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The development of diagnostic tools for skin cancer based on artificial intelligence (Al) is increasing
rapidly and will likely soon be widely implemented in clinical use. Even though the performance of
these algorithms is promising in theory, there is limited evidence on the impact of Al assistance on
human diagnostic decisions. Therefore, the aim of this systematic review and meta-analysis was to
study the effect of Al assistance on the accuracy of skin cancer diagnosis. We searched PubMed,
Embase, IEE Xplore, Scopus and conference proceedings for articles from 1/1/2017 to 11/8/2022. We
included studies comparing the performance of clinicians diagnosing at least one skin cancer with and
without deep learning-based Al assistance. Summary estimates of sensitivity and specificity of
diagnostic accuracy with versus without Al assistance were computed using a bivariate random
effects model. We identified 2983 studies, of which ten were eligible for meta-analysis. For clinicians
without Al assistance, pooled sensitivity was 74.8% (95% CI 68.6-80.1) and specificity was 81.5%
(95% CI 73.9-87.3). For Al-assisted clinicians, the overall sensitivity was 81.1% (95% CI 74.4-86.5)
and specificity was 86.1% (95% CI 79.2-90.9). Al benefitted medical professionals of all experience
levels in subgroup analyses, with the largest improvement among non-dermatologists. No publication
bias was detected, and sensitivity analysis revealed that the findings were robust. Al in the hands of
clinicians has the potential to improve diagnostic accuracy in skin cancer diagnosis. Given that most
studies were conducted in experimental settings, we encourage future studies to further investigate
these potential benefits in real-life settings.

As aresult of increasing data availability and computational power, artificial
intelligence (AI) algorithms—have reached a level of sophistication that
enables them to take on complex tasks previously only conducted by human
beings'. Several Al algorithms are now approved by the United States Food
and Drug Administration (FDA) for medical use’™. Though there are
currently no image-based dermatology AI applications that have FDA
approval, several are in development’.

Skin cancer diagnosis relies heavily on the interpretation of visual
patterns, making it a complex task that requires extensive training in

dermatology and dermatoscopy’’. However, Al algorithms have been
shown to accurately diagnose skin cancers, even outperforming experienced
dermatologists in image classification tasks in constrained settings’™.
However, these algorithms can be sensitive to data distribution shifts.
Therefore, Al-human partnerships could provide performance improve-
ments that surmount the limitations of both human clinicians or Al alone.
Notably, Tschandl et al. demonstrated in their 2020 paper that the accuracy
of clinicians supported by Al algorithms surpassed that of either clinicians
or Al algorithms working separately". This approach of an Al-clinician
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partnership is considered the most likely clinical use of AI in dermatology,
given the ethical and legal concerns of automated diagnosis alone. There-
fore, there is an urgent need to better understand how the use of AI by
clinicians affects decision making''. The goal of this study was to evaluate the
diagnostic accuracy of clinicians with vs. without Al assistance using a
systematic review and meta-analysis of the available literature.

Results

Literature search and screening

For this systematic review and meta-analysis, 2983 records were initially
retrieved, of which, 1972 abstracts were screened after the automatic duplicate
removal by Covidence (Fig. 1). As 1936 articles were considered irrelevant
and further excluded, the full text of 36 articles was reviewed. A total of
12 studies were included in the systematic review'*"*** and ten studies were
included in the meta-analysis'*'*"'*'"'""*’, whereas the information needed to
create contingency tables of Al-assisted and un-assisted medical professionals
was unavailable in two studies'*"*.

Study characteristics

Tables 1 and 2 presents the characteristics of the included studies. Half
of the studies were conducted in Asia (50%, South Korea=5, China=1)
and the other half was done in North/South America (25%, USA =1,
Argentina=1, Chile=1), and Europe (25%, Austria=1, Germany=1,
Switzerland=1). More studies were performed in experimental (67%,
n = 8) than clinical settings (33% n =4). A quarter of studies included
only dermatologists (25%, n=3), more than a half (58%, n=7)
included a combination of dermatology specialists (e.g., dermatologist
and dermatology residents) and non-dermatology medical profes-
sionals (e.g., primary care physicians, nurse practitioners, medical
students) and among these, two studies included lay persons, but this
data was not included for meta-analysis. In two studies (17%), only
non-dermatology medical professionals were included. The median
number of study participants was 18.5, ranging from 7 to 302.

