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Abstract 

Recently deep learning methods have been applied to process biological 

data and greatly pushed the development of the biological research 

forward. However, the interpretability of the deep learning methods still 

needs to improve. Here for the first time, we present scCapsNet, a totally 

interpretable deep learning model adapted from CapsNet. The scCapsNet 

model retains the capsule parts of CapsNet but replaces the part of 

convolutional neural networks with several parallel fully connected 

neural networks. We apply scCapsNet to scRNA-seq data. The results 

show that scCapsNet performs well as a classifier and also that the 

parallel fully connected neural networks function like feature extractors 

as we supposed. The scCapsNet model provides contribution of each 

extracted feature to the cell type recognition. Evidences show that some 

extracted features are nearly orthogonal to each other. After training, 

through analysis of the internal weights of each neural network connected 

inputs and primary capsule, and with the information about the 

contribution of each extracted feature to the cell type recognition, the 

scCapsNet model could relate gene sets from inputs to cell types. The 

specific gene set is responsible for the identification of its corresponding 

cell types but does not affect the recognition of other cell types by the 

model. Many well-studied cell type markers are in the gene set with 

corresponding cell type. The internal weights of neural network for those 

well-studied cell type markers are different for different primary capsules. 

The internal weights of neural network connected to a primary capsule 

could be viewed as an embedding for genes, convert genes to real value 

low dimensional vectors. Furthermore, we mix the RNA expression data 

of two cells with different cell types and then use the scCapsNet model 

trained with non-mixed data to predict the cell types in the mixed data. 

Our scCapsNet model could predict cell types in a cell mixture with high 

accuracy. 
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Introduction  

Single Cell RNA sequencing (scRNA-seq) could measure gene 

expression levels in individual cells. Using scRNA-seq data, it is possible 

to reveal heterogeneity in a cell population[1, 2], identify new cell types, 

computationally order cells along trajectories[3, 4], and infer the spatial 

coordinates of every individual cell in a population[5, 6]. 

 

As the scRNA-seq data accumulates quickly, it is important to retrieve 

similar cell types. For example, scMCA suggested a pipeline for cell type 

determination by comparing the input single-cell transcriptome with 

pre-calculated reference transcriptome to provide a match score based on 

gene expression correlation[7]. Since many cell types have already been 

well defined, supervised learning is an ideal tool to classify undefined 

cells. Besides the final goal of classification or similar cell type retrieval, 

the interpretability of the classification process is also important. By 

demonstrating which features are extracted for obtaining a specific 

decision and how these features contribute to the decision, the classifier 

could offer valuable information to the downstream operation such as 

biomarker discovery. Deep learning model is a proper tool to deal with 

vast and complex data such as RNA-seq data, but lacks of 

interpretability[8]. Therefore, there is a need for a model that utilizes the 

deep learning method with increased interpretability [9, 10]. 

 

Recent years, deep learning methods have been applied to process 

biological data [11-13]. Specifically, several deep learning models were 

used to analyze scRNA-seq data for various purposes. The neural 

networks which incorporate prior information were used to reduce the 

dimensions of the data[9] or discriminate tumor subtypes and their 

prognostic capability[10]. Variational inference (VI) method could 

achieve interpretable dimensionality reduction[14], single cell 
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grouping[15], and approximating parameters which govern the 

distribution of expression value of each gene in each cell[16]. Generative 

adversarial network (GAN) was proved useful to simulate gene 

expression and predict perturbation in single cell[17]. 

 

The CapsNet is a novel deep learning model which is used in the task of 

digit recognition and exhibits more interpretability [18].The CapsNet 

model could be used in protein structure classification and prediction [19, 

20] and hold the great potential to apply in network biology and disease 

biology with data from multi-omics dataset [11]. 

 

Here for the first time, we propose a modified CapsNet model suitable for 

scRNA-seq data. In our experiment, we substitute the feature extraction 

part which uses convolutional neural networks in CapsNet with several 

parallel fully connected neural networks that use Rectified Linear Unit 

(ReLU) as the activation function. We reckon that, the parallel neural 

networks would function as a feature extractor. We call this modified 

model as “scCapsNet” and apply it to scRNA-seq data of mouse retinal 

bipolar cells [21] and human peripheral blood mononuclear cells (PBMC) 

[22]. We show that after training, the feature extraction part of scCapsNet 

could capture features from scRNA-seq data. And the capsule network 

part would compute the precise contribution of those captured features for 

cell type recognition. After training, through analysis of the internal 

weights of each neural network connected inputs and primary capsule, 

and with the information about the contribution of each extracted feature 

to the cell type recognition, the scCapsNet model could relate gene sets 

from inputs to cell types. The specific gene set is responsible for the 

identification of its corresponding cell types but does not affect the 

recognition of other cell types by the model. So genes in the gene set are 

vital for the cell type identity. We found that many well-studied cell type 
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markers are among the gene set corresponding to the cell types. The 

internal weights of neural network for those well-studied cell type 

markers are different for different primary capsules, and give different 

kinds of representation. The internal weights of neural network connected 

to a primary capsule could be viewed as an embedding for genes, convert 

genes to real value low dimensional vectors, and analogize to the 

embedding of word (word2vec) in natural language processing [23]. With 

different requirements (primary capsules), the embedding is different. We 

also mix the expression data of two cells with different cell types together 

and use scCapsNet trained with non-mixed data to predict the types of the 

mixed data. The scCapsNet performs well to correctly predict the two cell 

types. 

