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Abstract

Understanding of neuronal circuitry at cellular resolution within the brain has relied on 

neuron tracing methods which involve careful observation and interpretation by experienced 

neuroscientists. With recent developments in imaging and digitization, this approach is no 

longer feasible with the large scale (terabyte to petabyte range) images. Machine learning based 

techniques, using deep networks, provide an efficient alternative to the problem. However, these 

methods rely on very large volumes of annotated images for training and have error rates that are 

too high for scientific data analysis, and thus requires a significant volume of human-in-the-loop 

proofreading. Here we introduce a hybrid architecture combining prior structure in the form 

of topological data analysis methods, based on discrete Morse theory, with the best-in-class 

deep-net architectures for the neuronal connectivity analysis. We show significant performance 

gains using our hybrid architecture on detection of topological structure (e.g. connectivity of 

neuronal processes and local intensity maxima on axons corresponding to synaptic swellings) with 

precision/recall close to 90% compared with human observers. We have adapted our architecture 

to a high performance pipeline capable of semantic segmentation of light microscopic whole-brain 

image data into a hierarchy of neuronal compartments. We expect that the hybrid architecture 

incorporating discrete Morse techniques into deep nets will generalize to other data domains.
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Introduction

Understanding the morphology and the connectivity of neurons is an important step in 

determining the neural circuitry of the brain. A primary method used for this purpose 

in larger vertebrate brains involves sparsely labelling individual neurons or groups of 

neurons using neuronal tracer injections. These methods have been the gold standard 

in neuroanatomical circuit tracing studies because they directly visualize neurons with 

high SNR and no inferential process is needed. These data sets have traditionally been 

painstakingly examined under a microscope by expert neuroanatomists, or more recently 

using digital microscopy, but still employing human labor intensive methods requiring close 

and time-consuming interactions with a human expert. Modern advances in optical imaging 

have allowed the digitization of whole-brain data sets, either 2D image stacks or 3D image 

volumes, with subcellular resolution1-3. These imaging techniques have been incorporated 

into integrated neurohistology pipelines to generate large-scale, high-resolution data sets in a 

high-throughput fashion4-6. The resulting multi-Terabyte to Petabyte scale data sets are not 

possible to study using purely manual detection and quantification. Thus there is a pressing 

need for efficient automated algorithms to achieve this goal, with high precision and recall 

suitable for scientific data analysis.

Machine Learning techniques have facilitated the processing and analysis of large 

neuroanatomical data sets. In particular, computer algorithms for detecting neuronal 

fibers from various images with high accuracy have become increasingly important in 

automating computational characterization of neuronal morphology and circuitry. Previous 

works include reconstructions of neuronal morphology 7, neuronal data analysis with an 

emphasis on reconstructing neurons from EM data cubes8; digital reconstruction of the 

3D morphology of neurons from image stacks9. Recent advancements include a large­

scale automated server-based biomedical-image analysis in FARSIGHT10, a free and open­

source toolkit of image analysis methods for quantitative studies of complex and dynamic 

tissue micro-environments. The BigNeuron project (https://alleninstitute.org/bigneuron/) is a 

community effort to advance the state of the art of single-neuron reconstruction11. There is a 

also a large literature on the related but broader field of semantic segmentation of biomedical 

image data, including histopathological data, which we briefly review below.

In this manuscript, we develop a computational framework for a systematic treatment 

of the semantic segmentation problem for neuroanatomical image data. The basis of our 

framework is a hierarchical set of semantic categories suitable for neuroanatomical images 

(Figure 1). A key component of this framework is a method for automated segmentation 

of neurites (axons and dendrites), combining topological data analysis, based on Discrete 

Morse (DM) theory (Figure Extended Data 1), together with encoder-decoder Deep Net 

architectures to detect and quantify neuronal processes and boutons in whole brain histology 

sections. We call this method DM++ (Figure 2). Usage of the Morse-theoretic topological 

prior allows us to retain the fitting flexibility of deep-learning frameworks, while at 

the same time incorporating non-trivial prior structure. The resulting method shows both 

quantitative and qualitative improvements over the existing state of the art encoder-decoder 

networks for the same task (Table 1). Although neurite detection is a key step in the 
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semantic segmentation task, there are also other components to the framework (Figure 

3, Figure Supplementary 5) to detect other relevant compartments such as somata, or to 

further sub-categorize detected neurites (Figure 5). We have deployed our methodology 

into a semi-automated data analysis pipeline including human proofreaders to obtain high 

quality semantic segmentation of the neuroanatomical image data (Figure Supplementary 2), 

suitable for further neuroscientific analysis.

Background

Automated computer vision algorithms have been used extensively for the delineation 

of anatomical structures and other regions of interest in specific radiologica1 and 

histopathological images. These image segmentation algorithms, play an important role in 

numerous biomedical-imaging applications, such as the quantification of tissue volumes12, 

diagnosis13, localization of pathology14, study of anatomical structure15, treatment 

planning16, and computer-integrated surgery17.

Prior to the popularization of Deep CNN methods18-20, several machine learning and image 

processing techniques were available for medical image segmentation21. These include 

amplitude segmentation based on histogram features22, the region based segmentation23, 

and the graph-cut approach24. However, semantic segmentation approaches that utilize 

DL have become popular in recent years in the field of medical image segmentation, 

lesion detection, and localization25. DCNN architectures have generally provided state-of­

the-art performance for image classification 26, segmentation27, detection and tracking 
28, and captioning 29 in standardized datasets. Efficient optimization techniques are 

available for training DCNN models26. However, in most cases, models are explored 

and evaluated on classification tasks in large-scale datasets like ImageNet26, where the 

outputs of the classification tasks are a single label or probability value for a given image. 

