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Outbreaks of the COVID-19 epidemic have been causing 
worldwide health concerns since December 2019. The 
virus causes fever, cough, fatigue and mild to severe respi-

ratory complications, which, if very severe, can lead to patient 
death. On 6 March, there were 98,192 cumulated cases of infec-
tion across the world and 3,045 deaths had been reported1. On 11 
March, the virus outbreak was declared a pandemic by the World 
Health Organization2. So far, it has been reported that 13.8–19.1% 
of COVID-19-infected patients in Wuhan, China, became severely 
ill3–5. Furthermore, recent reports have exposed an astonishing 
case fatality rate of 61.5% for critical cases, increasing sharply with 
age and for patients with underlying comorbidities6. The severity 
of cases is putting great pressure on medical services, leading to a 
shortage of intensive care resources.

Unfortunately, there is no currently available prognostic bio-
marker to distinguish patients that require immediate medical atten-
tion and to estimate their associated mortality rate. The capacity to 
identify cases that are at imminent risk of death has thus become 
an urgent yet challenging necessity. Under these circumstances, we 
retrospectively analysed the blood samples of 485 patients from the 
region of Wuhan, China, to identify robust and meaningful mark-
ers of mortality risk. A mathematical modelling approach based 
on state-of-the-art interpretable machine learning algorithms was 
devised to identify the most discriminative biomarkers of patient 
mortality. The problem was formulated as a classification task, 

where the inputs included basic information, symptoms, blood 
samples and the results of laboratory tests, including liver function, 
kidney function, coagulation function, electrolytes and inflam-
matory factors, taken from originally general, severe and critical 
patients (Table 1), as well as their associated outcomes correspond-
ing to either survival or death at the end of the examination period. 
Through optimization, this classifier aims to reveal the most crucial 
biomarkers distinguishing patients at imminent risk, thereby reliev-
ing clinical burden and potentially reducing the mortality rate.

Medical records were collected by using standard case report 
forms that included epidemiological, demographic, clinical, 
laboratory and mortality outcome information (Table 2 and 
Supplementary Data 1). The clinical outcomes were followed up to 
24 February 2020. The study was approved by the Tongji Hospital 
Ethics Committee.

Data resources
The medical information of all patients collected between 10 
January and 18 February 2020 were used for model development. 
Data originating from pregnant and breast-feeding women, patients 
younger than 18 years and recordings with data material less than 
80% complete were excluded from subsequent analysis. For 375 
patients, fever was the most common initial symptom (49.9%), fol-
lowed by cough (13.9%), fatigue (3.7%) and dyspnoea (2.1%). The 
age distribution of the patients was 58.83 ± 16.46;years, and 59.7% 
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were male. The epidemiological history included Wuhan residents 
(37.9%), familial cluster (6.4%) and health workers (1.9%). The lab-
oratory results are shown in Table 2. Of the 375 cases included in the 
subsequent analysis, 201 recovered from COVID-19 and were dis-
charged from the hospital, while the remaining 174 died> deceased. 
Following this, 110 newly discharged or deceased patients between 
19 February 2020 and 24 February 2020 were enrolled for analysis 
as an external test dataset.

The minimal, maximal and median follow-up times (from 
admission to hospital to death or discharge) for all 485 (375 + 110) 
patients are 0 days 02:01:58 (hours: minutes: seconds), 35 days 
04:05:54 and 11 days 04:15:36, respectively. The high mortality rate 
seen in our study was related to the fact that Tongji Hospital admit-
ted a higher rate of severe and critical cases in Wuhan. A patient’s 
severity was empirically assessed by medical doctors according to 
the criteria in Table 1 only at admission7. Figure 1 summarizes the 
outcome of patients in three different classes.

Development of a machine learning model
Most patients had multiple blood samples taken throughout their 
stay in hospital. However, the model training and testing uses only 
the data from the final sample as inputs to the model to assess the 
crucial biomarkers of disease severity, distinguish patients that 
require immediate medical assistance and accurately match cor-
responding features to each label. Nevertheless, the model can be 
applied to all other blood samples and the predictive potential of 
the identified biomarkers estimated (see Estimation of the predic-
tion horizon section). Missing data were ‘−1’ padded. The model 

output corresponds to patient mortality. Patients that survived were 
assigned to class 0 and those that died to class 1.

