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Abstract

We outline a perspective of an entirely new research branch in Earth and climate sciences, where

deep neural networks and Earth system models are dismantled as individual methodological ap-

proaches and reassembled as learning, self-validating, and interpretable Earth system model-network

hybrids. Following this path, we coin the term ”Neural Earth System Modelling” (NESYM) and

highlight the necessity of a transdisciplinary discussion platform, bringing together Earth and cli-

mate scientists, big data analysts, and AI experts. We examine the concurrent potential and pitfalls

of Neural Earth System Modelling and discuss the open question whether artificial intelligence will

not only infuse Earth system modelling, but ultimately render them obsolete.
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For decades, scientists have utilized mathematical equations to describe geophysical and climate pro-

cesses and to construct deterministic computer simulations that allow for the analysis of such processes.

Until recently, process-based models had been considered irreplaceable tools that helped to understand

the complex interactions in the coupled Earth system and that provided the only tools to predict the

Earth system’s response to anthropogenic climate change.

The provocative thought that Earth system models (ESMs) might lose their fundamental importance

in the advent of novel artificial intelligence (AI) tools has sparked both a gold-rush feeling and contempt

in the scientific communities. On the one hand, deep neural networks have been developed that comple-

ment and have started to outperform the skill of process-based models in various applications, ranging

from numerical weather prediction to climate research. On the other hand, most neural networks are

trained for isolated applications and lack true process knowledge. Regardless, the daily increasing data

streams from Earth system observation (ESO), increasing computational resources, and the availabil-

ity and accessibility of powerful AI tools, particularly in machine learning (ML), have led to numerous

innovative frontier applications in Earth and climate sciences. Based on the current state, recent achieve-

ments, and recognised limitations of both process-based modelling and AI in Earth and climate research,

we draw a perspective on an imminent and profound methodological transformation, hereafter named

Neural Earth System Modelling (NESYM). To solve the emerging challenges, we highlight the necessity

of new transdisciplinary collaborations between the involved communities.

Overview on Earth System Modelling and Earth System Obser-

vations

Earth system models (ESMs)1 combine process-based models of the different sub-systems of the Earth

system into an integrated numerical model that yields for a given state of the coupled system at time

t the tendencies associated with that state, i.e., a prediction of the system state for time t + 1. The

individual model components, or modules, describe sub-systems including the atmosphere, the oceans,

the carbon and other biogeochemical cycles, radiation processes, as well as land surface and vegetation

processes and marine ecosystems. These modules are then combined by a dynamic coupler to obtain a

consistent state of the full system for each time step.

For some parts of the Earth system, the primitive physical equations of motion are known explicitly,

such as the Navier-Stokes equations that describe the fluid dynamics of the atmosphere and oceans

(Fig. 1). In practise, it is impossible to numerically resolve all relevant scales of the dynamics and

approximations have to be made. For example, the fluid dynamical equations for the atmosphere and

oceans are integrated on discrete spatial grids, and all processes that operate below the grid resolution

have to be parameterised to assure a closed description of the system. Since the multi-scale nature of the

dynamics of geophysical fluids implies that the subgrid-scale processes interact with the larger scales that

are resolved by the model, (stochastic) parameterization of subgrid-scale processes is a highly non-trivial,

yet unavoidable, part of climate modelling2–4.

For other parts of the Earth system, primitive equations of motion, such as the Navier-Stokes equations
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Figure 1: Symbolic representation of Earth system components and exemplary deterministic or stochastic
coupling mechanisms on long and short spatio-temporal scales.

for atmospheric motion, do not exist. Essentially, this is due to the complexity of the Earth system, where

many phenomena that emerge at a macroscopic level are not easily deducible from microscopic-scales

that may or may not be well-understood. A typical example is given by ecosystems and the physiological

processes governing the vegetation that covers vast parts of the land surface, as well as their interactions

with the atmosphere, the carbon and other geochemical cycles. Also for these cases, approximations in

terms of parameterizations of potentially crucial processes have to be made.

Regardless of the specific process, such parameterizations induce free parameters in ESMs, for which

suitable values have to be found empirically. The size of state-of-the-art ESMs mostly prohibits systematic

calibration methods such as, e.g., the ones based on Bayesian inference, and the models are therefore

often tuned manually. The quality of the calibration as well as the overall accuracy of the model can only

be assessed with respect to relatively sparse observations of the last 170 years, at most, and there is no

way to assess the models’ skill in predicting future climate conditions5. The inclusion of free parameters

possibly causes biases or structural model errors and the example of the discretized spatial grid suggests

that the higher the spatial resolution of an ESM, the smaller the potential errors. Likewise, it is expected

that the models’ representation of the Earth system will become more accurate the more processes are

resolved explicitly.