Alternatively, smaller fully-connected convolutional neural networks (FCN)30 and Segnet31 

have been used successfully for semantic image segmentation tasks. State-of-the-art DCNN 

architectures for image segmentation tasks like U-Net32 and ALBU33 (Figure 2A) employ 

an encoder-decoder architecture. While these networks are effective they employ double the 

number of model parameters thus raising resource issues.

Deep Learning techniques rely on very large volumes of annotated training data and may 

in some sense be training-data interpolation techniques34. To address the lack of large 

annotated corpora for new tasks, data transformation or augmentation techniques32, 35, 36 

including data whitening, rotation, translation, and scaling have been applied to increase 

the number of labeled samples available. The class imbalance problem is often solved 

by using tile based approaches rather than entire image sets37. However, these kinds of 

methodological fixes do not ultimately address the weakness of DL techniques in lacking 

domain-specific priors, such as the topological prior that can capture a better connectivity of 

the neuronal architecture in the brain for our study.

To incorporate topological prior structure suitable to neurites, we employ Discrete Morse 

Graph Reconstruction (Figure Extended Data 1), a method that has been developed and 

studied thoroughly over the past several years38-41. This algorithm combines persistent 
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homology 42 and Discrete Morse Theory43 to extract underlying graph structures from 

density fields. The algorithm considers the global structure of the data rather than looking 

strictly at local information and can handle many negative qualities seen in imperfect data, 

such as noise and non-uniform sampling. The method has been used in many applications, 

such as reconstructing road networks from GPS traces41 and extracting filament structures 

from simulated dark matter density fields44.

Our Approach

In this paper, we propose a comprehensive framework for the semantic segmentation tasks 

for light-microscopic neuroanatomical data and compare with state of the art approaches. 

Gigapixel sized images are handled by breaking up into tiles of manageable size. The 

problem of class imbalance, when the pixel-based approach adapted for the tiles is 

systematically scaled to the entire image, is reduced by using tiles with signals for training 

and assigning a label for the image backgrounds and a target class for the fore-ground during 

semantic segmentation. In addition, two methods including binary cross-entropy loss and 

dice similarity were used for efficient training of classification and segmentation tasks35, 36.

To detect neuronal processes, we propose a hybrid CNN based architecture DM++ (Figure 

2B) which incorporates a topological prior using discrete Morse theory to give additional 

weight to quasi-one dimensional connected structures such as neurites. DCNNs do not 

have any built in mechanisms that can exploit the topological connectivity of neurites. For 

example, variations in the data acquisition process may cause some parts of a neurite to 

be less intensely labelled than other parts. This "signal gap" may pose challenges for a 

DCNN which might suppress the label on the weakly labelled part of a neurite (refer to the 

leftmost tile in the middle row for each modality in Figure 4). Nevertheless, prior knowledge 

that neurites form connected branches of tree-shaped neurons allow a human observer to 

easily trace through such regions of low intensity. We employ the Discrete Morse technique 

to incorporate such global connectivity information, as shown in the rightmost tile in the 

middle row for each modality in Figure 4.

We tested the proposed DM++ algorithm on three different types of image modalities used 

to image sections of the brain. Examples of the brain section images are shown in the 

top panels of columns A-C in figure 1, in each case from brains in which neuronal tracer 

injections have been used to visualize a subset of neurons and their processes. Figure 

1(A) shows colored (fluorescent) Whole Slide Images (WSI). Figure 1(B) shows the Bright 

Field Images (BFI) of a brain section with an immunohistological stain. Both these images 

were captured using a digital slide scanner (0.46μm/pixel). Figure 1(C) shows monochrome 

images captured using Serial Two Photon Tomography (STPT). The second row (Column 1 

A-C) shows examples of labelled neuronal cell bodies (soma) in these different modalities. 

The next third row shows neuronal processes labelled by red Fluorescent protein (Column 

1 A), immunohistochemistry using the ABC-DAB process (Column 1 B) and high intensity 

eGFP label from the STPT data set (Column 1 C). The bottom row (Column 1 A-C) show 

examples of putatively terminating neuronal axons with the synaptic swellings/boutons. The 

cartoons in the second, third and fourth row (Column 1 A-C) beside each image tiles (the 

right subcolumn) shows masks corresponding to the object categories of interest in each of 
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the tiles shown in the left subcolumn. The semantic category hierarchy is detailed in the 

Column 1 D.

In the following sections, we first elaborate the pipeline for process detection, followed by 

the the rest of the semantic category tree. Subsequently we present results, followed by 

discussion and conclusions.

Neuronal Process detection using DM++ Architecture

The DCNN component of the DM++ pipeline is based on the ALBU network 33 which 

is in turn based on U-Net 32. Figure 2(A) illustrates U-net and ALBU. 2(C) shows a 

diagrammatic representation of our proposed architecture DM++ for process detection. A 

more extensive description can be found in the Methods Section.

Briefly, the DM++ network accepts an image containing relevant objects of interest (e.g. 

processes) as input, tiles the image, processes these tiles using three processing paths 

forming a Y-shaped network, and outputs a binary mask indicating the detected neuronal 

processes. Figure 2(B) shows the three paths, (i) A "topological path" for detecting 

connected neural processes in the tile, (ii) a "DCNN path" (ALBU) for detecting the 

processes (iii) the final "common path" for combining the DCNN and topological paths.

