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A major bottleneck towards scalable many-body quantum technologies is the dif-
ficulty in benchmarking state preparations, which suffer from an exponential “curse
of dimensionality” inherent to the description of their quantum states. We present
an experimentally friendly method for density matrix reconstruction based on deep
neural-network generative models. The learning procedure comes with a built-in
approximate certificate of the reconstruction and makes no assumptions about the
purity of the state under scrutiny. It can efficiently handle a broad class of com-
plex systems including prototypical states in quantum information, as well as ground
states of local spin models common to condensed matter physics. The key insight
is to reduce state tomography to an unsupervised learning problem of the statistics
of an informationally complete quantum measurement. This constitutes a modern
machine learning approach to the validation of complex quantum devices, which may
in addition prove relevant as a neural-network Ansatz over mixed states suitable for

variational optimization.



INTRODUCTION

Since the turn of the century, advances in several competing quantum technologies have
demonstrated control and measurements sufficiently accurate to enable devices of up to tens,
or soon hundreds, of qubits [IH6]. A comprehensive characterization of modern quantum
devices entails the reconstruction of their quantum state from measurements on identically
prepared copies, a task known as quantum state tomography [7-9]. In their familiar concep-
tion, exact tomographic techniques become impractical [I0] on large quantum systems due
to the exponential complexity associated with the description of generic quantum many-
body systems. Physical systems of interest — such as those generated by the dynamics of a
local Hamiltonian — are not generic, since their particular structure guarantees that the full
complexity of Hilbert space is in principle not required for their accurate description [11], [12].
Thus, in a wide range of physical situations, a priori structural information about the state
under scrutiny can help alleviate the exponential scaling. In such cases, a reconstruction can
be achieved by introducing a plausible parametrization of the state, whose computational
manipulation and storage, as well as the number of measurements required for an accurate

reconstruction, scale favourably with system size.

Examples following this spirit include permutationally invariant tomography [13] [14],
compressed sensing [15], and tomographic schemes based on tensor networks [T6H19]. Al-
ternatively, if the target state is known, one can try to certify the fidelity between the ex-
perimental and ideal states, without attempting a reconstruction of the former [16], 20-23].
All these methods are effective for different classes of states, but they all share the draw-
back of limited versatility. Notably, even though matrix-product-state (MPS) tomography
[16], 18, 19] has led to impressive progress in the theoretical and experimental reconstruc-
tion of states of spin chains, generalizations to higher-dimensional lattices rapidly become
computationally intractable. Furthermore, even for one-dimensional lattices, the entangle-
ment limitations of MPS tomography restricts its application to states arising from only

short-time dynamics [19].



In the quest for efficiency and versatility, methodologies inspired by undirected graphical
models such as the restricted Boltzmann machine (RBM) [24] 25], as well as based on varia-
tional autoencoders|26] have recently appeared. Notably, due to their intrinsically nonlocal
structure, RBMs can represent highly entangled many-body states using a small number
of parameters [27-30]. However, a scalable formulation for density matrix reconstruction
remains elusive. In current approaches to generalize quantum state tomography to mixed
states through RBM purifications [25], training and manipulation introduces exponential

scaling in any spatial dimension.

In this paper we combine elements of two state-of-the-art classes of algorithms to intro-
duce a parametrization of the quantum state that alleviates these scaling issues. The first is
the tensor-network paradigm, designed using well-understood underlying principles of quan-
tum entanglement to efficiently represent quantum states. The second and most important
is generative models, a key ingredient in modern deep learning research. These models are
used to understand probabilistic distributions defined over high-dimensional data with rich
structure, in tasks such as density estimation, denoising, missing value imputation, and sam-
pling [31]. Generative models can be tractably defined and trained in any spatial dimension,
display an extraordinary expressive power [32], and can represent highly entangled states
[27-29, B3]. We show how to reduce state tomography to an explicit, unsupervised learn-
ing problem using probabilistic models. The reduction consists of directly parametrizing
the outcome probabilities of a tomographically complete measurement on an arbitrary state
with such models. The method is experimentally friendly since it only requires routinely
available single-particle measurements. We show that this strategy can efficiently learn a
variety of complex states, from paradigmatic multi-qubit states undergoing local noise, to
ground states of local spin models in both one and two spatial dimensions. Our approach
is also reliable since the state reconstruction can be approximately certified efficiently by

sampling from the reconstructed distribution.
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FIG. 1. Tensor-network schematics of the formalism. (a) The single-qubit measurement M =
{M (“)}a is a three-index tensor represented by a yellow circle with three emerging lines. Vertical
indices act on the physical degrees of freedom while the outcoming one labels the measurement
outcome a. (b) The N-qubit measurement M = {M(‘“) QM) .. 'M(GN)}al,...aN corresponds
to the same local measurement on each qubit. (c) The components Tg o = Tr [M (@) pr (al)] of the
overlap matrix T correspond to the physical-index contraction of the measurement operators. (d)
Consequently, when T is invertible, its inverse 7! factorizes into the tensor product of single-qubit

matrices T,

N qublt (green squares). (e) We represent the outcome distribution P as an N-index tensor

where the indices encode the measurement outcome of each qubit. (f) A generic density matrix g is

given by a contraction of P, T~!, and M over the outcome indices: g = Yaw P@) Ty o M@ (@) —

aa’

aa’