The performance models were evaluated by assessing the classi-
fication accuracy (ratio of true predictions over all predictions), the 
precision, sensitivity/recall and F1 scores (defined below):

Precisioni ¼
TPi

TPi þ FPi
ð1Þ

Recalli ¼
TPi

TPi þ FNi
ð2Þ

Table 1 | Criteria for assessment of disease severity upon 
hospital admission

Diagnosis criteria

One epidemiological 
history

Any two clinical manifestations

Lived in Wuhan within 14 
days before onset; had 
contact with patients 
with fever and respiratory 
symptoms from Wuhan 
within 14 days before onset; 
had contact with COVID-
19 patients (positive for 
COVID-19 nucleic acid) 
within 14 days before onset; 
or part of a familial cluster 
of onsets

Fever and/or respiratory symptoms; 
normal or decreased total white blood 
cell count or decreased lymphocyte count 
during early stage of onset; typical imaging 
features

One of the following aetiological 
evidences:

SARS-CoV-2 nucleic acid is positive in 
respiratory or blood samples detected 
by RT-PCR; virus sequence detected in 
respiratory or blood samples share high 
homology with the known sequence of 
SARS-CoV-2

Patient’s classification

General Severe Critical

At least one epidemiological 
history + at least two clinical 
manifestations + one 
aetiological evidence of 
COVID infection

Evidence of COVID 
infection + one of the 
following aetiological 
evidences:

Evidence 
of COVID 
infection + one 
of the three 
following 
conditions:

Patients with pneumonia 
signs in CT scans are defined 
as general

RR interval ≥ 30 b.p.m.; 
SpO2 ≤ 93% at rest.

Shock; need 
mechanical 
ventilation; 
admitted into ICU 
because of MODS

RT-PCR, polymerase chain reaction with reverse transcription; SpO2, saturation of peripheral 
oxygen; ICU, intensive care unit; MODS, multiple organ dysfunction syndrome.

Table 2 | Epidemiological, demographic, clinical, laboratory and 
mortality outcome information collected from medical records

Characteristics Overall

Age, mean (s.d.) (years) 58.83 (16.46)

Gender, n (%)

 Male 224 (59.7)

 Female 151 (40.3)

Epidemiological history, n (%)

 Wuhan residents 142 (37.9)

 Contact with confirmed or suspected patients 2 (0.5)

 Familial cluster 24 (6.4)

 Health worker 7 (1.9)

 Contact with Huanan Seafood Market 2 (0.5)

 Undefined contact history 198 (52.8)

Symptoms on onset, n (%)

 Fever 187 (49.9)

 Cough 52 (13.9)

 Fatigue 14 (3.7)

 Dyspnoea 8 (2.1)

 Chest distress 7 (1.9)

 Muscular soreness 2 (0.5)

Outcomes, n (%)

 Survival rate 201 (53.6)

 Mortality rate 174 (46.4)

Laboratory test (patient’s last measurements)

 LDH, median (range, Q1–Q3) (U l–1) 273.50 (199.00, 617.75)

 Lymphocytes, median (range, Q1–Q3) (%) 14.35 (4.17, 27.53)

 High-sensitivity C-reactive protein (mg l–1) 26.3 (2.0, 99.10)

 Sodium median (range, Q1–Q3) (mmol l–1) 140.7 (138.3, 143.3)

 Chlorine median (range, Q1–Q3) (mmol l–1) 102.3 (99.53, 105.58)

 International normalized ratio (range, Q1–Q3) 1.10 (1.02, 1.30)

 Eosinophils, median (range, Q1–Q3) (×109 l–1) 0.02 (0.00, 0.09)

 Eosinophils, median (range, Q1–Q3) (%) 0.25 (0.00, 1.50)

 Monocytes, median (range, Q1–Q3) (%) 6.25 (2.98, 8.90)

 Albumin, mean (s.d.) (g l–1) 32.67 (6.31)