 

Methods 

Datasets and data preprocessing 

The two scRNA-seq datasets used in this work are mouse retinal bipolar 

neurons profiled by the Drop-Seq technology [21] and human peripheral 

blood mononuclear cells (PBMC) sequenced by 10X [22]. For data 

consistence, we directly adopt the data processing module from previous 

work[16]. After preprocessing, the mouse retinal dataset consists of 

19829 cells with 13166 genes in each cell and the PBMC dataset consists 

of 11990 cells with 3346 genes in each cell. All expression data is 

converted into log-scale through log(x+1). We randomly divide the whole 

dataset into training set and validation set with ratio 9 to 1 by the method 

of train_test_split in the python package sklearn.model_selection. 

 

scCapsNet model  

We adapt our scCapsNet model from previous CapsNet model. The 

architecture of our model is shown in Figure 1. The model contains two 
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parts, one of which is feature detection part and the other is capsule 

network part. In the original CapsNet, the convolutional kernels were 

used as a local feature extractor for image input. Instead, we choose 

several parallel fully connected neural networks using Rectified Linear 

Unit (ReLU) activation function as the feature extractor. The output of 

each fully connected neural network is a vector with equal length of 

sixteen-dimension, and could be viewed as “primary capsule” in the 

original CapsNet. This part of our model converts the feature in RNA 

expression to the activities of local feature extractors. Next, the 

information would be delivered through primary capsule to the capsule in 

the final layer by “dynamic routing”. The capsule in the final layer，which 

corresponds to cell type and called “type capsule”, is a sixteen-dimension 

vector. The dynamic routing operation with three iterations occurs 

between the primary capsule layer and the type capsule layer. In our 

cell-type classification task, the length of the final layer type capsule 

represents the probability that one cell belongs to that cell type as the 

original CapsNet. 

 

Feature extraction and its contribution to type recognition 

The detailed description for dynamic routing could be found in the 

original CapsNet paper[18]. In our scCapsNet model, the primary 

capsules that store the extracted features are first multiplied by weight 

matrices to produce “prediction vectors”. The dynamic routing process 

would calculate the “coupling coefficients” between each primary 

capsule’s prediction vectors and all type capsules. So the total number of 

coupling coefficients is the product of the number of primary capsules 

multiplied by the number of type capsules. The coupling coefficients of 

one primary capsule would sum up to one. After dynamic routing, the 

type capsule is actually a weighted sum of prediction vectors from 

primary capsules. The weights are the coupling coefficients and the 
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magnitude of those coefficients indicates the contribution of the primary 

capsules to the type capsules. So the coupling coefficients could be views 

as the likelihood of the cell type containing the extracted feature stored in 

the primary capsules. 

 

Genes related with a specific feature and cell type 

Between RNA-seq inputs and a primary capsule, a fully connected neural 

networks using Rectified Linear Unit (ReLU) activation function is used 

as a feature detector. After training, the internal weights of the neural 

networks are determinant. So, the weights associated with each gene 

(Figure S1) could be used as a label for each gene. Principle component 

analysis (PCA) is used to reduce the dimension of the internal weights of 

the neural networks. Then genes are plotted according to their first two 

principle components. The genes are chosen along one principle 

components. The effect of the exclusion of the chosen genes on cell type 

classification is measured by the prediction accuracy of each cell type. 

 

Neural networks for model comparison 

In order to model comparison, we replace the capsule part in scCapsNet 

with fully connected neural networks. The concatenated feature extraction 

layer is directly connected to a fully connected neural network with final 

classification layer using sigmoid as activation function (FigureS2). The 

loss function is as the same as that of scCapsNet model. 

 

Mixed dataset and two- type detection 

We mix the RNA expression of two different type cells with ratios of 1:1, 

3:2, 2:1, 5:2 and 3:1. For type prediction of mixed data, all models are 

trained with non-mixed data. In order to make the models output two cell 

types, the top two largest scores in the output of both scCapNet and 

comparison model are selected, and only the correct prediction of both 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 21, 2019. ; https://doi.org/10.1101/506642doi: bioRxiv preprint 

https://doi.org/10.1101/506642


types is viewed as positive result. Each scalar between 0 and 1 in the 

output of both scCapNet and comparison model represents the probability 

that one cell belongs to one particular cell type. A threshold could be set 

for the second largest score, the cell which outputs a score below this 

threshold would be discarded. The prediction accuracy among the 

non-discarded cells would be calculated. Then the percentage that how 

many cells are not discarded is computed.  

