi ; be;eþ1

gi ; ¼ ; be;Egi �. Similarly,
the matrix Be

t is defined. s
e
gij and setij denote the similarity between

ith and jth subject from different groups.

Graph Convolutional Networks. In contrast to the spectrum-based
approach based on the CNNs, the GCNs use the graph structure to
intelligently aggregate information from neighboring nodes. Spectral
analysis of graph signals decomposes EEG signals into multi-
frequency graph modes and identifies the distribution of EEG signals
using Laplacian maps from the spatial domain to the spectral domain.
Laplacian operator, denoted as L, is defined as follows:

L ¼ D� A 2 RN ´N (7)

L ¼ IN � D�1
2AD�1

2;D 2 RN ´N (8)

where D is the diagonal degree matrix, and IN is an identity matrix
of size N.

The graph signal can be defined through the Fourier trans-
form74.

χ ¼ UTx; x ¼ Uχ (9)

where U ¼ u0; ¼ ; uN�1½ � 2 RN ´N is calculated through the
eigenvector decomposition of L.
In contrast to traditional methods that calculate a weighted sum

of spatial neighbors in the Euclidean space, the ChebNet
employed in the present study applied graph filters to generate
a linear combination of graph Fourier modes across different
frequencies. The convolution operation between two graph
signals x and y can be expressed through the graph �g:
x � gy ¼ U

�
UTx
� �� UTy

� ��
(10)

where � represents the element-wise Hadamard product.
Since L ¼ U^UT and ^ ¼ diag ⋋0; ¼ ;⋋N�1½ �ð Þ, we defined gθ

as the filter with parameter θ. The filtering process of signal x can
be expressed as:

y ¼ gθ Lð Þx ¼ gθ U ^ UT
� �

x ¼ Ugθ ^ð ÞUTx (11)

To avoid calculating the spectral decomposition of the graph
Laplacian, the ChebNet model used a truncated expansion of the
Chebychev polynomials74.

gθ ^ð Þ ¼
XK�1

k¼0

θkTk ^ð Þ (12)

y ¼ Ugθ ^ð ÞUTx ¼
XK�1

k¼0

θkUTk ^ð ÞUTx ¼
XK�1

k¼0

θkTk L�ð Þx (13)

where L� is scaled Laplacian: L� ¼ 2L=⋋max � IN .

Interpretable GSP-GCNs model. The present study used two
methods to interpret the essential features derived from the
GSP-GCNs model, including the examination of the features
learned by the GSP-GCNs model and an analysis of the features of
the large-scale EEG network through microstate analysis. The GSP-
GCNs model was designed to capture global temporal depen-
dencies within EEG data, enabling the identification of crucial
information for decoding tasks from time series. While topography
and Gradient-weighted Class Activation Mapping (CAM)75 have
been used to reveal the global representation learned by deep
learning models in motor imagery dataset12, the visualization of
the gradients using the CAM often suffers from high levels of
noise. To address this issue, the present study used a deconvolu-
tion approach that suppresses the flow of gradients through
neurons30. Specifically, for a given layer l in the graph signal χl and
its gradient Rl , the overwritten gradient ∇χlRl can be calculated as
follows:

∇χ lRl ¼ χ l > 0
� �� ∇χ lþ1Rlþ1 > 0

� �� ∇χ lþ1Rlþ1 (14)

To generate the saliency map, the present study started from
the output layer of a pre-trained model and propagated the
gradients at each layer using the chain rule until reaching the
input layer. This process allows us to visualize the salient regions
that significantly contribute to the model’s predictions, providing
valuable insights into the interpreted features.
The microstate analysis of ERPs aims to investigate whether the

GSP-GCNs model can capture distinct neural representations
between PD patients and healthy controls when they produce
vocal compensations for pitch feedback perturbations. Microstate
analysis is a method that assesses the functional dynamics of
large-scale brain networks by identifying the stable topographic
patterns of the EEG signals47,50. This analysis was performed using
the MNE-python toolbox (https://mne.tools/stable/index.html),
which involves calculating the global field power (GFP) of each

Table 2. Number of training parameters of the GCN model according
to the Chebyshev polynomial order of each layer.