Ea~p (Za/ T-1, Mla )). Expressed this way, all non-local correlations of g are encoded explicitly
into P, as both T' and M are single-qubit factorable. Our state Ansatz parameterizes the outcome

distribution with a neural-network generative model, i.e. P = Py odel-

NEURAL REPRESENTATION OF GENERAL QUANTUM STATES AND THE
LEARNING STRATEGY

We consider measurements given by informationally complete (IC) positive-operator val-
ued measures (POVMs) (see Methods). POVMs describe the most general type of mea-

surements allowed by quantum theory, beyond the usual notion of von Neumann projective



measurements [34]. Informational completeness means that the measurement statistics con-
tains all of the information about the state, thus specifying it univocally. We consider
physical systems composed of N qubits and build our measurements starting from an m-
outcome single-qubit POVM M = {M @}, [see Fig (a)], defined by positive semi-definite
operators M > 0, each one labeled by a measurement outcome a = 0,1,..,m — 1. These
satisfy the normalization condition ) M (@ = 1. Our N-qubit measurement is given by the
tensor product of the single-qubit POVM elements M = {M(“l) QMg . .. M(“N)}al’maN,
graphically depicted in Fig (1] (b).

By virtue of Born’s rule, the probability distribution P = { P(a)}, over measurement out-
comes a = (a1, ag, ...,ay) on a quantum state o, with P(a) > 0 and ) P(a) = 1, is given
by the linear expression P(a) = Tr [M (a) Q}. Provided that the measurement is informa-
tionally complete, this relation can formally be inverted. In other words, the density matrix
can be unambiguously inferred from the probability distribution of measurement outcomes.
This can be explicitly expressed in a concise way when the overlap matrix T, of elements

Ta,a’ =Tr [M(G)M(G/)}’ is invertible: 0 = Z P(a) Ta—’(lll M(a’) — ]EaNP (Za, Ta:é, M(a/))7

a,a’
with E,.p representing the expectation value over a distributed according to P [see Figs.
(c-f) for a graphical representation of these relations]. Notice that in Fig. [I| we use the

language of tensor networks and its graphical notation, first introduced by Penrose [35], to

pictorially reason about the elements and structure of the Ansatz.

Given a collection of experimental outcomes E = {ai,as,...,ay,}, with N; samples,
our strategy begins with learning a model Poqe(@) that describes the measurement statis-
tics in terms of expressive neural generative models. This task can be carried out using a
wide variety of models and training strategies, including variational autoencoders, generative
adversarial networks, restricted Boltzmann machines, and powerful autoregressive models
based upon recurrent neural networks (RNN), among others. To demonstrate our approach,
we first consider the prototypical N-qubit Greenberger-Horne-Zeilinger (GHZ) state, which
is a highly non-classical state specified by |¥) = \% (|0)®N +[1)®N). We examine mixed

states arising from GHZ states subject to local depolarizing noise on each qubit indepen-



dently. Each qubit is depolarized (i.e., all its information lost) with probability p, while it is
untouched with probability 1 — p [34]. We measure the so-called tetrahedral POVM M,
on each qubit. This is an IC POVM with m = 4 outcomes, which is the minimum required
for informational completeness, and an invertible overlap matrix. Each measurement opera-
tor in M., is proportional to a rank-1 projector pointing to a different vertex of a regular

tetrahedron in the Bloch sphere (see Methods).

NUMERICAL EXPERIMENTS

To begin the implementation of our method, we require a parameterization of Pyoqe(@).
Because of their extensive familiarity as a tool to represent quantum states [24], 25, 27
29, [36H39], we parametrize Pyogei(@) in terms of an RBM as a first demonstration. The
main extension over traditional RBMs is the need for four-dimensional multinomial visible
units, which were previously introduced in the context of collaborative filtering [40], for
applications such as the famous Netflix Prize [41]. Using such RBMs, we learn the statistics
of numerically simulated measurements on the GHZ state with N = 2 qubits, i.e. the Bell
state |¥) = \/AE (|0) ® |0) + |1) ® |1)), under local depolarization with different values of noise

strengths 0 < p < 1. Our results are shown in Fig. [2|

The RBM model is trained using a standard contrastive divergence procedure [31], which
aims at maximizing the log-likelihood of the the data with respect to the parameters in the
model. In Fig. [2| (a) we show the Kullback-Leibler (KL) divergence Dxi, (Pgen || Prm) =