Clinical information was provided to study participants in
addition to images or in-patient visits in half of the studies (50%,
n = 6). For diagnosis, outpatient clinical images were most frequently
provided (42%, n = 5), followed by dermoscopic images (33%, n =4)
and in-patient visits (25%, # = 3). Diagnostic task was either choosing
the mostlikely diagnosis (58%, n = 7) or rating the lesion as malignant
vs. benign (42%, n = 5). Most studies (75%, n = 9) used a paired design
with the same reader diagnosing the same case first without, then with
Al assistance, whereas two studies provided different images between
the two tasks. A fully crossed design (i.e., all readers diagnosing all
cases in both modalities) was performed in four studies. One study
only reported diagnosis with Al support, thus did not allow to analyze
the effect of AI'°. Studies included a reference standard that was either
varying combinations of either histopathology, a dermatologist
panel’s diagnosis or the treating physician, from medical records,
clinical follow-up or in vivo confocal microscopy (75%, n=9) or
histopathologic diagnosis on all images (17%, n=2). One study
considered either histopathology or the study participant being in
concordance with two AI tools that were studied as the reference
standard"”. Most Al algorithms did not provide explanation for their
outputs or presentation beyond the top-1 or top-3 diagnoses along
with their respective probabilities or a binary malignancy score.
Content-based image retrieval (CBIR) was the only explainability
method that was used, namely in two of the studies (17%) and
Tschandl et al."’ was the only study that delved into the effects of
various representation of Al output on the diagnostic performance of
physicians. Definition of target condition varied across studies, but all
studies included at least one skin cancer among the differential
diagnoses. The summary of methodological quality assessments can
be found in Supplementary Table 1. Although k was low (k =0.33),
the Bowker’s Test of Symmetry”’ was not significant, hence two raters
were considered having the same propensity to select categories. All
three assessors agreed with the final quality assessments.
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Fig. 2 | SROC Curves. SE sensitivity, SP specificity. Performance of clinicians with no Al assistance (a) compared to Al-assisted clinicians (b) in the included studies.

Meta-analyses results

The summary estimate of sensitivity for clinicians overall was 74.8% (95%
CI 68.6-80.1) and specificity 81.5% (73.9-87.3). The overall diagnostic
accuracy increased with Al assistance to a pooled sensitivity and specificity
of 81.1% (74.4-86.5) and 86.1% (79.2-90.9), respectively. The SROC curves
and forest plots of ten studies for clinicians without vs. with Al assistance
each are shown in Figs. 2 and 3, respectively, where less heterogeneity is
observed in the sensitivity of clinicians overall compared to clinicians with
Al assistance.

To investigate the effect of Al assistance in more detail, we conducted
subgroup analyses based on clinical experience level, test task and image
type (Table 3). We observed that dermatologists had the highest diagnostic
accuracy in terms of sensitivity and specificity. Residents (including der-
matology residents and interns) were the second most accurate group,
followed by non-dermatologists (including primary care providers, nurse
practitioners and medical students). Notably, Al assistance significantly
improved the sensitivity and specificity of all groups of clinicians. The non-
dermatologist group appeared to benefit the most from Al assistance
regarding improvement of pooled sensitivity (413 points) and specificity
(411 points). For classification task, the sensitivity of both binary classifi-
cation (malignant vs. benign) and top diagnosis improved with AI assis-
tance. Meanwhile, Al assistance significantly improved pooled specificity
only for top classification, reaching a specificity of 88.8%, (86.5-90.8). No
significant difference was observed for image type.

There was no evidence of a small-study effect in regression test
asymmetry for both humans without (p =0.33) and with AI assistance
(p=0.23). Please see Supplementary Fig. 1 for funnel plots. The Spearman
correlation test found that the presence of positive threshold effect was low
likely for both groups. Sensitivity analyses revealed that excluding outliers
slightly increased the pooled sensitivity and specificity in both groups while
the pooled sensitivity and specificity mostly remained unchanged when
excluding the low-quality study (Supplementary Table 2).

Discussion

This systematic review and meta-analysis included 12 studies and 67,700
diagnostic evaluations of potential skin cancer by clinicians with and
without AT assistance. Our findings highlight the potential of Al-assisted

decision-making in skin cancer diagnosis. All clinicians, regardless of their
training level, showed improved diagnostic performance when assisted by
Al algorithms. The degree of improvement, however, varied across spe-
cialties, with dermatologists exhibiting the smallest increase in diagnostic
accuracy and non-dermatologists, including primary care providers,
demonstrating the largest improvement. These results suggest that Al
assistance may be especially beneficial for clinicians without extensive
training in dermatology. Given that many dermatological AI devices have
recently obtained regulatory approval in Europe, including some CE
marked algorithms utilized in the analyzed studies™”, Al assistance may
soon be a standard part of a dermatologist’s toolbox. It is therefore
important to better understand the interaction between human and Al in
clinical decision-making.