Semantic Segmentation

Brain section images not only contain information about one object of interest (processes 

as detected by the DM++ pipeline) but also other objects such as dendrites, soma. Axonal 

processes themselves can show heterogeneity depending on their terminating nature. To 

account for these detections, we have incorporated the mask-RCNN architecture27. This 

modification enables us to determine the exact pixels belonging to a sub-process or somata. 

The detections for the sub-categories of processes use the process detection masks generated 

by the DM++ algorithm. The architecture of Mask-RCNN, developed on FasterRCNN with 

an instance segmentation module, takes in the output neuronal mask from the DM++, to 

detect the axon arbors, passing axons and dendrites (for detailed discussion on the Mask­

RCNN architecture, please refer to the Methods section). In contrary, the cell detection is 

performed by the semantic segmentation pipeline independent of the neuronal processes, 

though the boutons are detected as a sub-category using the output vertices of the graph 

from the DM reconstruction algorithm within the DM++ pipeline. Thus, the training set for 

the soma detection on the Mask-RCNN architecture takes in the raw image as input, while 

the others, viz. dendrites, passing axons and axons arbors, which are the sub-categories 

of process, are trained on the neuronal mask obtained from DM++. A brief discussion 

on the bouton detection is given in the methods section. A pictorial representation of the 

the overall flow diagram for the semantic segmentation methodology determined for the 

neuronal segmentation with different class labels and the cell detection has been depicted in 

figure 3 (B), while figure 3 (A) shows the architecture for the Mask-RCNN used to generate 

masks for each of the sub-categories of the neuronal processes as well as cell detection.
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Qualitative and quantitative evaluations

The outputs from the proposed algorithms of neuronal process detection and semantic 

segmentation discussed above have been evaluated both qualitatively and quantitatively. 

This section provides a discussion of these evaluations, when compared with other state-of­

the-art techniques. The proposed methodology shows improved performance metrics, and 

in addition also shows the ability to better detect connected process fragments. Finally, 

we also discuss the time complexities of the proposed pipeline, in terms of training and 

testing, followed by a discussion on the improvement in annotation time induced by our 

auto-detects.

Neuronal Process detection

The results are presented in table 1. The table shows the Precision, Recall and F1-measure 

for the different modalities. We have compared DM++ with an Unsupervised, UNet and 

ALBU for neuronal process detection. Each of these techniques are discussed in the 

Methods section. As evident from the sub-tables, our proposed technique outperforms the 

state of the art architectures across performance measures.

Figure 4 shows example results for different image modalities. Of particular interest is 

portions of neuronal processes connected by regions of low signal intensity, where DM++ is 

able to connect the processes through these low-intensity regions, but ALBU does not do so. 

In each of the three modalities, the middle row depicts a small patch from the image, where 

the intensity captured by the digital scanners used for imaging these sections is significantly 

low, but the connectivity can be detected in the high resolution image by visual inspection 

(refer to the leftmost patch in the middle row of results for each modality).

In each of these modalities, we also show comparisons with the manually annotated data 

(demarcated as "Annotation" in the figure) with TP (yellow), FP (magenta) and FN (cyan). 

The rectangular box indicates the location for each image from where the exemplar patch 

is extracted and the dotted lines establishes the correspondences of each path to the middle 

row of results for precise inspection. This kind of preservation of connectivity was evident 

throughout the sections used for testing. This is consistent with the expectation that the 

topological prior would improve the detection of connected processes.

To evaluate the extension of our framework to 3D, we extended the 2D DM++ pipeline to 

3D in a natural manner, and performed a 3D Process Detection task on volumetric fMOST 

imaging data collected for single-neuron tracing. We compared the results with 3D UNet 

as a baseline and found that 3D DM++ outperformed the 3D UNet baseline. Details are 

presented in a supplementary section.

Semantic Segmentation

The semantic segmentation pipeline illustrated in figure 3 was used for detecting the sub­

neuronal classes and somata. Performance metrics are presented in table 1. The numbers 

in bold indicate the results from our overall architecture, compared with a state-of-the-art 

encoder-decoder based CNN architecture, SegNet31 (details in Methods section).

Banerjee et al. Page 6

Nat Mach Intell. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5 illustrates each of the classes discussed in figure 1. Results for Cell Detection 

are shown in figure 5(A), which includes the MBA and the BFI dataset. The different sub­

compartments of neuronal processes are displayed for the MBA dataset in the subsequent 

figures. Figures 5(B-D) illustrate the results of the semantic segmentation pipeline for 

different sub-categories of neuronal processes. The output from the DM++ algorithm is 

provided as input to the MaskRCNN network, as shown in the top tile. The output mask 

from the segmentation pipeline is shown just below, while the bottom row shows the 

performance of the MaskRCNN when compared to the manually annotated ground truth. 

Precision-Recall-F1 scores are calculated and reported in table 1.

Since the DM++ method specifically improves the connectivity of the detected neural 

processes, we developed a performance metric to directly measure connectivity in the 

detected processes as compared to the ground truth. In brief, the metric gives the fraction 

of point-pairs that are connected in the ground truth, that are also connected in the 

detected output (please see the Methods section for details). Notably, this connectivity-based 

performance metric showed a large ~ 30% advantage of the DM++ method over its nearest 

competitors depicted in table 1. We thank an anonymous reviewer for the suggestion that we 

develop such a metric

As an additional usage of the Discrete Morse approach, we detect putative "boutons" on 

axons by finding intensity maxima along the detected proesses. The resulting "bouton" 

detections are shown in 5(E). The first image is an input tile, the second image shows what 

our method outputs as putative boutons, and the third image identifies whether these are 

true positives or false positives (compared with expert judgment), as well as where false 

negatives occur. Modified precision, recall, and F1 scores for three tiles that were manually 

annotated are included in 1. These modified scores were obtained with using a radius of 5, 

meaning a bouton labeled by our method would be labeled as a true positive if the nearest 

true bouton was within a neighborhood of 5 pixels (2.5μ).