Data were first tested for normality. The Kolmogorov–Smirnov test was used to test whether a 
single sample was from a particular distribution, then this single-sample Kolmogorov–Smirnov 
test checked the normality of the data. A test level of α = 0.05 and P < 0.05 indicate that a 
sample does not fit a normal distribution.LDH, lactic dehydrogenase. The continuity variables of 
normal distributions are described by the mean (s.d.) and the continuity variables of non-normal 
distributions by the median and quartiles.
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F1i ¼
2 ´ Precisioni ´Recalli
Precisioni þ Recalli

ð3Þ

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

ð4Þ

Macro averages scoreð Þ ¼ 1
C

X

i

scorei ð5Þ

Weighted averages scoreð Þ ¼ 1
N

P
i
Ni  scorei

score 2 fPrecision;Recall; F1g
ð6Þ

where i 2 C
I

 represents the class, N is the number of all samples, C is 
the number of all classes, Ni is the number of samples, TNi in class i, 
TPi, FPi and FNi stand for true positive, true negative, false positive 
and false negative rates for class i, respectively. In total, 75 features 
were considered.

This study uses a supervised XGBoost classifier8 as the predictor 
model. XGBoost is a high-performance machine learning algorithm 
that benefits from great interpretability potential due to its recursive 
tree-based decision system. In contrast, internal model mechanisms 
of black-box modelling strategies are typically difficult to interpret. 
The importance of each individual feature in XGBoost is deter-
mined by its accumulated use in each decision step in trees. This 
computes a metric characterizing the relative importance of each 
feature, which is particularly valuable to estimate features that are 
the most discriminative of model outcomes, especially when they 
are related to meaningful clinical parameters.

XGBoost was originally trained with the following default 
parameter settings: maximum depth equal to 4, learning rate equal 
to 0.2, number of tree estimators set to 150, value of the regular-
ization parameter α set to 1 and ‘subsample’ and ‘colsample_bytree’ 
both set to 0.9 to prevent overfitting for cases with many features 
and small sample size8. We refer to it as the ‘Multi-tree XGBoost 
algorithm’.

Feature importance for an operable decision tree
To evaluate the markers of imminent mortality risk, we assessed 
the contribution of each patient parameter to decisions of the algo-
rithm. Features were ranked by Multi-tree XGBoost according to 
their importance (Supplementary Figs. 1 and 2 and Supplementary 
algorithm 1). The performances of the model showed no improve-
ment in area under the curve (AUC) scores when the number of top 
features increased to four. Hence, the number of key features was set 

to the following three: lactic dehydrogenase (LDH), lymphocytes 
and high-sensitivity C-reactive protein (hs-CRP).

Table 3 summarizes the performances of the Multi-tree XGBoost 
model. The results show that the model is able to accurately identify 
the outcome of patients, regardless of their original diagnosis upon 
hospital admission. Notably, the performance of the external test 
set (detailed below) is similar to that of the training and validation 
sets, which suggests that the model captures the key biomarkers of 
patient mortality. The set of selected features is represented graphi-
cally for each patient in Supplementary Fig. 3, demonstrating a clear 
separability. Table 3 further emphasizes the importance of LDH as a 
crucial biomarker for patient mortality rate.

Development of a clinically operable decision tree
Following previous findings on the importance of LDH, lympho-
cytes and hs-CRP, we aimed to construct a simplified and clini-
cally operable decision model. XGBoost algorithms are based on 
recursive decision tree building from past residuals and can identify 
those trees that contribute the most to the decision of the predictive 
model. Decision trees are simple classifiers consisting of sequences 
of binary decisions organized hierarchically. Hence, if the accuracy 
of a tree remains high, reducing the complexity of the model to such 
a structure has the potential to reveal a clinically portable decision 
algorithm. In the following, we refer to the latter as an ‘interpretable 
model’ or ‘single-tree XGBoost’.