While several studies have been conducted to evaluate the dermato-
logic use of new Al tools, our review of published studies found that most
have only compared human clinician performance with that of Al tools,
without considering how clinicians interact with these tools. Two of the
studies in this systematic review and meta-analysis reported that clinicians
perform worse when the Al tool provides incorrect recommendations'®"”.
This finding underscores the importance of accurate and reliable algorithms
in ensuring that Al implementation enhances clinical outcomes, and
highlights the need for further research to validate Al-assisted decision-
making in medical practice. Notably, in a recent study by Barata et al.”, the
authors demonstrated that a reinforcement learning model that incorpo-
rated human preferences outperformed a supervised learning model. Fur-
thermore, it improved the performance of participating dermatologists in
terms of both diagnostic accuracy and optimal management decisions of
potential skin cancer when compared to either a supervised learning model
or no Al assistance at all. Hence, the development of algorithms in colla-
boration with clinicians appears to be important for optimizing clinical
outcomes.

Only two studies explored the impact of one explainability technique
(CBIR) on physician’s diagnostic accuracy or perceived usefulness. The real
clinical utility of explainability methods needs to be further examined, and
current methods should be viewed as tools to interrogate and troubleshoot
Al models”. Additionally, prior research has shown that human behavioral
traits can affect trust and reliance on Al assistance in general™”. For
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Fig. 3 | Flow diagram of the study selection process. Forest plots. Meta-analysis results of the diagnostic performance of clinicians without (a) or with (b) Al assistance.

Table 3 | Subgroup analysis by clinician’s experience level, image type and classification task

Subgroups (N) Clinicians (95% CI) Al-assisted clinicians (95% CIl) p-value®
Dermatologists SE 81.8% (76.1-86.4) SE 86.5% (81.9-90.0) 0.007
N=7) SP 79.2% (70.6-85.7) SP 87.2% (81.1-91.5) <0.001
Residents® SE 77.8% (71.7-83.0) SE 85.4% (80.7-89.1) 0.003
(N=6) SP 80.1% (70.2-87.3) SP 87.6% (80.4-92.4) 0.007
Other medical professionals® SE 66.3% (55.8-75.3) SE 79.3% (71.0-85.7) 0.003
N=4) SP 70.1% (55.9-81.3) SP 80.9% (69.4-88.7) 0.011
Binary malignancy prediction SE 73.0% (63.8-80.6) SE 84.2% (77.6-89.1) 0.027
(N=5) SP 78.4% (63.8-88.2) SP 79.6% (65.5-88.9) 0.892
Top diagnosis SE 73.3% (63.0-81.6) SE 81.2% (72.8-87.5) <0.001
(N=5) SP 81.4% (78.1-84.3) SP 88.8% (86.5-90.8) <0.001
Clinical images SE 72.7% (61.7-81.6) SE 79.6% (70.1-86.6) 0.300
(N=5) SP 80.4% (65.8-89.8) SP 85.3% (73.1-92.6) 0.528
Dermoscopic images SE 78.2% (67.6-86.1) SE 84.8% (76.6-90.4) 0.258
N=4) SP 79.8% (71.4-86.2) SP 84.0% (77.0-89.2) 0.380

N number of studies, SE sensitivity, SP specificity, C/ confidence interval.
“Residents including dermatology residents and interns.

Other medical professionals including general practitioners, other medical specialists, nurse practitioners and medical students.

‘Based on two-sided z-test.

example, a clinician’s perception and confidence in the AT’s performance on
a given task may influence whether they decide to incorporate AT advice in
their decision®. Moreover, research has also shown that the human’s con-
fidence in their decision, the AI’s confidence level, and whether the human
and Al agree all influence if the human incorporates the AT’s advice”. To
ensure that Al assistance supports and improves diagnostic accuracy, future
research should investigate how factors such as personality traits™, cognitive
style” and cognitive biases™ affect diagnostic performance in real clinical
situations. Such research would help inform the integration of Al into
clinical practice.

Our findings suggest that Al assistance may be particularly beneficial
for less experienced clinicians, consistent with prior studies of human-AI
interaction in radiology ™. This highlights the potential of Al assistance as an
educational tool for non-dermatologists and for improving diagnostic
performance in settings such as primary care or for dermatologists in
training. In a subgroup analysis, we observed no significant difference
between Al-assisted other medical professionals vs. unassisted dermatolo-
gists (data not shown). However, this area warrants further research.