 

Results 

To test our model, two single cell RNA-seq datasets are used. One 

consists of mouse retinal bipolar neurons profiled by the Drop-Seq 

technology and the other consists of human peripheral blood 

mononuclear cells (PBMC) generated by 10X. Both datasets are 

randomly divided into training set and validation set with a ratio of 9:1. 

The model is run several times to access the prediction accuracy. For 

mouse retinal bipolar neurons dataset consisting of 19829 cells of 15 

types and 13166 genes, the training accuracy reaches nearly 100% and 

the average validation accuracy is around 98%. For human PBMC dataset 

consisting of11990 cells of 9 types (we exclude cells with type “other”, so 

there were actually 8 types) and 3346 genes, the training accuracy reaches 

nearly 100% and the average validation accuracy is around96%. 

 

Primary capsule and cell type recognition 

We want to find whether the primary capsule that output by feature 

extraction part could capture the properties in the single cell RNA-seq 

dataset. Furthermore, we want to explore how the extracted features 

contribute to the cell type recognition. The coupling coefficient could 

describe the relationship between the type capsule and the primary 

capsule (method). For our supervising learning task, we could group the 

coupling coefficients of the cells with prior known same cell type and 
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calculate the average coupling coefficients for cells with one specific type. 

So we first compute the average coupling coefficients of each cell type in 

the validation set of the PBMC dataset and draw the heatmaps (Figure 

2A). From the heatmaps, we find that for input cells with one specific cell 

type, one or several primary capsules contribute to the type recognition 

for this specific cell type but not obvious for other type. For example, 

among all the averaged coupling coefficients, the coupling coefficients of 

the primary capsule nine-B cells type capsule and the primary capsule 

fifteen-B cells type capsule are relatively higher than rest coupling 

coefficients for B cells input (Figure 2A,0). The coupling coefficient of 

the primary capsulezero-CD14+ monocyte type capsule is obviously 

higher than rest coupling coefficients (Figure 2A, 1). 

 

Next, in order to explore how one primary capsule affects the cell type 

recognition, we combine the average coupling coefficients with type 

capsules corresponding to specific cell types together into an overall 

heatmap (Figure 2B). We also use TSNE and PCA to reduce the 

dimension of each primary capsule, and plot the 2D-TSNE results 

(Figure 2C) and 2D-PCA results (Figure S3). We find some relationship 

between the overall heatmap of average coupling coefficients and the 

2D-TSNE plot of each primary capsule. The details would be described 

hereafter. 

 

For example, the overall heatmap indicates the primary capsule zero 

contributes to the CD14+monocytes recognition, and the 2D-TSNE plot 

of primary capsule zero shows that the CD14+ monocytes are clustered 

together and locate on the top and cells of rest cell types are mixed 

together on the bottom (Figure 2C, 0). The overall heatmap indicates the 

primary capsule one and two contribute to the CD4 T cell recognition, 

and the 2D-TSNE plot of primary capsule one and two show that the CD4 
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T cells locate on the left bottom and are almost separate from the cells of 

other cell types (Figure 2C, 1 and 2).The overall heatmap indicates that 

the primary capsule three and four mainly contribute to the CD8 T cell 

recognition, and the 2D-TSNE plot of primary capsule three and four 

show that the CD8 T cells locate on the left and are separate from the 

cells of other cell types especially NK cells which normally could not be 

distinguished from CD8 T cells in most 2D-TSNE plot (Figure 2C, 3 and 

4).The overall heatmap indicates that the primary capsule seven 

contributes to the dendritic cells recognition, and the 2D-TSNE plot of 

primary capsule seven shows that the Dendritic cells locate on the left and 

are almost separate from the cells of other cell types(Figure 2C,7).The 

overall heatmap indicates that the primary capsule eight and nine 

contribute to the B cells recognition, and the 2D-TSNE plot of primary 

capsule eight and nine show that the B cells locate on the bottom and are 

separate from the cells of rest cell types (Figure 2C, 8 and 9).The overall 

heatmap indicates that the primary capsule thirteen contributes to the 

FCGR3A+ monocytes recognition, and the 2D-TSNE plot of primary 

capsule thirteen shows that the FCGR3A+ monocytes locate on the 

bottom (Figure 2C,13).The overall heatmap indicates that the primary 

capsule fifteen contributes to the NK cells recognition, and the 2D-TSNE 

plot of primary capsule fifteen shows that the NK cells locate on the 

bottom and are separate from cells of other cell types especially CD8+ T 

cells (Figure 2C,15). 