Ea-ppyy [log 12?32?14((11‘1))] , which measures how much the model distribution Prpy diverges from

the exact one Pgg. As the training progresses, the KL divergence successfully decreases to
values near zero for all values of noise p. Likewise, the classical fidelity F (Prpm, Pgen) =
Eappyy [ }jﬁil—l\f((:)) = EapPipy [ %{f{g) is a standard measure of proximity between two
distributions. Indeed, it is such that 0 < F¢ (Puodel, Pgen) < 1 for all Prpy and Pgey, with
Fo (Prpu, Pgen) = 1 if and only if Prgy = Pgen. As depicted in Fig. (b), this quantity

approaches unity as Prgy converges toward Pgey. Finally, in Fig. (c) we consider the quan-
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FIG. 2. Learning a Bell state under local depolarizing noise. (a) The Kullback-Liebler divergence
Dy, as a function of the training epochs for different depolarization probabilities p. One epoch
refers to a training cycle that exposes the learning algorithm to the entire training dataset. The
sample size of the dataset used during the training is Ny = 6 x 10* observations. The inset
displays a graphical representation of the RBM employed in the reconstruction of the state. This
architecture features a visible layer with multinomial variables a; = 0,1,2,3 (white circles) and
binary hidden units h; = 0,1 (green) connected via a set of weight parameters represented by the
grey connections.(b) The classical fidelity Fo between the reconstructed distribution Prpy and

Pgpy. (¢) The quantum fidelity F' between the depolarized Bell state and its RBM reconstruction.

tum fidelity F'(oen, orpm) = Tr [\/ +/OBell ORBM w/QBQHJ, the standard measure of proximity

between states that generalizes Fo from probability distributions to density matrices.

In general, the bound F (Prpm, Pgen) = F(0Ben, orgm) holds. However, in our numerical
experiments we observe that both the classical and quantum fidelities collectively approach
one with remarkably similar behavior as a function of the training epoch. This suggests
that the classical fidelity serves as good figure of merit for the quality of the reconstructed
quantum state. We argue that informational completeness together with the physical nature
of the state should — for most practical situations — imply that if F is close to one, then
so is F'. From an experimental perspective it is particularly natural to consider the fidelity
between P and P,,,q¢ as an indication for reconstruction quality, given that the experimental
observables correspond to samples drawn from P. Whereas F' is in practice inaccessible for

anything but modest N, Fx can be efficiently estimated accurately for large N via Monte



Carlo, as an average over samples from Ppoqel, if P is known.

We now focus on the scaling of the resources required for the learning procedure as a
function of the number of qubits N. First we observe that, for qubit numbers N > 4,
the training becomes increasingly difficult for the RBM in the regime of small noise p.
We therefore opt for a different probabilistic model based upon autoregressive recurrent
neural networks (see Appendix). These models are ordinarily used in end-to-end sequence
learning tasks [42], and are the state-of-the-art engines behind machine translation and
speech recognition systems [43] [44]. We discovered that, in our setting, RNN models are

faster to train compared to RBMs.

To study noisy GHZ states for large N, we produce synthetic datasets mimicking exper-
imental measurements of the exact distribution Pgyy (see Appendix for details). For the
tetrahedral POVM, we investigate the classical fidelity as a function of Ny used for train-
ing a RNN model Pryy for different values of N and p. We plot the results in Fig. (a).
As in the RBM case, we find that Fo (Prnn, Ponz) quickly approaches unity for all of
the states that we consider. We also find that learning the noiseless (p = 0) states takes
significantly more effort in terms of training set size. This reflects the larger amount of
information contained in a pure state relative to its depolarized counterparts [34] [45]. Re-
markably, as shown in Fig. (b), the number N} of samples required to learn the state up
to Fo (PraN, Ponz) = 0.99 is found to scale approximately linearly with N. To investi-
gate if this scaling is a just a peculiarity of the particular POVM chosen, we implement
the same learning protocol with a different measurement. We use a single-qubit IC POVM
with m = 6 outcomes, each one described by a POVM element proportional to the rank-1
projector onto one of the 6 eigenstates of the three usual Pauli matrices (see Methods). We
refer to this as the Pauli-6 POVM and denote it by Mpaui_¢. Even though the N-qubit
sample space is now exponentially larger than the tetrahedral POVM, we find out that N;
still scales linearly with N, with only a slightly larger slope than for Mi,.. While we again
define N} based on an average value of o (Pran, Ponz) = 0.99, we remark that in all cases,

the maximum classical fidelity we find is at least F (Pryn, Ponz) > 0.999 for a number of
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FIG. 3. Sample complexity of learning locally depolarized GHZ states with recurrent neural-
network (RNN) models. (a) Estimated average classical fidelity as a function of the number of
measurements performed on the GHZ state for two different values of noise p = 0 (red) and p = 0.4
(blue) using the 4-outcome tetrahedral POVM. The reported classical fidelity is an average over a
few (N, = 30) models taken around the optimal model during training and the error bars represent
the one s.d. statistical uncertainty calculated over the different models. The classical fidelity for
each model during training is estimated based upon 105 samples drawn from the RNN model. (b)
The number of samples N necessary to attain an average classical fidelity Fo (Pryn, Ponz) = 0.99.
(c) and (d) are analogous to (a) and (b) for the 6-outcome Pauli POVM. Dashed lines represent

linear fits, all of which exhibit a correlation coefficient r > 0.94.

samples N, = 106 for all system sizes and values of noise p. Finally, we note that this sample
complexity is consistent with arguments that, in a setting where measurements are chosen

probabilistically, quantum states can be approximately learned using only a linear number

of measurements [46], 47].