There were 24 patients with incomplete measurements for at least 
one of the three principal biomarkers in their last blood samples, 
leaving 351 patients to identify a single-tree XGBoost model. To 
identify the model, XGBoost was re-trained with the same param-
eters as described above, except for the following: number of tree 
estimators set to 1, values of the regularization parameters α and β 
both set to 0, and the subsample and max features both set to 1 as 
overfitting issues have been avoided based on previous modelling8. 
The interpretable decision tree was obtained by a random split of 

13 survived185 survived 3 survived 148 died14 died

485 patients with clear 
outcome from Tongji 

Hospital

27 severe

12 died

375 patients with clear 
outcome by 18 Feb 2020 for 

algorithm development

13 survived 9 died34 survived 4 died50 survived 0 died

Additional 110 patients with 
clear outcome by 24 Feb
2020 for external testing

197 general 151 critical 50 general 38 severe 22 critical

Fig. 1 | A flowchart of patient enrolment. Originally, 375 patients with a definite outcome before 18 February 2020 were used for model development, then 
an additional 110 patients with a definite outcome between 19 February 2020 and 24 February 2020 were used as an external test dataset.

Table 3 | Performances of the Multi-tree XGBoost classification 
in discriminating between mortality outcomes using 100-round 
fivefold cross-validation using Supplementary algorithm 1

Features AUC score for 
training sets (%)

AUC score for 
validation sets (%)

LDH 94.27 ± 0.82 92.29 ± 2.62

LDH, lymphocyte 96.74 ± 0.45 94.40 ± 2.31

LDH, lymphocyte, 
hs-CRP

97.84 ± 0.37 95.06 ± 2.21

Data presented as mean ± s.d.
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the 351 patients to training and validation datasets in the ratio 7:3. 
The resulting tree structure and performances are shown, respec-
tively, in Fig. 2 and Supplementary Tables 1 and 2.

In addition, the performances of the interpretable model were 
estimated for the external test set on the latest blood samples of 
110 patients, which were not part of the training or validation of 
the Single-tree XGBoost model (Table 4). The associated confusion 
matrix is presented in Supplementary Fig. 5, which shows 100% 
survival prediction accuracy and 81% mortality prediction accu-
racy. Overall, the scores for survival and death prediction, accuracy, 
macro and weighted averages are consistently over 0.90.

Finally, for benchmark purposes, the performances of the inter-
pretable model were compared with other standard methods such 
as random forest and logistic regression9. The receiver operating 
characteristic curves and AUC scores are shown in Supplementary 
Table 3 and Supplementary Fig. 4.

Estimation of the prediction horizon
Most patients had multiple blood samples taken throughout their 
hospital stay. In total, there were 909 blood samples with complete 
measurements of these three features for all 485 patients used for 
training and validation, and 251 blood samples with complete mea-
surements of these three features for the 110 patients in the external 
test set. The predictive potential of our model was evaluated on all 
blood tests for all 485 patients and 110 patients in the external test 
dataset (Fig. 3 and Supplementary Figs. 6 and 7). On average, the 
accuracy of our algorithm was 90%, further showing that the model 
could be applied to any blood sample, including those that were 
taken far ahead of the day of primary clinical outcome. On average, 
the model could predict the outcome of all true positive patients at 
about 10 days (11 days for patients in the external test set) in advance 
of outcome using all their blood samples (Fig. 3b,c). The model can 
even predict 18 days in advance with a cumulative accuracy above 
90% (Fig. 3d,e). The accuracy of the prediction increases closer to 
the patient’s outcome. This prediction horizon analysis suggests that, 
where a patient’s condition deteriorates, the clinical route is able to 
give an early warning to clinicians a few days in advance.

Discussion
The significance of our work is twofold. First, it goes beyond pro-
viding high-risk factors4. It provides a simple and intuitive clinical 
test to precisely and quickly quantify the risk of death. For example, 
a routine sequential respiratory support therapy for patients with 
SpO2 below 93% comprises intranasal catheterization of oxygen, 
oxygen supply through a mask, high-flow oxygen supply through a 

nasal catheter, non-invasive ventilation support, invasive ventilation 
support and extracorporeal membrane oxygenation. Predicting that 
for some patients this sequential oxygen therapy leads to unsatisfac-
tory therapeutic effects could preempt physicians to pursuit different 
approaches. The goal is for the model to identify high-risk patients 
before irreversible consequences occur. Second, the three key features, 
LDH, lymphocytes and hs-CRP, can be easily collected in any hospital. 
In crowded hospitals, and with shortages of medical resources, this 
simple model can help to quickly prioritize patients, especially during 
a pandemic when limited healthcare resources have to be allocated10.