The inclusion of a vastly increasing number of processes, together with continuously rising spatial

resolution, have indeed led to the development of comprehensive ESMs that have become irreplaceable
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tools to analyse and predict the state of the Earth system. From the first assessment report of the

Intergovernmental Panel on Climate Change (IPCC) in 1990 to the fifth phase of the Climate Model

Intercomparison Project (CMIP5)6 and the associated fifth IPCC assessment report in 2014, the spatial

resolution has increased from around 500km to up to 70km. In accordance, the CMIP results show that

the models have, over the course of two decades, greatly improved in their accuracy to reproduce crucial

characteristics of the Earth system, such as the evolution of the global mean temperatures (GMT) since

the beginning of instrumental data in the second half of the 19th century, or the average present-day

spatial distribution of temperature or precipitation7,8.

Despite the tremendous success of ESMs, persistent problems and uncertainties remain:

(1) A crucial quantity for the evaluation of ESMs is the equilibrium climate sensitivity (ECS), defined

as the amount of equilibrium GMT increase that results from an instantaneous doubling of atmospheric

carbon dioxide9. There remains a large ECS range in current ESM projections and reducing these

uncertainties, and hence the uncertainties of future climate projections, is one of the key challenges in

the development of ESMs. Nevertheless, from CMIP5 to CMIP6, the likely range of ECS has widened

from 2.1–4.7◦C to 1.8–5.6◦C10,11. A highly promising line of research in this regard focuses on the

identification of emergent constraints, which in principle allow to narrow down the projected range for a

model variable of interest, given that the variable has a concise relationship with another model variable

that can be validated against past observations12,13. The development of suitable data-driven techniques

for this purpose is still in its infancy.

(2) Both theoretical considerations and paleoclimate data suggest that several sub-systems of the

Earth system can abruptly change their state in response to gradual changes in forcing14,15. There is

concern that current ESMs will not be capable of predicting future abrupt climate changes, because

the instrumental era of less than two centuries has not experienced comparable transitions, and model

validation against paleoclimate data evidencing such events remains impossible due to the length of the

relevant time scales16. In an extensive search, many relatively abrupt transitions have been identified in

future projections of CMIP5 models17, but due to the nature of these rare, high-risk events, the accuracy

of ESM in predicting them remains untested.

(3) Current ESMs are not yet suitable for assessing the efficacy or the environmental impact of carbon

dioxide removal techniques, which are considered key mitigation options in pathways realizing the Paris

Agreement18. Further, ESMs still insufficiently represent key environmental processes such as the carbon

cycle, water and nutrient availability, or interactions between land use and climate. This can impact

the usefulness of land-based mitigation options that rely on actions such as biomass energy with carbon

capture and storage or nature-based climate solutions19,20.

(4) The distributions of time series encoding Earth system dynamics typically exhibit heavy tails.

Extreme events such as heat waves and droughts, but also extreme precipitation events and associated

floods, have always caused tremendous socio-economic damages. With ongoing anthropogenic climate

change, such events are projected to become even more severe, and the attribution of extremes poses an-

other outstanding challenge of Earth system science21. While current ESMs are very skilful in predicting

average values of climatic quantities, there remains room for improvement in representing extremes.
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In addition to the possible solutions to these fundamental challenges, improvements of the overall

accuracy of ESMs can be expected from more extensive and more systematic integration of the process-

based numerical models with observational data. Earth system observations (ESOs) are central to ESMs,

serving a multitude of purposes. ESOs are used to evaluate and compare process-based model perfor-

mance, to generate model parameters and initial model states, or as boundary forcing of ESMs22,23.

ESOs are also used to directly influence the model output by either tuning or nudging parameters that

describe unmodeled processes, or by the more sophisticated methods of data assimilation that alter the

model’s state variables to bring the model output in better agreement with the observations24. To

incorporate uncertainty into model predictions, variational interfaces have been used25. Existing tech-

niques for assimilating data into ESMs fall into two main categories, each with their own limitations.