Some limitations need to be considered when interpreting the findings.
First, among the ten studies that provided sufficient data to conduct meta-
analysis, there were differences in design, number and experience level of
participants, target condition definition, classification task, and algorithm
output and training. Taken together, this heterogeneity implies that direct
comparisons should be interpreted carefully. Furthermore, caution is

warranted for the interpretation of the subgroup analyses due to the small
sample size of the subgroups (up to seven) and the data structure (i.e.,
repeated measures) since the same participants examined the clinical images
both without and with Al assistance in most studies. Given the low number
of studies, we refrained from performing further subgroup analyses, such as,
comparing specific cancer diagnoses in the subset of articles where these are
available. Despite these limitations, our results from this meta-analysis
support the notion that Al assistance can yield a positive effect on clinician
diagnostic performance. We were able to adjust for potential sources of
heterogeneity, including diagnostic task and clinician experience level when
comparing the diagnostic accuracy of clinicians with vs. without Al assis-
tance. Moreover, no signs of publication bias and low likelihood of threshold
effects were observed. Lastly, the findings were robust such that the pooled
sensitivity and specificity nearly stayed the same after excluding outliers or
low-quality studies.

Of note, few studies provided participating clinicians with both clinical
data and dermoscopic images, which would be available in a real-life clinical
situation. Previous research has shown that the use of dermoscopy enables a
relative improvement of diagnostic accuracy of melanoma by almost 50%
compared to the naked eye’. In one of such study, participants were expli-
citly not allowed to use dermoscopy during the patient examination".
Overall, only four studies were conducted in a prospective clinical setting,
and three of these could be included for meta-analysis. Thus, most diag-
nostic ratings in this meta-analysis were made in experimental settings and
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do not necessarily reflect the decisions made in a clinical real-world
situation.

One of the main concerns regarding the accuracy of Al tools rely on the
quality of the data it has been trained on®. As only three studies used
publicly available datasets, evaluation of the data quality is difficult. Fur-
thermore, darker skin tones were underrepresented in the datasets of the
included studies, which is a known problem in the field, as most papers do
not report skin tone outputs™. However, datasets with diverse skin tones
have been developed and made publicly available as an effort to reduce
disparity in Al performance in dermatology™. Moreover, few studies
provided detailed information about the origin and number of images that
had been used for training, validation, and testing of the Al tool and different
definitions of these terms were used across studies. There is a need for better
transparency guidelines for Al tool reporting to enable users and readers to
understand the limits and capabilities of these diagnostic tools. Efforts are
being made to develop guidelines that are adapted for this purpose,
including the STARD-AI”, TRIPOD-Al and, PROBAST-AI* guidelines, as
well as the dermatology-specific CLEAR Derm guidelines®. In addition,
PRISMA-AI" guidelines for systematic reviews and meta-analyses are being
developed. These are promising initiatives that will hopefully make both the
reporting and evaluation of Al diagnostic tool research more transparent.

Conclusion

The results of this systematic review and meta-analysis indicate that clin-
icians benefit from Al assistance in skin cancer diagnosis regardless of their
experience level. Clinicians with the least experience in dermatology may
benefit the most from Al assistance. Our findings are timely as Al is expected
to be widely implemented in clinical work globally in the near future.
Notably, only four of the identified studies were conducted in clinical set-
tings, three of which could be included in the meta-analysis. Therefore, there
is an urgent need for more prospective clinical studies conducted in real-life
settings where Al is intended to be used, in order to better understand and
anticipate the effect of AI on clinical decision making.

Methods

Search strategy and selection criteria

We searched four electronic databases, including PubMed, Embase, Insti-
tute of Electrical and Electronics Engineers Xplore (IEE Xplore) and Scopus
for peer-reviewed articles of Al-assisted skin cancer diagnosis without
language restriction from January 1, 2017, until November 8, 2022. Search
terms were combined for four key concepts: (1) AL (2) skin cancer, (3)
diagnosis, (4) doctors. The full search strategy is available in the Supple-
mentary material (Supplementary Table 3). We chose 2017 as the cutoff for
this review since this was the year when deep learning was first reported as
performing at a level comparable to dermatologists, notably in the seminal
study by Esteva et al’, which suggested that Al technology had reached a
clinically useful level in assisting skin cancer diagnosis.

We applied Google Translate software for abstract screening of non-
English articles. Manual searches were performed for conference proceed-
ings, including NeurIPS, HICSS, ICML, ICLR, AAAI, CVPR, CHIL and
ML4Health, and to identify additional relevant articles by reviewing bib-
liographies and citations of the screened papers and searching Google
Scholar.