Computational metrics:

We trained the DM++ network for 500 epochs with the training data. The training time was 

200 seconds per epoch. For process detections, the algorithm took 4 minutes per mouse 

brain section (each section is a 24K × 24K image with 0.46μm/pixel resolution) with 

processing times of 12% pre-processing, 15% neuronal pathway, 48% Topological pathway, 

15% combined pathway and 10% post-processing, on a dual GPU (NVIDIA GTX2080 Ti) 

machine. The topological pathway was run in parallel on a 36 core CPU with 40 parallel 

threads. We used the pyTorch library for the python code for the neuronal pathway and 

Keras with TensorFlow backend for the common pathway. We used Keras with Tensorflow 

backend for the MaskRCNN network for cell detection and mask-generation. The Cell 

Detection MaskRCNN network was trained for 200 epochs, with a training time of ~1000 

seconds per epoch. The detects took an average of 3 minutes per section for the cell 

(soma) detections on the mouse brain dataset. The architecture used for mask generation 

follows the one-vs-all strategy and approximately takes 3 minutes on an average for the 

three classes combined into an unified framework. There is an significant improvement in 

the proof-reading times for the manual annotations. Based on the report of an experienced 
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neuroanatomist, the proof-reading time for the process detection is no more than 25% 

compared to annotating the processes denovo. A similar trend was seen for cell-detection 

where we can reduced the annotation time by ~70%. In each case, proofreading was done 

with equally high quality criteria as de-novo manual annotation.

Discussion and Conclusions

We demonstrate significant performance improvements for an image segmentation task over 

state-of-the-art encoder-decoder networks through the incorporation of prior topological 

structure using methods from Morse theory (Table 1 and Figures 4 & 5). We show that such 

priors may be incorporated using an intuitively plausible Y-shaped ("Siamese") network 

architecture we entitle DM++. We further incorporate this process-detection network as 

an important component in an integrated framework for semantic segmentation of light 

microscopic neuroanatomical image data.

While we present significant performance improvements over state of the art, we are not 

yet at the point where the automation is at a sufficiently high quality level for scientific 

purposes, and a human-in-the loop component is required (although the trained networks 

lead to a large reduction of the required human labor).

Our post-hoc analysis of the data shows that abrupt changes in the dynamic intensity 

range within a data set is challenging for DM++, so that training datasets containing a full 

spectrum of intensity dynamic range is required. To verify robustness and transitivity of the 

algorithm, we carried out a set of experiments spanning imaging modalities and also studied 

the effect of test and training sets being drawn from different brains. The results (details in 

the supplementary materials) show that the separating test and training sets across brains 

from different animals causes only a minimal drop (1–4%) in performance when we test 

our algorithm within the same contrast and imaging modality. We also find that the DM++ 

algorithm shows good performance acoross imaging modalities (fluorescent whole-slide 

imaging, serial two-photon tomography, fluorescent micro-optical sectioning tomography), 

fluorescent tracer colors (red and green AAV tracers, Fast Blue retrograde tracers) and 

species (mouse, marmoset). We also studied a 3D version of DM++ and found it to provide 

performance improvements over 3D UNet.

We also tested our algorithm on image tiles near tracer injection sites, which show abrupt 

changes in the intensity levels, e.g., high background with auto-fluorescence, noise, etc. 

There was a larger drop in performance levels of approximately 8 – 10%. In our current 

implementation we separate these tracer-injection regions for analysis, but this shows the 

room for further improvements in our algorithmic framework.

We found however that our networks iteratively increase performance based on feedback 

from manual curation, which can be used to repeatedly fine-tune the network to improve 

generalization. Despite these residual shortcomings, our algorithm (DM++) incorporating 

topological priors, using discrete Morse theory in combination with DCNNs, significantly 

outperforms existing techniques for the detection and segmentation of neuronal objects of 

interests in light-microscopic neuroanatomical data.
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Methods

This section describes methods used in this study including the fundamentals of the 

algorithm design, the architecture, training, testing and evaluation of our technique when 

compared to the existing conventional methods. We have compared our pipeline to existing 

techniques include an unsupervised process detection technique, U-Net and ALBU for 

process detection and SegNet for semantic segmentation, which are also discussed at the end 

of the Methods.

Discrete Morse Graph Reconstruction:

DM++ takes masks of the Discrete Morse Graph Reconstruction output as input. To generate 

this, we first need a density function over the domain to feed into the Discrete Morse 

framework. Image intensity in the color channel relevant to the tracer serves as the density 

function after applying a Gaussian filter to smooth out the image. We can interpret our 

density function as the higher the pixel value, the more likely it is to be part of true neuron 

signal.

Next we input the density function into the Discrete Morse Graph reconstruction framework. 

If one were to imagine the density function graphed on top of the domain, the Discrete 

Morse framework outputs the "mountain ridges" of the function, connecting the maxima 

through intervening saddle points. These ridges are made up of “flow lines” (also known 

as formally integral lines are curves whose local tangents follow the direction of steepest 

descent, i.e., the gradient direction, of the density function) between the maxima and saddle 

points of the function. The reason for selecting these is that the function values are locally 

maximal along the ridges. Thus if we were to move slight off of a ridge, the probability of 

being part of the neuronal process decreases.