 

We also perform the same procedure on the mouse retina datasets. The 

heatmap of average coupling coefficients for input cells of prior known 

one specific cell type shows that, one or several primary capsules 

contribute to the type recognition for this specific cell type but not 

obvious for other type (Figure 3A). For example, among all the average 

coupling coefficients, the coupling coefficients of primary capsule 
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fourteen-BC5A type capsule and primary capsule eleven-BC5A type 

capsule are obviously higher than other coupling coefficients for BC5A 

cells input (Figure 3A,2). The coupling coefficients of primary capsule 

five-BC7type capsule and primary capsule eleven-BC7 type capsule are 

obviously higher than other coupling coefficients for BC7 cells input 

(Figure 3A,3). The coupling coefficient of primary capsule ten-BC3A 

type capsule is obviously higher than other coupling coefficients for 

BC3A cells input (Figure 3A, 11). The coupling coefficient of primary 

capsule fourteen-BC5D type capsule is obviously higher than other 

coupling coefficients for BC5D cells input (Figure 3A, 10). 

 

We also combine the average coupling coefficient with type capsules 

corresponding to specific cell type inputs together into an overall heatmap 

(Figure 3B) and draw the 2D-TSNEand 2D-PCA plot of outputs of every 

primary capsule (Figure 3C and Figure S4). The overall heatmap 

indicates that the primary capsule two contributes to the BC6 cell 

recognition, and the 2D-TSNE plot of primary capsule two shows that 

most BC6 cells are clustered together on the top and cells of other cell 

types especially cone cells are mixed together on the bottom (Figure 

3C,2). The overall heatmap indicates that the primary nine contributes to 

the BC5C cell recognition, and the 2D-TSNE plot of primary capsule 

nine shows that the BC5C cells are clustered on the top and cells of other 

cell types especially cone cells are mixed together on the bottom (Figure 

3C, 9). The overall heatmap indicates that the primary four contributes to 

the BC3B and RBC cell recognition, and the 2D-TSNE plot of primary 

capsule four shows that the BC3B and RBC cells locate on the left and 

are almost separate from the rest cells (Figure 3C,4).The overall heatmap 

indicates that the primary five contributes to the BC1A, BC1B and BC7 

cell recognition, and the 2D-TSNE plot of primary capsule five shows 

that the BC1A, BC1B and BC7 cells located on the right and are almost 
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separate from the rest cells (Figure 3C, 5).The overall heatmap indicates 

that the primary capsule ten contributes to the BC1B and BC3A cell 

recognition, and the 2D-TSNE plot of primary capsule ten shows that the 

BC1B and BC3A cell locate on the bottom and are almost separate from 

the rest cells (Figure 3C, 10).The overall heatmap indicates that the 

primary fourteen contributes to the BC5D, BC5B and BC5A cell 

recognition, and the 2D-TSNE plot of primary capsule fourteen shows 

that the BC5D, BC5B and BC5A cells locate on the left and are almost 

separate from the rest cells (Figure 3C, 14).The heatmap indicates that 

the primary capsule eleven contributes to the BC2, BC6,BC7, BC5A and 

RBC cell recognition, and the 2D-TSNE plot of primary capsule eleven 

shows that the BC2, BC6,BC7, BC5A and RBC cells are independently 

clustered for their own cell type and cells of other cell types are mixed 

together (Figure 3C, 11). 

 

From the above observation, we find the association between heatmap of 

average coupling coefficients and 2D-TSNE plot of primary capsules. If 

the heatmap indicates one primary capsule contributes to certain cell type 

recognition, the cells belong to those cell types would independently 

cluster into separate groups, while cells labeled as other cell types would 

mix together. This phenomenon reveals that the primary capsule actually 

captures some properties of scRNA-seq datasets, and contribution of 

those captured properties to the cell type recognition could be measured 

by coupling coefficients. 

 

Specific gene set, primary capsule and cell type recognition 

After model training, the internal weights of the neural network (Figure 

S1) that connect inputs and primary capsule are determinant. For a 

primary capsule, the internal weights associated with a gene could be 

views as a label for that gene. Furthermore, this real-value low dimension 
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label actually represents an embedding which embeds the gene into low 

dimension space according to the needs for a specific primary capsule. 

Then, we perform PCA on internal weights of the neural network for a 

primary capsule and choose genes along one principle component in 

order to find their role in the cell type recognition.  

 

We use primary capsule three, which is related to CD8 T cell recognition 

(Figure 2B), for demonstration. As show in Figure 4A, the genes are 

plotted according to their first two principle components. We choose 

genes along the principle component one, and set the inputs value of the 

chosen genes to zeros. Then this deficit dataset, with inputs value of 

many genes being set to zero, and the untouched dataset are both fed into 

trained model. We found that when setting the inputs value of several 

genes to zero (Figure 4A, blue dots), the trained model almost could not 

recognize the CD8 T cell while the ability to identify other cell types is 

almost not affected (Figure 4D). Furthermore, we also draw heatmaps of 

average coupling coefficients (Figure 4B) for deficit dataset and combine 

the average coupling coefficients with type capsules corresponding to 

specific cell types together into overall heatmap (Figure 4C). The 

heatmaps and the overall heatmap show that except CD8 T cells, other 

cells are not affected by the exclusion of several genes (setting gene value 

to zero), comparing to untouched dataset (Figure 2A, 2B). For CD8 T 

cells, the exclusion of several genes in the inputs prevents them from 

being identified as CD8 T cells. Instead, CD8 T cells are recognized CD4 

T cells and natural killer cells (Figure 4E), due to the similarity of 

remaining genes. The heatmaps shows that the CD8 T cells inputs without 

specific genes could displace the characteristic of either CD4 T cells or 

NK cells (Figure 4B, 3), although with much lower scores (Figures 4B, 2 

and 7).  
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All evidence above shows that the set of specific genes (Figure 4A, blue 