10

—&— Synthetic state
O Reconstructed state

—0.65

—-0.70 4/

8.0 |
5 0754 .
[ 1 QQOQQQQQQQGO
‘ 0.00 1|/| N el
—-0.80 w‘ [ 11s ééegwggomwmoeee
‘ ‘ —0.25 4/ »®
é —&— Synthetic state “
_ - @  Reconstructed stat ®
0.85 I Ieco structed state I 050 -6 , , , ,
0 20 40 0 10 20 30 40 50
1 1

C (o1 - 0;) Synthetic state

. 1.0
ol s T s
0.6 0.6
2 4 2
0.4 0.4
I3 02 2 0.2
41 44
0.0 0.0
—02 —0.2
67 04 9] 0.4
T T T T —0.6 T T T T —0.6
0 2 4 6 0 2 4 6
ni ni

FIG. 4. Learning ground states of local Hamiltonians in one and two dimensions with RNN
models for the Pauli-4 POVM (m = 4 outcomes per qubit). Similar results are obtained for the
tetrahedral POVM. Antiferromagnetic transverse-field Ising model in 1D for N = 50 spins: (a)
1-body (o7) and (b) 2-body (cjo?) correlators calculated from the exact synthetic state and from
the RNN reconstruction as a function of the lattice distance i. Antiferromagnetic translationally-
invariant Heisenberg model on the triangular lattice with N = 8 x 8 spins: 2-body correlators
(o10;) calculated from (c) the exact synthetic state and (d) from the RNN reconstruction as a
function of the position of the different lattice sites ¢. Here, ¢ = ny x L 4+ n2 labels the i-th spin

located at position r; = njai + n2az, where a; = (1,0) and ay = %(1, V/2) are primitive lattice

vectors of the triangular lattice, and n;—12 =0,1,... L — 1.

We now turn our attention to the reconstruction of states arising from ground states of
Hamiltonians with local interactions, relevant for modern condensed matter physics, quan-

tum chemistry, atomic and molecular optics, and quantum computing. We begin with the
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paradigmatic example of the antiferromagnetic transverse-field Ising model in one dimen-
sion, with Hamiltonian H = J 3}, 0i07 + h)_;07. The transverse-field Ising model is
the testbed par excellence for state-of-the-art quantum simulators in both strongly out-of-
equilibrium dynamics [6 19, 48] as well as quasi-adiabatic regimes [49H53]. It has been
demonstrated in ion traps [19, 49H51], cold atoms in optical lattices [6], [52], superconduct-
ing qubit circuits [, 48] of up to 1800 qubits [54], and Rydberg-atom platforms of up to 51
qubits [53]. We focus on the most challenging parameter regime for state reconstruction, the
quantum critical point at A/J = 1. For a system of N = 50 qubits, we first obtain synthetic
data mimicking 10% experimental POVM measurements on the ground state of H, then per-
form a reconstruction of the state from these measurements using the same RNN model used
in Fig. [3] Here, we test our method with two different IC POVMs, the tetrahedron and a
modified Pauli POVM (termed Pauli-4 POVM, Mp,,i_4). The latter can be experimentally
implemented with the same ease as Pauli-6 but with the advantages of having only m = 4
outcomes and an invertible overlap matrix (see Methods). Invertibility of T" is important
because it gives us the remarkable ability to efficiently estimate expectation values of local
observables on the reconstructed state grnn directly from Pgryn, i.e. without an explicit
construction of prnn. This is done stochastically via sampling from Pgryy (see Methods).
The resulting reconstructions attain a fidelity Fr (Prnn, Psing) &~ 0.998. Furthermore, we
find that the 1- and 2-body correlations functions (and, therefore, also the total energy)
of prnn display an excellent agreement with the synthetic state, consistent with the exact

values to within error bars (Figs. 4| (a) and (b)).

The results we have presented so far demonstrate the power and scalability of our tech-
nique on some states with simple structure, which are also amenable to previous tomography
approaches [106], [18] 19, 24, 25]. We now expand our investigation to a case that lies outside of
conventional approaches. We study a model of frustrated magnetism in two spatial dimen-
sions whose ground state possesses a highly non-trivial sign structure in the computational

basis: the antiferromagnetic Heisenberg model in the triangular lattice with Hamiltonian

Y

H=73%",,0: 0 where o; = (0f,0/,07) is the Pauli vector at site i. We use a tensor net-
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work approximation to the ground state of the model for a lattice of N = L xX L = 8x 8 = 64
spins to produce synthetic samples from the tetrahedral and Pauli-4 POVM measurements
(see Appendix for details). We find that, surprisingly, the RNN model learns the state with
a similar success as in the one-dimensional case. Apart from the classical fidelity, which, e.g.,
for the Pauli-4 measurement, reaches F: (Prnn, Pheisenberg) = 0.98, we observe a remarkable
agreement between the correlation function (o - o;) measured from our reconstruction grnn

and the exact value in the synthetic state (see Figs. 4| (¢) and (d)).