Gradient-based optimization, as in four-dimensional variational (4DVar) schemes, is the current state of

the art for efficiency and accuracy, but currently requires time consuming design and implementation of

adjoint calculation routines tailored to each model. Ensemble-based Kalman filter (EnKF) schemes are

gradient-free but produce unphysical outputs and rely on strong statistical assumptions that are often

unsatisfied, leading to biases and overconfident predictions26. The main problems of contemporary ESM

data assimilation are 1) nonlinear dynamics and non-Gaussian error budgets in combination with the

high dimensionality of many ESM components27–29, and 2) constraining the governing processes over the

different spatio-temporal scales found in coupled systems30,31. ML approaches can be used to combine

the accuracy of 4DVar with the flexibility of EnKF, essentially allowing optimization-based assimilation

in cases where gradients are currently unavailable. Furthermore, these traditional approaches of model

and observation fusion have slowly been expanded or replaced by ML methods in recent years32–34.

ESOs cover a wide range of spatio-temporal scales and types, ranging from a couple of centimeters to

tens of thousands of kilometers, and from seconds and decades to millennia. The types of observations

range from in-situ measurements of irregular times and spaces (ship cruises, buoy arrays, etc.), over

single time series (ice and sediment cores, tide gauges, etc.) to satellite-based global 2D or 3D data fields

(altimetry, gravimetry, radio occultation, etc.). The amount of available observations is rapidly increasing

and has reached a threshold where automated analysis becomes crucial. Yet, the available observational

data pool still contains large gaps in time and space that prevent building a holistic observation-driven

picture of the coupled Earth system, which result from insufficient spatio-temporal data resolution, too

short observation time periods, and largely unobserved compartments of Earth systems like, for instance,

abyssal oceans. The combination of these complex characteristics render Earth system observations both

challenging and particularly interesting for AI applications.

From Machine Learning-based Data Exploration Towards Learn-

ing Physics

ML and other AI techniques have achieved stunning results in computer vision35, speech and language

models36, medical science37,38, economical and societal analytics39, and other disciplines40,41. Due to this

wide-spread integration into both fundamental research and end-user products, and despite shortcomings
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and inherent limitations42–45, ML is already praised as a key disruptive technology of the 21st century46.

In contrast, the usage of ML in Earth and climate sciences is still in its infancy. A key observation is

that ML concepts from computer vision and automated image analysis can be isomorphically transferred

to ESO imagery. Pioneering studies demonstrated the feasibility of ML for remote sensing data analysis,

classification tasks, and parameter inversion already in the 1990s47–50, and climate-model emulation in

the early 2000s51. The figurative Cambrian explosion of AI techniques in Earth and climate sciences,

however, only began over the last five years and will rapidly continue throughout the coming decades.

Under the overarching topic of ESO data exploration, ML has been applied for a huge variety of

statistical and visual use cases. Classical prominent examples are pattern recognition in geo-spatial

observations, climate data clustering, automated remote-sensing data analysis, and time series predic-

tion32,52. In this context, ML has been applied across various spatial and temporal scales, ranging from

short-term regional weather prediction to Earth-spanning climate phenomena. Significant progress has

been made in developing purely data-driven weather prediction networks, which start to compete with

process-based model forecasts53–55. ML contributed to the pressing need to improve the predictability of

natural hazards, for instance, by uncovering global extreme-rainfall teleconnections56, or by improving

long-term forecasts of the El Niño Southern Oscillation (ENSO)57,58. ML-based image filling techniques

were utilized to reconstruct missing climate information, allowing to correct previous global temperature

records59. Furthermore, ML was applied to analyze climate data sets, e.g., to extract specific forced

signals from natural climate variability60,61 or to predict clustered weather patterns62. In these appli-

cations, the ML tools function as highly specialized agents that help to uncover and categorize patterns

in an automated way. A key methodological advantage of ML in comparison to covariance-based spatial

analysis lies in the possibility to map nonlinear processes63,64. At the same time, such trained neural

networks lack actual physical process knowledge, as they solely function through identifying and gener-

alizing statistical relations by minimizing pre-defined loss measures for a specific task65. Consequently,

research on ML in Earth and climate science differs fundamentally from the previously described efforts

of advancing ESMs in terms of methodological development and applicability.

Concepts of utilizing ML not only for physics-blind data analyses, but also as surrogates and method-

ological extensions for ESMs have only recently started to shape66. Scientists started pursuing the aim

that ML methods learn aspects of Earth and climate physics, or at least plausibly relate cause and effect.

The combination of ML with process-based modelling is the essential distinction from the previous ESO

data exploration. Lifting ML from purely diagnosis-driven usage towards the prediction of geophysi-

cal processes will also be crucial for aiding climate change research and the development of mitigation

strategies67.