dots) are vital for CD8 T cells identity. The exclusion of those genes 

prevents model to correctly recognize CD8 T cells, while barely affects 

the recognition of cells with other cell types. With the same procedure, 

we could identify the gene set specific for each cell type in PBMC dataset 

(Figures S5-S10, Figure 5). One specific gene set is vital to one cell type 

recognition and almost does not affects the recognition of other cell types 

(Figures S5-S10 and Figure 5, D). With the loss of the essential genes 

for their identity, most B cells are misclassified as CD4 T cells (Figure 

S5, F), most CD4 T cells are identified as CD8 T cells (Figure S7, F), 

most DC cells are identified as FCGR3A+ monocytes (Figure S8, F), 

most FCGR3A+ monocytes are identified as CD14+ monocytes (Figure 

S9, F), most Natural killer cells are identified as CD8T cells (Figure 5, 

F).  

 

We also found similar phenomenon on mouse retinal bipolar cells dataset 

(Figure S11). A specific gene set is identified that associates with BC3B 

cells (Figure S11, A). With the exclusion of genes from this gene set, the 

ability of the trained model to recognize BC3B cells is significant damage, 

while other functions of the trained model are still largely retained 

(Figure S11, B-E). 

 

The primary capsule fifteen seems at least responsible for the recognition 

of Natural killer cells and B cells (Figure 2B). The exclusion of several 

genes along principle component one axis (Figure 5, A, blue dots) 

prevent trained model recognizing Natural killer cells (Figures 5, C and 

D) and misclassify them as CD8 T cells (Figures 5, B and E). 

Furthermore, the exclusion of several genes along principle component 

two axis (Figure 6, A, blue dots) prevents trained model recognizing B 

cells (Figure 6, C and D) and misclassifies most of them as CD4 T cells 
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(Figure 6, B and E). The example of primary capsule fifteen 

demonstrates that one primary capsule could be responsible for multiple 

type recognition by store different features in different orientation and 

different features may be orthogonal to each other. 

 

Decomposition of features, embedding of genes into low dimensional 

space 

Since several gene sets and their associated cell types have been 

identified, the question emerged immediately is that how the well-studied 

cell type markers are represented in trained scCapsNet model. We choose 

CD8A for CD8 T cells, CD14 for CD14+ monocytes and CD19 for B 

cells as examples for demonstration. We plot the first two principle 

components of PCA for internal weights of neural network connecting to 

primary capsule three (CD8 T cells), primary capsule one (CD14 

monocytes) and primary capsule nine (B cells), then mark the positions of 

CD8A, CD14 and CD19 with colored stars on the plots (Figure 7). The 

plots show that each well-studied cell type maker is included in the 

specific gene set for their corresponding cell type identified by model, 

while is not in the specific gene set for other cell types. The embedding of 

those maker genes is different for different primary capsule. 

 

In order to get a big picture about how the genes are embedded for 

different primary capsules. We combine the weight of neural networks of 

primary capsule zero, one, three, five, seven, nine, thirteen and fifteen 

(Figure 2B), which we investigate before (Figures 4, 5 and S5-S10), 

together and perform PCA. The explained variance and explained 

variance ratio for each principle component is drawn (Figure 8A). Then 

we plot the different pair of principle component for genes with color and 

shape corresponding to the primary capsules, and name each primary 

capsule with its most responsible cell type (Figure 8B). The plots show 
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that the embedding of genes from a particular primary capsule could be 

well explained by a principle component. For example, the embedding of 

genes from primary capsule one (CD4 T cell) and principle component 

two (Figures 8B, top left, bottom left and bottom middle) are highly 

correlated. And the embedding of genes from primary capsule fifteen 

(CD4 T cell) and principle component four (Figure 8B, top left, bottom 

left and bottom middle) are highly correlated. Those relationships 

indicate that the some features extracted by scCapsNet model are nearly 

orthogonal to each other. 

 

We then mark the CD8A (Figure S12), CD14 (Figure S13) and CD19 

(Figure S14) on the plot of combined weights (Figure 8B). The position 

of each gene are scattered around the whole plot and indicate that each 

gene is embedded differently from different primary capsule. So each 

primary capsule assigns a particular embedding strategy that compel 

genes embed in a low dimension space, in order to fulfill their role in the 

cell type classification process.  