We take advantage of this example to emphasize that our state ansatz corresponds to
a contraction between a neural function approximator parametrizing P and a Kronecker
factorized tensor network composed of local, complex-valued tensors, which are efficiently
contractible. The sign structure of the state is provided by the factorized tensor, weighted
by the distribution P(a). All of the entanglement, and — more generally — any potential
classical intractability in the state, can be directly traced back to P. One can readily apply
any other powerful state-of-the-art probabilistic model and training strategy, such as, e.g.,
the variational autoencoder, generative adversarial networks, and generic factor graphs, all
of which have natural definitions in higher spatial dimensions. These and other models
may lead to representations of quantum states beyond those considered in this manuscript.
Compared to previous approaches [24] 25] [36], which rely on complex-valued generalizations
of graphical models, our neural networks contain only real parameters, which makes them
faster to train. Thus, our ansatz may prove applicable in the study of ground and thermal

states of quantum many-body systems via variational energy minimization.

CONCLUSIONS AND OUTLOOK

In conclusion, these results demonstrate a scalable machine learning procedure for re-
constructing pure and mixed states with structure described by a wide range of generative
models in conjunction with easily available measurements. The procedure includes a certi-

fication scheme based upon the classical fidelity of the measurement statistics. We demon-
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strated our method for prototypical states in quantum information as well as ground states of
local Hamiltonians relevant to condensed matter, cold atomic systems, and quantum simula-
tors. Most importantly, this work demonstrates how state-of-the-art algorithms in machine
learning, combined with established tensor network frameworks in quantum physics, may
help make headway in validating and characterizing quantum simulators and commercially

available quantum devices in the near-term era of approximate quantum computing [55].

METHODS

I. INFORMATIONALLY COMPLETE GENERALIZED MEASUREMENTS

Generalized (non von Neumann) measurements are described by positive-operator valued
measures (POVMs). These are defined by decompositions M = {M (@}, of the identity 1,
ie. > M (@) = 1, in terms of non-negative operators M@ > 0. Additionally, a POVM
M is said to be informationally complete (IC) if its elements M (¥ span the whole space
of bounded-norm, linear operators on the Hilbert in question, where the density matrix to
reconstructs lives. Here we consider 3 different single-qubit IC POVMs.

The first one is the tetrahedral POVM My = {M (@ — i(]l + sl@ .

a)}a€{0,1,2,3}7

whose outcomes correspond to sub-normalized rank-1 projectors along the directions s(® =

(0,0,1), s = (22,0, 1), 8@ = (=L, /2, ~1) and s®) = (-2, —\/2, —1) in the Bloch
sphere. These define a regular tetrahedron, which explains the name and also renders M,
symmetric. A POVM is symmetric if the overlap between any two different elements is the

same, i.e. if its overlap matrix has constant non-diagonal elements. The overlap matrix

11 1 1
4 12 12 12
1 1 1 1
12 4 12 12
T = 1
tetra 111 1 ( )
12 12 4 12
1 1 1 1
L 12 12 12 4 J

of M., is invertible. The experimental implementation of M., relies on Neumark’s

dilation theorem [56]. This states that any POVM composed of m rank-1 operators on a d-
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dimensional Hilbert space, for d < m, can be accomplished by a properly crafted projective
measurement in an extended Hilbert space with dimension m. This implies that M. can
be physically realized by coupling the system qubit to an ancillary qubit and performing a
von Neumann measurement on the two qubits (see, e.g., Ref. [57] for explicit constructions).

The second example is the Pauli-6 POVM Mp,.;_¢ with m = 6 outcomes. Each one of its
elements is, again, a sub-normalized rank-1 projector: Mp,ui_¢ = {M(O) = %x 00|, M) =
L 11, M@ = L ) (], MO = L =) =], M® = 1 x [r)(r], M®) = L x (1]},

where {|0),|1)}, {|4+),]|—)}, and {|r),|l)} stand for the eigenbases of the Pauli operators

z

o* o”

, and 0¥, respectively. Hence, this POVM encapsulates into a single (generalized)
measurement all three usual (von Neumann) Pauli measurements. Therefore, it can be
physically implemented directly (with no ancilas) by first randomly choosing z, y, or z, and

then measuring the respective Pauli operator. Clearly, any positive probabilities other than

1

5 are possible too. This POVM is not symmetric, and its overlap matrix is

10 1/21/2 1/2 1/2
0 1 1/21/21/21/2
. 1/21/2 1 0 1/21/2 | @)
911/21/2 0 1 1/21/2
1/21/21/21/2 1 0
1/21/21/21/2 0 1 |

which is not invertible. This means that the linear inversion of Figs. [I| (d) and (f) is
not possible. It also implies that estimations of expectation values of local observables
are difficult even for moderate N. Luckily, however, non-invertibility poses no particular
challenge for the estimation of the classical fidelity, as discussed in the main text.

