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Recent developments in large language models
(LLMs) have unlocked opportunities for healthcare,
from information synthesis to clinical decision
support. These LLMs are not just capable of
modeling language, but can also act as intelligent
“agents” that interact with stakeholders in open-
ended conversations and even influence clinical
decision-making. Rather than relying on
benchmarks that measure a model’s ability to
process clinical data or answer standardized test
questions, LLM agents can be modeled in high-
fidelity simulations of clinical settings and should be
assessed for their impact on clinical workflows.
These evaluation frameworks, which we refer to as
“Artificial Intelligence Structured Clinical
Examinations” (“AI-SCE”), can draw from
comparable technologies where machines operate
with varying degrees of self-governance, such as
self-driving cars, in dynamic environments with
multiple stakeholders. Developing these robust,
real-world clinical evaluations will be crucial
towards deploying LLM agents in medical settings.

The release of ChatGPT, a chatbot powered by a large language model
(LLM), has brought LLMs into the spotlight and unlocked opportunities for
their use in healthcare settings. Med-PaLM 2, Google’s medical LLM, was
found to consistently perform at a human expert level on medical exam-
ination questions scoring 85%1.While thismodel, part of Google’s family of
foundation models known as MedLM, are fine-tuned for the healthcare
industry, even large LLMs trained on openly available information from the
Internet, not just biomedical information, have immense potential to
improve and augment clinical workflows2–4. For instance, the Generative
Pre-trained Transformer-4 (GPT-4) model can generate summaries of
physician–patient encounters from transcripts of conversations5, achieve a
score of 86% on the United States Medical Licensing Examination
(USMLE)6, and create clinical question-answer pairs that are largely indis-
tinguishable from human-generated USMLE questions7. These early
demonstrations ofGPT-4 andother LLMson clinical tasks andbenchmarks
suggest that these models have the potential to improve and automate
aspects of clinical tasks.

However, the emergent capabilities of LLMs have significantly
expanded their potential beyond conventional, standardized clinical natural
language processing (NLP) tasks that primarily revolve around text pro-
cessing and question answering. Instead, there is a growing emphasis on
utilizing LLMs for more complex physician- and patient-facing tasks that
may involve multi-step information synthesis, use of external data sources,
high-level reasoning, or even simulation of clinical text and conversations8,9.

In these scenarios, LLMs should not be viewed as models of language,
but rather as intelligent “agents” that have internal planning capabilities that
allow them to perform complex, multi-step reasoning or interact with tools,
databases, other agents, or external users to better respond to user
requests9,10.Here,wediscusshowLLMagents canbeused in clinical settings,
and challenges to the development and evaluation of these approaches.

Development of LLM agents for clinical use
LLM agents can be developed for a variety of clinical use cases by providing
the LLM access to different sources of information and tools, including
clinical guidelines, databases containing electronic health records, clinical
calculators, or other curated clinical software tools9,10. These agents can
respond to user requests by autonomously identifying and retrieving rele-
vant information, or performing multi-step analyses to answer questions,
model data, orproducevisualizations.Different agents canalso even interact
and collaboratewith eachother in “multi-agent” settings to identify or check
proposed solutions to difficult problems, or tomodelmedical conversations
and decision-making processes11.

Healthcare systems are already adopting LLMs capable of powering
clinical agents; for instance, UC San Diego Health is working to integrate
GPT-4 into MyChart, Epic’s online health portal, to streamline patient
messaging12. Patients also leverage publicly available chatbots (such as
ChatGPT) to better understandmedical vocabulary from clinical notes, and
some medical centers are exploring a “virtual-first” approach where LLMs
assist in patient triaging13,14. When connected to additional sources of
information and tools, the versatility andadaptability of clinical agentsmake
them well-suited in supporting both routine administrative tasks as well as
clinical decision support.

Clinical simulations using agent-based modeling (ABM)
To evaluate the utility and safety of LLM-based chatbots as agents in these
applications, we suggest the use of benchmarks that are not confined to
traditional, narrowly-scopedassessments basedonNLPbenchmarks,which
consist of predetermined inputs and ground-truths. Instead, approaches
from agent-based modeling (ABM)15 can be used to create a simulated
environment for effective evaluation of LLMs agents. ABM is a computa-
tional framework that simulates the actions and interactions of autonomous
agents to provide insights into system-level behavior and outcomes. This
approach has been used in health policy, biology, and the social sciences to
conduct studies that simulate health behaviors and the spread of infectious
diseases16,17.
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ABMhas also been used to evaluate autonomous agents in the domain
of self-driving cars18. In this field, simulations of real-world environments
containing road obstacles, traffic signals, other cars, and pedestrians can be
used to evaluate and refine the behaviors of autonomous vehicle agents as
they encounter these different elements19. Similarly, by simulating the
clinical settings where LLM agents may be deployed, including patient-
physician interactions and hospital processes, we can use anABMapproach
to evaluate how an LLM agent may interact with users, which tools or data
an LLM employs to carry out user requests, and points of failure that lead to
erroneous outputs or downstream errors.