 

Mixture recognition 

In hinton's paper, the dynamic routing made the CapsNet capable of 

recognizing multiple objects in an image even if the objects were 

overlapped, although the model was trained with the single 

non-overlapped objects in image[18]. We mimic the overlapped objects in 

an image by adding the gene expression of two cells with different ratio 

in single cell RNA-seq data. We want to test whether our model trained 

with non-mixed data could decouple the data which is a mixture of two 

different types of cells. The results show that our model could accomplish 

the cell type prediction of the mixture with high accuracy. As we expect, 

the more unequal the cell mixture is, the lower prediction accuracy the 

model could make (Table 1, 2). 
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Although the overall prediction accuracies of our scCapsNets model are 

slightly lower than those of the comparison model, when we set a 

threshold to the results, we could easily find that the comparison model 

tends to give a lower probability as compared to scCapsNet. Under the 

same threshold, the percentage that the cells which output a score above 

this threshold by scCapsNet are obviously larger than the corresponding 

percentage of the comparison model (Table 1, 2). 

 

Discussion 

We demonstrate that the proposed scCapsNet model performs well in the 

cell type prediction. The parallel fully connected neural networks could 

function like a feature extractor as convolutional neural networks in the 

original CapsNet model. Furthermore, the capsule part of our scCapsNet 

model forces the feature extraction part to capture local feature even 

specific to just one cell type. The model could provide the precise 

contribution of each extracted feature to the cell type recognition. 

Through the analysis of the internal weights of each neural network 

connected inputs and primary capsule, and with the information about the 

contribution of each extracted feature to the cell type recognition, the 

scCapsNet model could relate gene sets from inputs to cell types. Those 

type specific gene sets are vital for the cell type identity. The loss of those 

genes could significantly damage the model's ability to recognize 

corresponding cell type.  

 

To sum up, our scCapNet model could automatically extract features 

from data, and then use those extracted features to accomplish the cell 

type classification task and compute the exact contribution of each 

extracted feature to the type classification. Therefore, our scCapsNet 

model could potentially be used in the classification scenario where 
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multiple information sources are available such as -omic datasets with 

data generated across different biological layers (e.g., transcriptomics, 

proteomics, metabolomics) [11]. By integrating the different information 

sources to classification, our scCapsNet model could provide the precise 

contribution of each information source. And it is seem that our 

scCapsNet model is more suitable for biological data than original 

CapsNet model.   

 

The internal weights of the neural network that connect inputs to primary 

capsule is a matrix with rows represent genes. The real value vector of a 

row could be viewed as a low dimension embedding of a gene. The 

embedding of the same gene from different context that relates different 

primary capsule may vary substantially, due to the embedding is 

constrained by the function of the corresponding primary capsule. For 

example, if the corresponding primary capsule is responsible for the B 

cell recognition, then the genes associate with B cell identity would be 

embedded in similar way. Those embedding with specific purpose could 

be utilized in downstream analysis such as the research of gene function 

and gene-gene relationship.  

 

In view of such high prediction accuracy to recognize mixed data, our 

scCapsNet model and the comparison model could potentially apply to 

wide range of research areas related to scRNA-seq. For example, cells 

develop or differentiate from stem cells to terminal differentiated cells 

through a trajectory. Along the trajectory, there are several states that have 

already been well characterized before. Training with those well defined 

states which could be viewed as landmarks, these two models could infer 

the locations of the testing cells on the trajectory by reporting two 

landmark states. Then, the testing cells could be viewed as at an 

intermediate state between the two reported landmarks. Like reporting the 
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intermediate state of a cell, these two models could also be used to infer 

the intermediate position of a cell given several well defined landmark 

cells. 
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Figures 

Figure 1: Architecture of scCapsNet with two layers. First layers consist 

of sixteen parallel fully connected neural networks for feature extraction. 

Each output of the neural network is viewed as a primary capsule. The 

subsequent layer is directly adopted from CapsNet for classification. 

Information flows from primary capsules to final layer type capsules. 

Then the length of each type capsule represents the probability of input 

data belonging to the corresponding cell type. 

Figure 2A: The heatmaps of coupling coefficients for PBMC dataset. 

Each heatmap represents the average coupling coefficients of inputs cells 

that belong to one specific cell type. In the heatmap, the row represents 

type capsules and column represents primary capsules. For example, the 

row zero represents B cells type capsule. The total number of the 

coupling coefficients is the product of the number of the type capsules 

multiplied by the number of the primary capsules. The order of the 

subplot is from left to right and top to bottom with index from zero to 

seven. 

Figure 2B: The overall heatmap of average coupling coefficients with 
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type capsules corresponding to specific cell type inputs for PBMC dataset. 

The row represents type capsules and column represents primary 

capsules. 

Figure 2C: The 2D-TSNE plots of primary capsules of input cells from 

validation set for PBMC dataset. Each subplot represents a primary 

capsule. The order of the subplot is from left to right and top to bottom 

with index from zero to fifteen. 

Figure 3A: The heatmaps of coupling coefficients for mouse retina 

bipolar cells dataset. Each heatmap represents average coupling 

coefficients of inputs cells that belong to one specific cell type. In the 

heatmap, the row represents type capsules and column represents primary 

capsules. For example, the row zero represents the RBC type capsule. 