The third single-qubit POVM we consider is the Pauli-4 POVM Mp,ui_4 = {M 0 =
1x|0)(0], MO = 2 x [+ (+], M® = Ix|r)(r|, M® = 1—M© — MO — M@} The Pauli-
4 can be physically implemented with the same ease as Pauli-6. In fact, the experimental
procedure is almost the same, the only difference being that, for Pauli-4, one adds a trivial
classical post-processing that identifies three different outcomes (a = 1, a = 3, and a = 5)

of Pauli-6 with a single one (a = 3) of Pauli-4. Pauli-4 is neither symmetric nor rank-
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FIG. 5.  Direct estimation of local observables from Ng model samples (i.e., without omoder),
for the exemplary case of a single-qubit observable O (orange tensor) and N = 3. The expecta-
tion value Tr [O omoder] (left-hand side) equals the expected value Eqop, .., [Qo(a)] of a random
variable Qo (a) defined by an a-dependent tensor contraction (right-hand side), with the string a
schematically represented by the blue, rhombus-shaped single-index tensors. The expected value
can in turn be efficiently Monte-Carlo estimated as an average over Ny realizations of Qo(a) with

a sampled from Ppogel-

1. However, apart from the computational advantage of having only m = 4 outcomes, its

overlap matrix

1 1/21/2 1]
11/2 1 1/21
Trowia = 7 / / - (3)
911/21/2 1 1
11 1 6

is invertible.

II. DIRECT STOCHASTIC ESTIMATION OF LOCAL OBSERVABLES

Given samples N, from a model distribution Py,qe, parametrizing a state gmoqel, and a
single-qubit factorable POVM with invertible overlap matrix, it is possible to efficiently com-
pute the expectation value (O) = Tr [O pmodel] Of any observables O acting non-trivially only
on a constant (i.e. N-independent) number of qubits. Remarkably, this can be done directly
from the samples, i.e. without the reconstructed density matrix gnoqe1. Particular examples

of such observables are the 1- and 2-body correlators studied in Fig. To see this, note
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first that, since M is IC, one can expand any arbitrary observable as O = >~ Qo(a) M@,
where Qp(a) are a-priori unknown complex coefficients. These coefficients are univocally
specified by the linear system of equations Tr [O M (“/)} => ,Qo(a)T,q, for all @', which
can be straightforwardly solved because T is invertible and factorable. Then, using the
above expansion, note that Tr [O omedel] = D, Q0(@) Puodel(@) = Eqop,, .., [Qo(a)]. Now,
since O has non-trivial support only a constant number of qubits, the variance of Qo(a)
(as a random variable over a) is independent of N. Therefore, the expected value over a
sampled from P,qe can be estimated efficiently up to arbitrary constant precision ¢ (i.e.,
with the computational run-time and N, both scaling polynomially in N and £7!) by an

average Ni >, Qola) over Ng samples of the random variable Qo(a). See Fig. .

Analogously, apart from local observables, one can also directly estimate efficiently the
expectation value of non-local observables Oypo that admit an efficient matrix-product
operator decomposition, provided that the variance of Qo,,, (@) scales polynomially with
N. This includes the quantum fidelity between g,,0401 and a target MPS of constant bond

dimension, again provided that the corresponding variance scales well (see the appendix).
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SUPPLEMENTARY INFORMATION

IV. GENERATIVE MODELS

A. RBM with softmax units

The number of measurement outcomes at each qubit is m = 6 for the Pauli-6 and m = 4
tetrahedral and Pauli-4 POVMs. To represent these measurement distributions P,,qe for
a system with N qubits we first employ an RBM with N m-index visible units [40]. We
encode the states of each unit through one-hot vectors with m components on each qubit.
A one-hot vector is a 1 x m vector used to distinguish each measurement outcome. The
vector consists of zeros in all cells with the exception of a single 1 in a cell used uniquely
to identify the measurement. The sampling strategy we follow uses block Gibbs sampling,

where groups of two or more variables are sampled together from their joint distribution
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conditioned on all other variables, rather than sampling from each one individually. The
conditional probabilities are given by
(S S Wb

nH Lokl lpl o pk!
22}—1 er > Wi th+b;

p(of=11h)= (4)

Here ny is the number of L-dimensional hidden units. W} is the ijki-th element of the
weight matrix W, which is a 4-index array encoding the interaction between the different
states k and [ in the visible and hidden units i and j, respectively. The b¥ are the biases in the

visible unit and there is an analog expression for the hidden units aé. The energy of the RBM

is given by E(v,h) = =3, WhoFhl — 57 bFvf — 37, abhl, while the joint probability
e—E(v,h)
Z

over the visible and hidden units is given by P(v,h) = , where Z = Y | e”P@h),

We train our RBMs using standard block Gibbs sampling and contrastive divergence [31].

B. Recurrent neural network models

Recurrent neural networks (RNN) are extensions of the traditional feedforward neural
networks designed to process sequential data [31], 58]. In our context, the data corresponds
to a measurement outcome string a = (ay, as, ..., ay), which we understand as a sequence of
single-qubit outcomes according to the given ordering of the qubits. The RNNs process se-
quential data by updating a recurrent hidden state h; whose value at each time is dependent

on that of the previous steps, i.e.
hi= ¢ (hi-1,a;;0), (5)

where ¢ is a non-linear function with parameters 8 In its original form, RNNs process h; 1
via

hi = f (Wlas;hi_1]), (6)
where [x;y] concatenates a k-dimensional vector & and an g-dimensional vector y. The
matrix W contains the trainable parameters of the model. The function f is either a sigmoid
o or a hyperbolic tangent tanh, both of which act element-wise on any matrix or vector.