Layers Shape of
weight tensor

Shape of
bias

Number of
parameters

Convolution layer1 [K1, 64, 64] [64] 4096×K1+ 64

Pool1 [1×2] [1×2] 4

Convolution layer2 [K2, 64, 32] [32] 2048×K2+ 32

Pool2 [2×1] [2×1] 4

Fully Connected
layer

[32, 32] [32] 1056

K1 and K2 are the coefficients of the Chebyshev polynomial expansion.
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participant’s ERP followed by clustering the topographic map
underlying the GFP using the k-means algorithm from the sklearn
toolbox. The Krzanowski-Lai criterion76,77 was used to determine
the optimal number of microstate classes due to its suitability for
selecting topographic map classifications based on quality
indicators and global explained variance.

Experimental design
The GSP-GCNs model was implemented using the Pytorch toolkit
with a 5-fold cross-validation strategy (https://github.com/
ShuzhiZhao/ERP_GCN). The model parameters were optimized
using the Adam optimizer with gradient descent and the cross-
entropy loss function. The network had three GCN layers (two
hidden layers and one fully connected layer) and a learning rate of
the network was 10−5. Table 2 shows the training parameters of the
GCN model according to the Chebyshev polynomial order of each
layer. A dropout rate of 0.35 was applied to prevent overfitting. The
final output of the GSP-GCNs model was an M-dimensional vector
obtained through the Softmax function, where M represents the
number of EEG categories. The cross-entropy loss function, as
defined in Eq. (15), was used to evaluate the model performance,
where y and yˆ represent the ground truth and predicted label,
respectively. Nb denotes the number of trials in a batch.

L¼� 1
Nb

XNb

i¼1

XM

c¼1

ylog y^ð Þ (15)

To evaluate our proposed method, we compared it with several
state-of-the-art approaches and performed ablation studies to
show the impact of GSP. These baseline models used for
comparison were Hybrid Convolutional Recurrent Neural Networks
(CNN, RNN, 2D CNN-RNN, and 3D-CNN-RNN)26, EEGNet34, and
CRNN (Cascade and Parallel model)35. The performance was
evaluated using ACC, AUC, sensitivity, and specificity (1-specificity).

Posteriori verification
A posteriori verification was performed to compare the classifica-
tion performance of different deep learning models based on the
random selection of trials from a pool of 100 trials for a voting
selection process. The procedure consists the following steps:
Step 1: For each subject, 10 trials’ classification labels are

randomly selected from a set of 100 trials’ classification labels
Y= {y1, y2, …, y10}, where yi 2 0; 1f g denotes the label of the i-th
trial (0 represents PD patients, 1 represents healthy controls).
Step 2: A hard-voting strategy is used, where the total number

of 0 labels N0 and the total number of 1 labels N1 in each subject’s
10 trials are computed. If N0 > N1, the subject is classified as
having PD and the procedure progresses to Step 4. If N0 < N1, the
subject is classified as healthy, bypassing to Step 4. If N0= N1, the
procedure advances to Step 3.
Step 3: The Boyer–Moore algorithm is applied for majority

voting. For example, if Y= {0,1,1,0,1,0,0,1,1,0}, thus N0= N1 occurs.
The Boyer-Moore algorithm’s criterion is: the first trial vote is 0, the
second trial vote is 1, the two votes are different and cancel each
other; the second trial vote is 1, the third trial vote is 1, the two
votes are the same, and the vote of BM1 increases by 1. We get
BM0= 1 and BM1= 2, and classify the subject as healthy.
Step 4: Steps 1–3 are reiterated 100 times, and the mean and

variance of the outcomes from these repetitions are calculated to
provide a statistical overview of the classification performance.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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