The total number of the coupling coefficients is the product of the number 

of the type capsules multiplied by the number of the primary capsules. 

The order of the subplot is from left to right and top to bottom with index 

from zero to fourteen.  

Figure 3B: The overall heatmap of average coupling coefficients with 

type capsules corresponding to a specific cell type input for mouse retina 

bipolar cells dataset. The row represents type capsules and column 

represents primary capsules. 

Figure 3C: The 2D-TSNE plots of primary capsules of input cells from 

validation set for mouse retina bipolar cells dataset. Each subplot 

represents a primary capsule. The order of the subplot is from left to right 

and top to bottom with index from zero to fifteen. 

Figure 4: The identification of the gene set specific for CD8 T cell 

recognition. A. The plot of the first two principle components (PC) of 

PCA which perform on internal weights of neural network that connect 

inputs and primary capsule three. Each dot represents a gene. Blue dots 

are chosen for genes exclusion. B. The heatmaps of coupling coefficients 

for deficit PBMC dataset in which the inputs value of blue dot genes are 
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set to zero. C. The overall heatmap of average coupling coefficients with 

type capsules corresponding to a specific cell type input for deficit PBMC 

dataset. D. The comparison of prediction accuracy of each cell type 

between the untouched PBMC dataset and the deficit PBMC dataset. E. 

The proportion misclassified cell types of CD8 T cells with deficit PBMC 

dataset.  

Figure 5: The identification of the gene set specific for NK cell 

recognition. A. The plot of the first two principle components (PC) of 

PCA which perform on internal weights of neural network that connect 

inputs and primary capsule fifteen. Each dot represents a gene. Blue dots 

are chosen for genes exclusion. B. The heatmaps of coupling coefficients 

for deficit PBMC dataset in which the inputs value of blue dot genes are 

set to zero. C. The overall heatmap of average coupling coefficients with 

type capsules corresponding to a specific cell type input for deficit PBMC 

dataset. D. The comparison of prediction accuracy of each cell type 

between the untouched PBMC dataset and the deficit PBMC dataset. E. 

The proportion misclassified cell types of NK cells with deficit PBMC 

dataset.  

Figure 6: The identification of the gene set specific for B cell recognition. 

A. The plot of the first two principle components (PC) of PCA which 

perform on internal weights of neural network that connect inputs and 

primary capsule fifteen. Each dot represents a gene. Blue dots are chosen 

for genes exclusion. B. The heatmaps of coupling coefficients for deficit 

PBMC dataset in which the inputs value of blue dot genes are set to zero. 

C. The overall heatmap of average coupling coefficients with type 

capsules corresponding to a specific cell type input for deficit PBMC 

dataset. D. The comparison of prediction accuracy of each cell type 

between the untouched PBMC dataset and the deficit PBMC dataset. E. 

The proportion misclassified cell types of B cells with deficit PBMC 

dataset.  
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Figure 7: The positions of three well-studied cell type marker on the plot 

of principle components of PCA which preform on internal weights of 

neural network that connect inputs and primary capsule.  

Figure 8: The analysis of embedding for genes associated with different 

primary capsules through PCA. A. The explained variance and explained 

variance ratio for each principle component. B. The plots of different 

pairs of principle components. The labels of each dot are associated with 

the corresponding primary capsules which named by their related cell 

types.  

 

Tables 

Table 1: The performance of different models on the task of cell mixture 

types recognition for PBMC dataset. The threshold is set for the second 

largest score in the output of the model. The scCapsNet is our model, and 

NN is the comparison model which uses the fully connected neural 

networks to replace the capsule networks. The percentage is calculated by 

the number of the cells those are not filtered out by the threshold divided 

by the total number of cells. The accuracy is calculated among the cells 

that are not filtered out by the threshold. 

Table 2: The performance of different models on the task of cell mixture 

types recognition for mouse retina bipolar cell dataset. The threshold is 

set for the second largest score in the output of the model. The scCapsNet 

is our model, and NN is the comparison model which uses the fully 

connected neural networks to replace the capsule networks. The 

percentage is calculated by the number of the cells those are not filtered 

out by the threshold divided by the total number of cells. The accuracy is 

calculated among the cells that were not filtered out by the threshold. 

 

Supplementary Figures 

Figure S1: The visualization of internal weight of neural network which 
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connect inputs and a primary capsule. Each gene could represent by 

weight related to it.   

Figure S2: The architecture of the comparison neural network model. 

The comparison model retains the feature extraction layer of scCapsNet, 

but the capsule network part is substituted by a fully connected neural 

network with sigmoid activation function for classification.  

Figure S3: The 2D-PCA plots of primary capsules of input cells from 

validation set for PBMC dataset. Each subplot represents a primary 

capsule. The order of the subplot is from left to right and top to bottom 

with index from zero to fifteen. 

Figure S4: The 2D-PCA plots of primary capsules of input cells from 

validation set for mouse retina bipolar cells dataset. Each subplot 

represents a primary capsule. The order of the subplot is from left to right 

and top to bottom with index from zero to fifteen. 