The vector a; correspond to a one-hot vector encoding of the integer outcome a; at qubit 4.
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A generative RNN model outputs a probability distribution over the next element in a

sequence given all previously observed measurements, i.e.
P(CL7;|CL1,...,CL1‘_1) :S<hz_1,U) (7)

where S is a softmax and U is a matrix with parameters optimized during training. Using

the chain rule of probability, the full model is given by
Pmodel(al, as ... CLN) = P (al) P (a2|a1) P (CL3|CL1, CLQ) Ce P (aN|a1, as ... CLN_l) . (8)

In its original form, training RNNs is challenging since capturing long-term dependencies
between the qubit measurements tends to make the gradients of the cost function with
respect to the parameters in the RNN either explode or vanish. Furthermore, because of
the recurrent structure, the long-term dependencies tend to be masked exponentially with
respect to the effect of short-term dependencies. To overcome these limitations, a possible
direction is to modify the recurrent unit using a long short-term memory (LSTM) unit [59],
which are explicitly developed to avoid the long-term dependency problem. Similarly, the
gated recurrent unit (GRU) [60], which was originally introduced in the context of neural
machine translation, is designed to adaptively capture dependencies of different scales. The

GRU processes the sequential data through

zi =0 (W, [hi-1;ai) (9)
r; = o (W, [h;_1; a;])

h; = tanh (W, [r; ® hi_1; a)) . (10)
h;

=(1-2)0hi 1 +2z0h, (11)

Here the hidden state h; is updated through a linear interpolation between the previous
activation h;_; and the candidate hidden state fzz The update gate z; decides how much
to update the contents of the hidden state. Here 7; is a set of reset gates and ® denotes
element-wise vector multiplication. When the reset gates are “oft”, i.e. r; = 0, they cancel

out the unit which then acts as if it is reading the first element of the sequence, effectively
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FIG. 6.  Probabilistic RNN model. (a) Graphical representation of the gated recurrent unit
described in Eq. [9] and used in our numerical experiments. (b) Our deep RNN model stacks three
GRU units (yellow blocks) followed by a fully connected layer with a softmax activation denoted by
S. (c) Enumeration and one-dimensional path along which the RNN processes the measurement

outcomes for the two-dimensional Heisenberg model.

making the unit “forget” part of the sequence that has already been encoded in the state
vector h;, if necessary. The matrices W, , . parametrize the GRU and are optimized using
standard maximum likelihood estimation. The GRU in Eq. [9 are graphically represented in
Fig. [0l For Fig. [6] we emphasize that the meaning of lines, circles, and squares is different
from the tensor-network notation used througout the text. Here, lines with arrowheads
denote incoming vectors from the output of one node to the inputs of others. The magenta
circles/elipses represent pointwise operations such as vector addition or multiplication. The
blue rectangles represent neural network layers labeled by the type of nonlinearity they used.
Lines merging denote vector concatenation, while lines forking means the vector is copied

and used in another operation.

To make our models more expressive we train a deep RNN model with three stacked
GRU units (see Fig. [6[b)). In all of our experiments the dimension of the state vector h; is
set to 100. In one spatial dimension there is a natural enumeration scheme for the lattice
sites (e.g. from right to left or viceversa) along which the RNN model processes the data.
In the absence of a notion of spatial dimensionality, like in the GHZ state, one can choose
an arbitrary enumeration of the qubits. In two dimensional systems, such as the triangular

Heisenberg model in the manuscript, we choose an enumeration of the lattice sites which,
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in turn, defines a one-dimensional path filling the two-dimensional lattice. The RNN then
uses this path to process and learn the data. This is exemplified in Fig. [f](c) for a 4 x 4

triangular lattice. An analogous enumeration is used in our experiments in the main text.

V. DIRECT STOCHASTIC ESTIMATION OF QUANTUM FIDELITY WITH
RESPECT TO AN MPS

For POVMs with invertible overlap matrix, the quantum fidelity between a reconstructed
state omodel and a generic pure state |¥) can in principle be computed sampling the model

distribution P,.qe. Since one of the states is pure, the squared fidelity is given by

F? <|\P><\Ij| ) Qmodd) = Epmodel [Q|‘I’>(‘I’|(a’)} ) (12)

with Qpuyw(a) = > 4 T(;;, (U| M@ |W). Whereas the computation of each Qyyw|(a) is
in general intractable, it can be done efficiently for any state |¥) admitting an efficient
MPS representation (see Fig. [7). In addition, however, for the Monte-Carlo estimation to
converge efficiently, it is also required that the variance of the estimtor Q|yyw|(a) does not
grow too fast in N. Unfortunately, we find that the variance of Qyyw|(a) for the N-qubit
GHZ state (see Sec. for its MPS representation) grows dramatically with NV, making the
estimation unfeasible for systems as small as N ~ 8. It is an open question whether there

are non-trivial MPS states for which the corresponding variance grows slowly with N.