Noise Removal: Each ridge is assigned a persistence value42 which can be interpreted as 

an importance score. The noise-removal framework adopts a persistence threshold and filters 

out ridges below that threshold. We provide a low threshold value in order to remove ridges 

caused by noise while minimizing the number of ridges removed that actually mark true 

neuron signal.

Given the Morse output, we then create a mask for the domain. The mask is grayscale - 

where each path in the Discrete Morse output is assigned a constant value. The output of 

this stage is a simple grayscale image which can then be used at the next step of the DM++ 

algorithm. The higher the intensity along the path, the higher the gray scale value. After 

the persistence refined Discrete Morse graph reconstruction step, this mask, along with the 

original imaging data, is an input to the process detection pipeline (explained under the 

subsequent subsection DM++).

The standard output of discrete Morse graph reconstruction is a connected graph. In 

applications where the final output is built directly off of the Morse graph, false edges, 

such as those along the boundary, will need to be removed. However, in our DM++, the 

advantages of both ALBU and discrete Morse are combined during the co-training stage: In 
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particular, ALBU output helps remove such false positives from the discrete Morse output, 

while the discrete Morse output helps improve the connectivity of the ALBU output.

DM++:

The combination of the topological component with a DCNN convolutional network 

is aimed to capturing the connected nature of the neuronal processes. The "Siamese" 

architecture of the DM++ network takes the outputs from the discrete Morse algorithm and 

the ALBU architecture and combines them using a "Siamese" stacking into two channels. 

The common path emerging out of the Siamese stack combines features of the convolutional 

network along with the topological priors of the Discrete Morse.

Architecture: The architecture of DM++ consists of four components: the topological 

path, the ALBU path, the Siamese stack and the common path. The DCNN paths in this 

network consist of two-dimensional convolutional layers with ReLU activations, except the 

final layers in each which have Sigmoid activations. A dropout layer of 50% was introduced 

in each DCNN stack for regularization purposes. The loss function used in this network is 

a combined loss of soft dice loss 36 and binary cross entropy optimized using the Adam 

optimizer.

Inputs: The inputs to the DM++ architecture are the likelihood maps obtained from the 

discrete Morse algorithm and the ALBU models. The input images are assumed to be single 

channel images with the resolution of 512×512 pixels with varying pixel resolutions across 

different modalities of the images. The input image is passed through the discrete Morse 

algorithm to obtain a likelihood image containing the connected graphs with their edge 

weights as their likelihood. The ALBU model also produces output for the likelihood maps 

generated for segmentation of the processes.

Outputs: The output of DM++ produces a likelihood map of the processes in 512 × 512 

pixel tiles. The outputs are in the range [0, 255], with a higher value indicating greater 

confidence that a pixel belongs to a process present in the data. These likelihood maps were 

thresholded at a predefined threshold (STP: 100, MBA: 75 and BFI: 120) to generate a mask 

for the process in the section.

Pipeline for Process Detection:

The overall flow of the brain image data from the input to output is denoted as a pipeline for 

neuronal process detection. The pipeline for Process Detection is illustrated in figure 2(B), 

which was designed for two-dimensional process detection for a tracer injection in the brain, 

run section-wise for each brain. Each of these sections are first broken down into tiles of 

512 × 512 pixels. These tiles are then individually passed to the discrete Morse algorithm 

and the trained ALBU models. The gray-scale maps generated out of the discrete Morse 

algorithm are fed into the topological pathway of the DM++ and the segmentation likelihood 

predicted by the ALBU models is fed to the neuronal segmentation pathway. These priors 

pass through these pathways and then merge into a dual stack (can be thought of as a 

two-channel image). This stack is further propagated through the common pathway deeper 

into the network to captures the high-level features of the neuronal process based on both the 
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priors. The trained DM++ network outputs a likelihood map for the process which is further 

thresholded to a binary mask for identifying the processes. This mask is also used to localize 

the detection of boutons, and the sub-categories of the neuronal processes discussed later 

in the semantic segmentation pipeline. These output tiles are eventually stitched together to 

form a cumulative mask for the whole section. The discrete Morse algorithm also outputs 

the peaks in the images as the vertices in the graph, which are seen in along the processes as 

the high-intensity peaks, identified as boutons or synaptic swellings on the neurons.

Variations in the pipeline for Process Detection: The pipeline has some variations 

across the different imaging modalities. The input to the pipeline is the raw image of a 

section from a brain for each data modality. The input is not the same across the different 

modalities, as seen in figure 1(A-C). The images from the Serial Two-Photon images are 

16-bit gray scale images, while the images from the brains in Mouse Brain Architecture 

project are three-channel 12-bit images and the images from the brightfield WSI images 

were three-channel 8-bit images. The tracer injections in the STP and the Rabies data were 

of a single color but the MBA data had two injection colors.

The input to DM++ are single-color images. So, for the STP date the pipeline works on the 

raw data, while for the Brightfield images the 8-bit color data were converted into a single 

grayscale image before passing into the pipeline. The MBA data is treated channel-wise. 

Since the injections are green and red only, we assume that the green and red channels 

are separete likelihood images for the two tracers, and pass them individually through 

the pipeline, finally combining their outputs for the whole section. The BFI dataset is 

also treated as a likelihood image of intensities for the DM reconstruction but ALBU is 

performed on the three-channel color images.