The increase of LDH reflects tissue/cell destruction and is 
regarded as a common sign of tissue/cell damage. Serum LDH has 
been identified as an important biomarker for the activity and sever-
ity of idiopathic pulmonary fibrosis11. In patients with severe pul-
monary interstitial disease, the increase of LDH is significant and is 
one of the most important prognostic markers of lung injury11. For 
critically ill patients with COVID-19, the rise in LDH level indicates 
an increase of the activity and extent of lung injury.

The increase of hs-CRP, an important marker for poor progno-
sis in acute respiratory distress syndrome12,13, reflects a persistent 
state of inflammation14. The result of this persistent inflammatory 
response is large grey-white lesions in the lungs of patients with 
COVID-19 (seen in autopsy)15. In tissue sections, a large amount of 
sticky secretion is also seen overflowing from the alveoli15.

Finally, our results also suggest that lymphocytes may serve as 
a potential therapeutic target. This hypothesis is supported by the 
results of clinical studies4,16. Lymphopenia is a common feature in 
patients with COVID-19 and might be a critical factor associated 
with disease severity and mortality17. Injured alveolar epithelial 
cells could induce the infiltration of lymphocytes, leading to per-
sistent lymphopenia, as was seen in SARS-CoV-2 and MERS-CoV 
(they share similar alveolar penetrating and antigen presenting 
cell (APC) impairing pathways)18,19. A biopsy study has provided 
strong evidence of substantially reduced counts of peripheral CD4 
and CD8 T  cells, while their status was hyperactivated20. Also, 
Jing and colleagues have reported that the lymphopenia is mainly 
related to the decrease in CD4 and CD8 T cells21. It is thus likely 
that lymphocytes play distinct roles in COVID-19, which deserves 
further investigation.

This study has room for further improvement, which is left 
for future work. First, given that the proposed machine learning 
method is purely data-driven, our model may vary if starting from 
different datasets. As more data become available, the whole pro-
cedure can easily be repeated to obtain more accurate models. This 
is a single-centred, retrospective study, which provides a prelimi-
nary assessment of the clinical course and outcome of patients. We 
look forward to subsequent large-sample and multi-centred studies. 
Second, although we had a pool of more than 70 clinical features, 
our modelling principle is a trade-off between having a minimal 
number of features and the capacity of good prediction, therefore 
avoiding overfitting. Finally, this study strikes a balance between 
model interpretability and improved accuracy. Although clinical 
settings tend to prefer interpretable models, it is possible that a 
black-box model may lead to improved performance.

LDH < 365 U l−1

hs-CRP < 41.2 mg l−1

No

No

Yes

Yes

T: 146
F: 3

T: 177
F: 0

T: 9
F: 3

Num: 351

Num: 202

Num: 149

Num: 12

Num: 177

Lymphocyte > 14.7%

NoYes

T: 11
F: 2

Num: 13

Num: 25

Survival

Survival Death

Death

Fig. 2 | A decision rule using three key features and their thresholds in 
absolute value. Num, the number of patients in a class; T, the number of 
correctly classified; F, the number of misclassified patients.

Table 4 | Performance of the proposed interpretable model on 
the external test dataset

Precision Recall F1 score Support

Survival 1.00 0.97 0.98 97

Death 0.81 1.00 0.90 13

Accuracy 0.97 110

Macro avg 0.91 0.98 0.94 110

Weighted avg 0.98 0.97 0.97 110
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Conclusion
In summary, this study has identified three indicators (LDH, 
hs-CRP and lymphocytes), together with a clinical route (Fig. 2), for 
COVID-19 prognostic prediction. We have developed an XGBoost 
machine learning-based model that can predict the mortality rates 
of patients more than 10 days in advance with more than 90% accu-
racy, enabling detection, early intervention and potentially a reduc-
tion of mortality in patients with COVID-19.

Reporting Summary. Further information on research design is 
available in the Nature Research Reporting Summary linked to this 
Article.

Data and code availability
Data are available in the Supplementary Information. The code 
implementation is available at https://github.io/HAIRLAB/Pre_
Surv_COVID_19 under an MIT licence (https://doi.org/10.5281/
zenodo.3758806).
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