We included studies comparing diagnostic accuracy of clinicians
detecting skin cancer with and without Al assistance. If studies provided
diagnostic data from medical professionals other than physicians this data
was also included for analysis, as long as the study also included physicians.
However, we excluded studies if (1) diagnosis was not made from either
images of skin lesions or in-person visits (e.g., pathology slides), (2) diag-
nostic accuracy was only compared between clinicians and an Al algorithm,
(3) non-deep learning techniques were used, or (4) the articles were edi-
torials, reviews, and case reports. We did not limit participants’ expertise,
study design or sample size, reference standard, or skin diagnosis if at least
one skin malignancy was included in the study. We contacted nine authors
to request additional data and clarifications required for the meta-analysis

and received data from five of them'*'*""° and clarifications from two'®"". In

four studies'*"*'>"” raw data was not available for all experiments or lesions,
and our meta-analysis included the data that was available. Studies with
insufficient data to construct contingency tables'*'® were included in the
systematic review but not in the meta-analysis.

Three reviewers performed eligibility assessment, data extraction, and
study quality evaluations (IK, JK, ZRC). Commonly used standardized
programs were employed for duplicate removal, title and abstract screening,
and full-text review (Covidence) and data extraction (Microsoft Excel).
Paired reviewers independently screened the titles and abstracts using
predefined criteria and extracted data. Disagreement was resolved by dis-
cussions with the third reviewer. IK imported the extracted data into the
summary table for systematic review and two reviewers (JK and ZRC)
verified it. JK imported the extracted data and prepared it for meta-analysis
and two reviewers (ZRC and IK) verified it. Biostatistician (AL) reviewed
and confirmed the final data for meta-analysis. All co-authors reviewed the
final tables and figures. This systematic review and meta-analysis followed
the PRISMA DTA guidelines* and the study protocol was registered with
PROSPERO, CRD42023391560.

Data analysis

We extracted key information, including true positive, false positive, false
negative, and true negative information among clinicians with and without
Al assistance. We generated contingency tables, where possible, to estimate
diagnostic test accuracy in terms of pooled sensitivity and specificity.
Additional information about the Al algorithm (e.g., architecture, image
sources, validation and Al assistance method), participants, patients, target
condition, reference standard, study setting and design, and funding were
extracted.

A revised tool for the methodological quality assessment of diagnostic
accuracy studies (QUADAS-2)** was used to assess risk of bias and concerns
of applicability of each study in four domains, patient selection, index test,
reference standard, and flow and timing (Supplementary Table 1). A pair of
reviewers independently evaluated the domains, compared the ratings, and,
if conflicted, reconciled the discrepancies through discussions led by the
third reviewer (IK, JK, ZRC).

We used the Metandi package* for Stata 17 (College Station, TX) to
compute summary estimates of sensitivity and specificity with 95% con-
fidence intervals (95% CI) of humans with Al-assistance compared to
humans without Al assistance using a bivariate model*. Summary Receiver
Operating Characteristics (SROC) curves were plotted to visually present
the summary estimates of sensitivity and specificity with 95% confidence
region and the 95% prediction region, which refers to the confidence areas
that the sensitivity and specificity of future studies likely fall into. The
Bivariate models were performed separately for clinicians with vs. without
Al assistance because the Metandi package could not handle the paired
design of the data. We applied a random effects model to account for the
anticipated heterogeneity across studies, potentially due to the variance of
the data, including the use of different AT algorithms, medical professionals,
and study settings. Heterogeneity was assessed by visual inspection of gra-
phics, including SROC curve and forest plots™*’. Additionally, we con-
ducted bivariate meta-regression analysis using the Meqrlogit package
(Stata 17, College Station, TX) by the presence of Al assistance or not, for
each experience level in dermatology (dermatologists, residents, non-
dermatology medical professionals), type of diagnostic task (binary classi-
fication or top diagnosis) and type of image (clinical or dermoscopic)
separately, to compare diagnostic accuracy by Al assistance and adjust for
the potential heterogeneity caused by these factors”. To investigate the
presence of a positive threshold effect, Spearman correlation coefficient was
computed between sensitivity and specificity”’. Pre-planned sensitivity
analyses were conducted by excluding potential outliers,* studies with poor
methodology (where at least three domains were rated as unclear or high
bias), and studies with reference standards other than only histopathology.
We examined publication bias using Deeks’ Funnel Plot Asymmetry Test,
which ran a regression on the effective sample size funnel plots vs. diagnostic
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odds ratio

*’. We calculated « statistics to evaluate the agreements between

QUADAS-2 assessors. All statistical significance was determined at p < 0.05.

Data availability

E.L. has full access to all the data in the study and takes responsibility for the
integrity of the data and the accuracy of the data analysis. All study materials
are available from the corresponding author upon reasonable request.

Code availability
The codes used in the analysis of this study will be made available from the
corresponding author upon reasonable request.
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