Ground-truth Annotation: Manual annotation was used to generate training labels our 

supervised algorithms. The training set for the STP data consists of a coarse annotation of a 

whole brain (267 sections) and four section of high-quality precise annotations from another 

brain. The training data for the MBA images included four sections each from two brains 

with different labels marked as described in our class-hierarchy. The manually annotated 

BFI dataset consisted of 72 tiles of 1024 × 1024 pixels from a single section, which was 

divided for training and testing. We also aim to make the groundtruth annotations available 

to the research community upon acceptance, via brainarchitecture.org

Preparation of the Data for training and testing: The manually labelled sections 

were broken down into tiles of size (512 × 512) pixels. Since the processes are really sparse 

in the whole brain, the fully annotated STP was randomly tiled to incorporate tiles with 

varying densities of annotations ranging down to no annotations. Hence, we had a training 

set with 5749 tiles from the fully annotated STP brain and two high-quality annotated 

sections entirely tiled to obtain another 750 tiles. The testing for the STP data was done 

on another two sections fully tiled of the precise annotation data. The eight sections from 

the two brains in the MBA data were carefully annotated. We used 7 sections for training, 

resulting in ~ 2000 tiles and testing was done on a section with ~ 500 tiles. The BFI data 

had 180 tiles in the training set and 108 tiles in the testing set. The total number of tiles for 
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training and testing has been tabulated in table Supplementary 1, which gives an overview of 

the limited data available for training and testing our supervised networks.

Evaluation Metrics: The metrics used throughout the manuscript are Precision (P), Recall 

(R), and the F1-measure. For the evaluation of these metrics we determine the True Positives 

(TP), False Positives (FP), True Negatives (TN) and False Negatives (FN) (refer figure 4, 

bottom row leftmost tile for each modality). Every detected pixel was evaluated with a disk 

of radius of 5 pixels. if an annotated groundtruth existed within thid disk, the pixel was 

considered as TP, otherwise it is considered as FP. If an annotation did not have detected 

pixel within a 5-pixel radius, then we considered that as TN. Utilizing all these values, 

Precision and recall were computed as P = TP
TP + FP  and R = TP

TP + FN , while the F1-score 

was calculated as harmonic mean of precision and recall, i.e., F1 = 2 ⋅ P ⋅ R
P + R . Also, we did an 

iterative refinement of annotations, as shown in the supplementary figure Supplementary 2, 

based on the FP detected by the algorithms on a first pass to double check for the human 

errors in the annotation. Each of our automatic detections were proof-read to ensure the 

authenticity of the automatic detects as shown in supplementary figure Supplementary 5.

Connectivity based Performance Metric: We define a connectivity score as follows: 

Given the ground-truth and the corresponding hard-thresholded prediction (both are 2D 

binary images), we first sample N random pairs of signals (pixels), each of which is path­

connected in the ground-truth. Now, for each one of those pairs, we check the connectivity 

of their nearest neighbors in the predicted segmentation. Our connectivity-score is defined 

as the percentage of those sampled pairs whose nearest neighbors in the prediction are 

still path-connected. Obviously, a low connectivity-score means that the prediction is more 

fragmented than the ground-truth. In our experiment, we set N = 1000, and for each pixel 

we considered its 8 neighbors when deciding connectivity. The final connectivity-score was 

averaged over 704 STP tiles (images) each of size 512 × 512. The connectivity scores 

for DM++, ALBU, and UNET are 0.9024, 0.6041, and 0.6169 respectively. Our DM++ 

framework achieves a ~ 30% advantage over both UNET and ALBU.

Bouton Detection:

The Discrete Morse Graph Reconstruction algorithm was combined with the finalized 

process detection outputs to detect putative synaptic boutons. A persistent homology 42 

computation was performed within the Discrete Morse Graph Reconstruction. Boutons 

appear in the image data as small balls with relatively high intensity along neuronal 

structures. This means that they will be vertices along the Morse skeleton graph with 

relatively high persistence. Thus to perform bouton detection, we took the vertices of the 

Morse skeleton output with persistence greater than a user provided threshold. Then from 

these points, we only include those that fell within the final process detection mask. Portions 

of the Morse skeleton graph lie outside of true process signal, so such a filter is needed to 

avoid labeling boutons outside of true process signals.
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Pipeline for Semantic Segmentation:

The semantic segmentation architecture included a MaskRCNN network (see figure 3(A)) 

which performed two segmentation tasks: (i) cell detection, to identify the somata in 

the injection region as well as in other parts of the brain; and (ii) classification of the 

different process classes (axon arbors, fasciculated axons, and passing axons). For the 

semantic segmentation of the before-mentioned classes, the Process Detection is taken as 

a pre-processing step to mask out the background. MaskRCNN was employed on this 

pre-processed image to determine all the classes denoted in figure 1(D).

Architecture of MaskRCNN: MaskRCNN architecture (figure 3(A)) included a 

FasterRCNN network, which has two outputs for each candidate object, a class label, and 

a bounding-box offset. To this network, we add a third branch that outputs the object 

mask — which is a binary mask that indicates the pixels where the object is in the 

bounding box. The additional mask output is distinct from the class and box outputs, 

requiring extraction of much finer spatial layout of an object. To do this MaskRCNN 

uses the Fully Convolution Network (FCN). FasterRCNN is a good algorithm that is used 

for object detection. FasterRCNN consists of two stages. The first stage called a Region 

Proposal Network (RPN), which proposes candidate object bounding boxes. The second 

stage extracts features using RoIPool from each candidate box and performs classification 

and bounding-box regression. The features used by both stages can be shared for inference. 

So, in short, we can say that MaskRCNN combines the two networks — FasterRCNN and 

FCN - into one joint architecture. The loss function for the model is the combined loss in 

doing classification, generating a bounding box and generating the mask.