VI. MATRIX PRODUCT OPERATOR REPRESENTATION OF THE NOISY
GHZ AND ITS SAMPLING

The GHZ state in the absence of noise p = 0 can be written down as an MPS of bond
dimension x = 2 [61]. The non-zero elements of the MPS tensors are displayed in Fig.
(a). Similarly, the locally depolarized GHZ state can be expressed as an MPO with bond
dimension x = 4 as follows. Given an N-qubit MPS representation of the pure GHZ, attach
an ancilary ququart initialized in a reference state |0)4 to each of the N system qubits.

Then apply a local unitary operator Usa acting on the system qubit (S) and ancilla (A),
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FIG. 7. Estimation of the quantum fidelity between gmedel and a target |¥) directly from Nj
samples from the model distribution Ppoge for N = 3. If |¥) is an MPS (blue circles) of constant
bond dimension, it can be expressed as the virtual-index contraction of 2- and 3-index tensors of
constant size. The squared fidelity corresponds to the contraction of the MPS with gpoqel (left-
hand side). This, in turn, can be efficiently Monte-Carlo estimated as an average (right-hand side)

over Ny realizations of Qyyy|(a) with a sampled from Pyodel

which realizes a unitary dilation of the depolarizing channel. Once the ancilla is traced
out, the desired locally depolarized state is obtained on S. More precisely, the single-qubit
depolarizing channel can be realized by an isometry mapping the state of the qubit |¥) 4 to

(qubit + ancilla ququart) |¥) g state acting as [45]

(W)ar— [W)ap = \/1Tp|‘1’>s®|0>A+\/§ (05[¥)s @ 1) a +05[W)s @ [2)4 + 05|¥)s @ [3)4),
(13)
and then subsequently tracing the ancila out (see Fig. [§ (b)). On an N-qubit system, apply
this operation on each of the qubits. The resulting tensor is reinterpreted and reshaped as
the factors (Fig. [§ (¢)) in an MPO that represents the density matrix of the system, as
depicted Fig. |8 (d).
Given a factorable POVM, and an MPO density matrix with small bond dimension Yy, the
measurement statistics Pyipo, depicted graphically in Fig. |§| (a), can be tractably sampled
using the ideas introduced in Ref. [62]. Our strategy invokes the chain rule of probabil-

ity in Eq. and computes sequentially a series of conditional single-qubit probabilities
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= 2-1/(2N)

FIG. 8. Tensor-network description of the GHZ states. (a)The non-zero elements of the tensors
representing the GHZ state as an MPS (b) Applying the unitary operator Usa locally to the tensors
in the pure GHZ and their ancillae. (c) The tensor in (b) is reshaped to a 4 dimensional tensor

making up the MPO representation of the noisy GHZ state in (d).

a b c
FIG. 9. Sampling an outcome string a from Pypo. (a) Tensor-network representation of Pypo.

The marginal conditional probability P (ag|ai) is calculated as the ratio of the vector (b) and

normalization constant (c).

{P(ay), P (as]ay),... Plan|ai<n)}, each of which can be computed efficiently for the tensor
network representation in Fig. [J] (a). First we compute P(a;) by contracting the entire ten-

sor network from right to left with constant vectors (white vectors e = (1,1,1,1) in Fig. [9]
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(b)). Then we sample P(a;) and fix its index to the obtained sample a) [blue diamond vector
with components a} = §; , in Fig. @ (b)]. Proceed to site 2 and compute P (as|a;) which is

1

the ratio between P (a},as) = > P (a},aq,as,...,ay) [graphically depicted in Fig. @

asz,...,aN
(b)] and P(ay) = >, .. o P (@}, a2,a3,...,ayx) presented in Fig. @ (c). Sample P (az|a;)
and continue doing the same for the rest of qubits in the system until the N-th qubit is

reached. Note that apart from the exact sample @' = (a},a), dj, ..., aYy), its probability is

also tractable and given by Eq. [§

VII. DENSITY-MATRIX RENORMALIZATION GROUP CALCULATIONS

The training datasets for the reconstruction of the ground states of spin Hamiltonians
have been generated using the density matrix renormalization group (DMRG). The algo-
rithm is implemented within the framework of MPSs, and it is executed using the ITensor
library [63]. Given a particular spin model, with the Hamiltonian expressed as a MPO, the
DMRG algorithm attempts to find the optimal MPS with the lowest energy. The elements
of the N tensors in the MPS are optimized using a unit cell containing two sites. For the
one-dimensional antiferromagnetic Ising model at the critical point, the ground state is ob-
tained by performing 5 DMRG sweeps along the chain. The resulting MPS for N = 50 spins
has bond dimension y = 25, and a cut-off error of 9.93 x 1071°. The second spin model we
considered is the Heisenberg model on a two-dimensional triangular lattice. Given the sym-
metries of the Hamiltonian, we restrict the DMRG calculations to the sector corresponding
to a zero total magnetization, ) |, 07 = 0. To find an approximation to the ground state of
the model, we perform 10 DMRG sweeps with a maximum bond dimension of y = 200, and

a resulting truncation error of 1.8 x 1074,
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