Interestingly, patients and physicians can also be simulated as LLM
agents in ABM environments. Previous research has demonstrated the
feasibility of employing LLMs to create “interactive simulacra” that replicate
human behavior9–11. To develop these high-fidelity simulations, data on
physician and patient behavior can be derived from real-world electronic
health records or clinical trial data, ideally with validation from multiple
hospital systems, and encompassing diverse patient populations. De-
identified datasets (e.g., MIMIC-IV, UCSF Information Commons) or
federated learning approaches can be used to help protect patient
privacy20,21.

Evaluating agent-based simulations using an AI-SCE
framework
Similar to standards and regulations for the autonomous driving industry,
identifying robust clinical guidelines and what constitutes a successful
interaction for healthcare LLM agents will be crucial towards fulfilling the
long-term goals of patients, providers, and other clinical stakeholders. In
medical education, there has been a shift from assessing students using
standardized testing which evaluates shallow clinical reasoning to modern
curricula which increasingly use Objective Structured Clinical Examination
(OSCE)22. These exams assess a student’s practical skills in the clinic,
including the ability to examine patients, take clinical histories, commu-
nicate effectively, and handle unexpected situations. Google recently
developed Articulate Medical Intelligence Explorer (AMIE), a research AI
system for diagnostic medical reasoning and conversations, which was
evaluated against the performance of primary care physicians (PCPs) in the
style of an OSCE23.

Current benchmarks for clinical NLP, including MedQA (USMLE-
style questions) andMedNLI, test if two clinical statements logically follow
each other and are often also derived from standardized tests or curated
clinical text. This information; however, is not a sufficient metric because it
fails to capture the full range of capabilities demonstrated by clinical LLM
agents24,25. As a result, we call for the development of Artificial Intelligence
Structured Clinical Examinations (AI-SCEs) that can be used to assess the
ability for LLMs to aid in real-world clinical workflows. These AI-SCE
benchmarks, whichmay be derived from difficult clinical scenarios or from
real-world clinical tasks, should be createdwith input from interdisciplinary
teams of clinicians, computer scientists, and medical researchers. OSCEs
typically consist of long lists of processes or diagnoses students are graded
on. Similarly, AI-SCE benchmarks would extend beyond traditional com-
puter science metrics, such as BLEU or ROUGE scores, that often do not
account for semanticmeaning, andwoulddraw frompreexistingmulti-turn
benchmarks26.

The AI-SCE format should be used to evaluate both the outputs of
high-fidelity agent simulations, and intermediate steps that capture the
agent’s reasoning process, tool usage, data curation, or interactions with
other agents or external users. Thus, a valuable contribution of these agents
is their ability to provide interpretability throughout the decision-making
process, as opposed to at the final step27. These evaluations can also capture

how systematic addition or removal of LLMagents affects overall outcomes.
These evaluations should be used to inform guardrails for clinical LLMs,
which have been developed for general-purpose models to constrain their
behavior28.

One added complexity of assessing agents using an AI-SCE format is
the complicated nature of many clinical tasks, where there may not be
perfect concordance with individual human evaluators. We emphasize the
continued need for a panel of human evaluators, and the importance of
testing agent outcomes on external datasets. We also recognize the
importance of post-deployment monitoring to ensure data distribution
shifts do not occur over time, and to mitigate bias in model performance25.
Furthermore, randomized control trials (RCTs) should be conducted to
compare how well these simulation environments capture real-world set-
tings, as well as the real-world impact of LLM agents in augmenting clinical
workflows.

As LLMs evolve and demonstrate increasingly advanced cap-
abilities, their involvement in clinical practice will extend beyond
limited text processing tasks29. In the near future, it may become
necessary to shift our benchmarks from static datasets to dynamic
simulation environments and transition from language modeling to
agent modeling. Drawing inspiration from fields such as biology and
economics could be beneficial for future LLM research and develop-
ment for clinical applications.
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