Soma Detection: The soma detection strategy is two-fold: (i) soma detection within the 

injection region, termed as "Injection soma" and (ii) soma detection outside the injection 

region. The injection region is either determined previously by their higher intensities for the 

different colors in the tracers or they are manually demarcated by an expert. At the injection 

region, we perform a contrast enhancement and intensity normalization using histogram 

equalization. All of the soma detected within this region are demarcated as the injection 

soma, while the others are referred as projection-region soma. Both of these are detected as 

masks by the MaskRCNN architecture. These masks are determined as individual connected 

components in the brain slices and the centroids of these connected components are treated 

as cell-centers. The soma detection algorithm was also applied to all the sections for the 

MBA (please refer to table Supplementary 1 for the size of the training and testing set); both 

injection and non-injection sections. For the BFI dataset, limited data availability (please 

refer to table Supplementary 1 for the size of the training and testing set) allowed us only to 

categorize the data as soma (where we assume to be outside any injection-like region). The 

evaluation of these cell centers are also based on the same evaluation technique described 

earlier.

Semantic Detection: The semantic detection deals with the second layer of the hierarchy 

after Process Detection. The processes consist mostly of axons and dendrites, but for the 

semantic detections we are targeting the different intrinsic properties of these processes - 

viz. the axon arbors and the passing axons. Similarly we sub-categorize dendritic processes.
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On a training set of four manually annotated sections, we trained the MaskRCNN network 

individually on each of these classes using one-vs-other classification strategy, with data 

augmentation. The results for the sub-categories from the axons and dendrites are masked 

using the process detection mask generated earlier. This semantic segmentation process was 

carried on the MBA data. The overall pipeline of the semantic segmentation is described 

in figure 3(B) where the process detection acts as one of the important modules within the 

semantic segmentation pipeline. The evaluations for the semantic detections also follow the 

same procedure as discussed earlier for the process detection.

First, we detect the dendrites. The training is done on four sections. The rest is classified 

as axons. The manual annotation had 31 tiles of size 512 × 512 pixels to contain data. Out 

of which 8 tiles have been separated out for the testing and rest for training. Secondly, on 

the detected axons, we train our MaskRCNN on the passing axons. The rest are classified as 

axon arbors. In total, from the 4 sections we had 28 tiles with axonal data. The model trained 

on dendrites throws out the dendrites from the process detection masks. Six of these axonal 

tiles have been used for testing while the rest are used for training the MaskRCNN (please 

refer to table Supplementary 1 for the size of the training and testing set). The quantitative 

values are reported in table 1.

Extended Data

Figure Extended Data 1: 
The Discrete Morse algorithm is given an input image (A). A Gaussian filter is applied to the 

image (B) - a density function is defined at the pixels. Then the algorithm extracts the ridges 

of the function across the domain (C) - these ridges form the 1-stable manifold. Finally, each 

path in the 1-stable manifold is assigned an grayscale value based on intensity along the 

path, and a grayscale mask is outputted in (D).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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The STP data was collected as a part of Brain Initiative Cell Census 

Network and shared online. The raw images of the STP dataset 

are available from: ftp://download.brainimagelibrary.org:8811/biccn/huang/connectivity/

anterograde/180830_JH_WG_Fezf2LSLflp_CFA_female_processed/. The sample MBA 

data can be viewed http://brainarchitecture.org/viewer4/mouse/map/3611. The trained 

models and the annotated data are available on the http://brainarchitecture.org/semantic­

segmentation-in-brain-images.
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Figure 1: 
Three prevalent modalities of light-microscopic data acquisition where we have applied our 

algorithm: (A) Colored fluorescent Whole Slide Images (WSI) of brain sections (mouse) 

acquired using digital slide scanners, (B) Bright Field images of immunohistochemically 

brain sections (marmoset) and (C) monochrome Serial Two Photon Tomographic images 

(STPT) (mouse). The top panels show the whole section images and below are the neuronal 

soma, neuronal processes and putative terminating axon arbors with putative synaptic 

boutons. (D) shows the class hierarchy that we devised to categorize different image 

components (objects of interests) that we targeted for semantic segmentation.
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Figure 2: 
Existing CNN architectures suitable for neurite segmentation, U-Net (A - left) and ALBU 

(A - right) illustrated along with our proposed architecture of DM++ (B). The DM++ 

architecture concatenates a “Topological path” and a "DCNN path" using a Siamese 

Stacking layer, followed by a final common CNN stack. (C) shows the combined Process 

and Bouton Detection Pipeline.

Banerjee et al. Page 19

Nat Mach Intell. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
(A) The figure shows the architecture of the Mask-RCNN network, which we use for Cell 

Detection as well as for mask generation for different process sub-classes (e.g., passing vs 

arborized axons). (B) Semantic segmentation for tracer-injected brains is preceded by an 

Injection Detection step. This is needed since the injection region has a different signal 

dynamic range than the projection regions. The injection region is suppressed for the Process 

Detection task, and is also used to separate “injection region somata” from distal somata. 