Figure S5-S10: The identification of the gene sets specific for B cell, 

CD14+ monocytes, CD4 T cells, Dendritic cells, FCGR3A+ monocytes, 

and Megakaryocytes recognitions. A. The plot of the first two principle 

components (PC) of PCA which perform on internal weights of neural 

network that connect inputs and primary capsule nine, zero, one, seven, 

thirteen and five. Each dot represents a gene. Blue dots are chosen for 

genes exclusion. B. The heatmaps of coupling coefficients for deficit 

PBMC dataset in which the inputs value of blue dot genes are set to zero. 

C. The overall heatmap of average coupling coefficients with type 

capsules corresponding to a specific cell type input for deficit PBMC 

dataset. D. The comparison of prediction accuracy of each cell type 

between the untouched PBMC dataset and the deficit PBMC dataset. E. 

The proportion misclassified cell types of B cell, CD14+ monocytes, 

CD4 T cells, Dendritic cells, FCGR3A+ monocytes, and Megakaryocytes 

with deficit PBMC dataset.  

Figure S11: The identification of the gene set specific for BC3B cells, 
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recognitions. A. The plot of the first two principle components (PC) of 

PCA which perform on internal weights of neural network that connect 

inputs and primary capsule. Each dot represents a gene. Blue dots are 

chosen for genes exclusion. B. The overall heatmap of average coupling 

coefficients with type capsules corresponding to a specific cell type input 

for deficit mouse retinal bipolar neurons dataset. C. The comparison of 

prediction accuracy of each cell type between the untouched mouse 

retinal bipolar neurons dataset and the deficit mouse retinal bipolar 

neurons dataset. D. The proportion misclassified cell types BC3B with 

deficit mouse retinal bipolar neurons dataset. E. The heatmaps of 

coupling coefficients for deficit mouse retinal bipolar neurons dataset in 

which the inputs value of blue dot genes are set to zero. 

Figure S12-14: The position of CD8A, CD14 and CD19 on The plots of 

different pairs of principle components of Figure 8B.  
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threshold 
 

      0.5        0.4        0.3               0.2        0.1 

mixture % scCaps
Net 

NN scCaps
Net 

NN scCaps
Net 

NN scCapsN
et 

NN scCapsN
et 

NN 

1:1 Accuracy 0.992  0.993  0.989  0.986  0.978  0.98  0.955  0.959  0.927  0.925  

percentage 
 

0.157  0.073  0.3  0.195  0.469  0.364  0.658  0.593  0.852  0.829  

3:2 Accuracy 0.983  0.974  0.975  0.982  0.962  0.968  0.942  0.949  0.905  0.908  

percentage 0.113  0.056  0.215  0.145  0.377  0.285  0.565  0.492  0.795  0.774  

2:1 Accuracy 0.959  0.961  0.954  0.959  0.93  0.953  0.912  0.919  0.874  0.878  

percentage 0.058  0.028  0.139  0.091  0.254  0.196  0.434  0.371  0.687  0.675  

5:2 Accuracy 0.907  0.912  0.907  0.932  0.888  0.919  0.87  0.877  0.835  0.842  

percentage 0.038  0.016  0.085  0.056  0.178  0.139  0.328  0.286  0.592  0.577  

3:1 Accuracy 0.841  0.892  0.838  0.879  0.819  0.867  0.831  0.831  0.788  0.799  

percentage 0.027  0.013  0.06  0.039  0.127  0.1  0.256  0.233  0.524  0.509  

Table 1 
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threshold 
 

      0.5        0.4        0.3               0.2        0.1 

mixture % scCaps
Net 

NN scCaps
Net 

NN scCaps
Net 

NN scCapsN
et 

NN scCapsN
et 

NN 

1:1 Accuracy 0.991 1.0 0.989 1.0 0.984 0.999 0.977  0.994 0.957 0.975 

percentage 
 

0.153 0.009 0.256 0.047 0.403 0.149 0.584 0.344 0.809 0.638 

3:2 Accuracy 0.988 1.0  0.981 1.0 0.976 0.996 0.966 0.99 0.943 0.964 

percentage 0.123 0.007  0.21 0.039 0.339 0.122 0.497 0.29 0.73 0.569 

2:1 Accuracy 0.961 1.0  0.961 0.991 0.96 0.99 0.943 0.979 0.917 0.938 

percentage 0.081 0.005 0.146 0.027 0.242 0.086 0.388 0.221 0.618 0.475 

5:2 Accuracy 0.919 1.0 0.93 0.987  0.924 0.981 0.911 0.952 0.876 0.894 

percentage 0.055 0.004 0.099  0.017  0.17 0.059 0.289 0.16 0.516 0.397 

3:1 Accuracy 0.861 0.833 0.876 0.949  0.867 0.959  0.87 0.921  0.824 0.84  

percentage 0.037 0.001  0.068 0.01  0.121 0.039  0.219 0.12   0.433 0.342  

Table 2 
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