The Process Detection output (manually proof-read) acts as a mask for discarding the other 

background pixels while generating masks for process sub-classes. We are utilizing a high 

resolution image viewer available in the web portal (brainarchitecture.org) to visualize the 

output of the semantic segmentation pipeline.
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Figure 4: 
Illustrations of results from the process detection pipeline are shown here for single-color 

STP images (3 top left columns), 3-color fluorescent WSI images from the Mouse Brain 

Architecture project data set (MBA) (3 top right columns), and the Brightfield WSI images 

(3 bottom columns). The top left row shows the original image, human annotation of 

the processes, and the discrete Morse output. The bottom left shows evaluation of DM+

+ output compared with the human annotation, with true positives (TP) in yellow and 

“false positives” (FP) in red. The FP connect the human-annotated neurite fragments, and 

examination of the original image data shows low intensity signal connecting the annotated 

fragments. The final panel in the bottom left row is the ALBU output. In each of the 

three modalities, the middle row depicts a small patch from the image, where the intensity 

captured by the digital scanners used for imaging these sections is significantly low, but 

the connectivity can be observed in the high resolution image by naked human eye, when 

inspected meticulously (leftmost patch in the middle row). As evident in the detections 

by ALBU, a state-of-the-art CNN technique, they are generally missed while we generate 

the mask. These faint connections are well captured by Discrete Morse as evident in the 

patch from the same location in the output of the Discrete Morse reconstruction algorithm 

(rightmost patch in the middle row). With the introduction of the topological prior the patch 

from the same location of our output preserves the connectivity (central patch in the middle 

row). These patches demonstrate that the ALBU output misses faint connections that are 

picked up by the DM++ algorithm. The bottom right row shows the evaluation of DM++ 
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output compared to manual annotations with TP (yellow), FP (magenta) and FN (cyan). In 

the MBA modality, the top right row shows red and green process fragments corresponding 

to neurites labelled with red and green fluorescent protein corresponding to anterograde 

AAV tracer injections, human annotations (double labelled process fragments are labelled 

green), and discrete morse output. Evaluations, DM++ and ALBU outputs for the colored 

MBA image data are shown next, followed by the similar structure in the BFI dataset. The 

rectangular box indicates the location for each image from where the exemplar patch is 

extracted and the dotted lines establishes the correspondences of each path to the middle row 

of results for better visibility.
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Figure 5: Semantic Segmentation results:
(A) the results for cell detection for the two modalities along with the injection soma 

detection for the MBA dataset. Soma segmentations are shown to the immediate right of 

the original image shown in the left column. The right column shows the detected cells 

in a different color, for the corresponding left patch. The top row shows a region where 

the tracer is injected ("Injection Region"). The detected cells in this region are labelled 

"Injection Soma". The bottom two rows show detections outside this injection region for the 

two modalities, Fluorescent WSI images (MBA data) and Brightfield WSI images. (B) The 

results for the semantic category ("dendrites") for MBA data, a sub-category of processes. 

(C) The results for the semantic category ("passing axons") for MBA data, a sub-category 

of processes. (D) The results for the semantic category ("axon arbors") of the MBA data. 

The top tile in each of these semantic categories shows the detected processes from the 

Process Detection Pipeline for the green/red tracer. The middle tile illustrates the resulting 

semantic segmentation mask, while the bottom tile shows the comparison of our result with 

the Groundtruth (GT) annotation, depicting the TP (yellow), FP (magenta) and FN (cyan) 

for the input tile. (E) The results for bouton detection on the MBA dataset.
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Table 1:

shows the Precision, Recall, F1 values for the different tasks. The unsupervised technique for Process 

Detection involves intensity-based thresholding with hard-coded parameters for threshold and morphological 

operations. Cell Detection Results are shown for the WSI fluorescent images (MBA) and WSI Bright Field 

images (BFI) compared to a baseline technique (Seg-NET). The (I) on the side of the MaskRCNN indicates 

that we omit Injection Region while reporting our metrics. In computing these metrics we utilize a 5-pixel 

neighborhood of a detected point to judge detects. The values in bold indicate the best performance.

Model Precision Recall F1

Process Detection - STP 

Unsupervised 0.61 0.63 0.62

UNET 0.85 0.88 0.86

ALBU 0.90 0.88 0.89

DM++ 0.92 0.93 0.92

Process Detection - MBA 

Unsupervised 0.41 0.51 0.46

UNET 0.67 0.73 0.70

ALBU 0.79 0.82 0.81

DM++ 0.83 0.84 0.84

Process Detection - BFI 

Unsupervised 0.59 0.61 0.60

UNET 0.73 0.75 0.74

ALBU 0.79 0.80 0.80

DM++ 0.81 0.83 0.82

Cell Detection - BFI 

SegNET 0.79 0.74 0.76

MaskRCNN(I) 0.85 0.89 0.87

Cell Detection - MBA 

SegNET 0.72 0.75 0.73

MaskRCNN 0.81 0.82 0.82

MaskRCNN(I) 0.85 0.90 0.87

Dendrite Detection - MBA 

SegNET 0.67 0.71 0.69

MaskRCNN 0.79 0.86 0.83

Passing Axon Detection - MBA 

SegNET 0.72 0.76 0.74

MaskRCNN 0.89 0.93 0.91

Axon Arbor Detection - MBA 

SegNET 0.72 0.75 0.74

MaskRCNN 0.95 0.97 0.96

Bouton Detection - MBA 
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Model Precision Recall F1

Discrete Morse 0.76 0.31 0.44
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Table Methods 1:

The number of manually annotated tiles used for training and testing the different semantic categories in the 

different modalities of the brain. These manually annotated tiles are of size 512 × 512 pixels. They are used 

to train the different pipelines in the brain, with data augmentation, to cope with the limited availability of the 

training data. These tiles account for the tiles where the annotators have at least annotated any of the neuronal 

structures.

Image
modality

Neuronal
classes

Tiles for
training

Tiles for
testing

MBA Processes 2000 494

STPT Processes 6449 704

BFI Processes 180 108

MBA Soma Detection 26 9

BFI Soma Detection 48 24

MBA Dendrites 23 8

MBA Passing Axons 22 6

MBA Axon Arbors 22 6
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