Following this reasoning, ML methods can be trained with process-based model data to inherit a

specific geophysical causation or even emulate and accelerate entire forward simulations. For instance,

ML has been used in combination with ESMs and ESOs to invert space-borne oceanic magnetic field

observations to determine the global ocean heat content33. Similarly, a neural network has been trained

with a continental hydrology model to recover high-resolution terrestrial water storage from satellite

gravimetry34. ML plays an important role for upscaling unevenly distributed carbon flux measurements
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Figure 2: Successive stages of the fusion process of Earth system models and artificial intelligence.

to improve global carbon monitoring systems68. As such, the eddy covariance technique was combined

with ML to measure the net ecosystem exchange of CO2 between ecosystems and the atmosphere, offering

a unique opportunity to study ecosystem responses to climate change69. ML has shown remarkable success

in representing subgrid-scale processes and other parameterizations of ESMs, given that sufficient training

data were available. As such, neural networks were applied to approximate turbulent processes in ocean

models70 and atmospheric subgrid processes in climate models71. Several studies highlight the potential

for ML-based parameterization schemes72–76, helping step-by-step to gradually remove numerically and

human-induced simplifications and other biases of ESMs77.

While some well-trained ML tools and simple hybrids have shown higher predictive power than tradi-

tional state-of-the-art process-based models, only the surface of new possibilities, but also of new scientific

challenges, has been scratched. So far, ML, ESMs, and ESO have largely been independent tools. Yet,

we have reached the understanding that applications of physics-aware ML and model-network hybrids

pose huge benefits by filling up niches where purely process-based models persistently lack reliability.
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The Fusion of Process-based Models and Artificial Intelligence

The idea of hybrids of process-based and ML models is not new78. So far, hybrids have almost exclusively

been thought of as numerical models that are enhanced by ML to either improve the models’ performance

in the sense of a useful metric, or to accelerate the forward simulation time in exchange for a decrease in

simulation accuracy. Along with the general advance regarding the individual capabilities and limitations

of ESMs and ML methods, respectively, also the understanding of how ML can enhance process-based

modelling has evolved. This progress allows ML to take over more and more components of ESMs,

gradually blending the so far strict distinction between process-based modelling and data-driven ML

approaches. Even more so, entirely new methodological concepts are dawning that justify acknowledging

Neural Earth System Modelling as a distinct research branch (Fig. 2).

The long-term goal will be to consistently integrate the recently discovered advantages of ML into

the already decade-long source of process knowledge in Earth system science. However, this evolution

does not come without methodological caveats, which need to be investigated carefully. For the sake of

comparability, we distinguish between weakly coupled NESYM hybrids, i.e., an ESM or AI technique

benefits from information from the respective other, and strongly coupled NESYM hybrids, i.e., fully

coupled model-network combinations that dynamically exchange information between each other.

The emergent development of weak hybrids is predominantly driven by the aim to resolve the previ-

ously described ESM limitations, particularly unresolved and especially sub-grid scale processes. Neural

networks can emulate such processes after careful training with simulation data from a high-resolution

model that resolves the processes of interest, or with relevant ESO data. The next methodological mile-

stone will be the integration of such trained neural networks into ESMs for operational usage. First tests

have indicated that the choice of the AI technique, e.g., neural networks versus random forests, seems to

be crucial for the implementation of learning parameterization schemes, as they can significantly deterio-

rate the ESM’s numerical stability79. Thus, it is not only important to identify how neural networks can

be trained to resolve ESM limitations, but also how such ML-based schemes can be stabilized in the model

physics context and how their effect on the process-based simulation can be evaluated and interpreted80.

The limitations of ML-based parameterization approaches can vary widely for different problems or uti-

lized models and, consequently, should be considered for each learning task individually81. Nevertheless,

several ideas have been proposed to stabilize ML parameterizations, e.g., by enforcing physical consis-

tency through customized loss functions in neural networks and specific network architectures75,82, or by

optimizing the considered high-resolution model training data76. In addition, an ESM blueprint has been

proposed, in which learning parameterizations can be targeted through searching an optimal fit of statis-

tical measures between ESMs, observations, and high-resolution simulations83. In this context, further

efforts have been made to enhance an ESM not with ML directly, but in combination with a data assim-

ilation system24. For instance, emulating a Kalman filter scheme with ML has been investigated84,85, an

ML-based estimation of atmospheric forcing uncertainties used as error covariance information in data

assimilation has been proposed86, as well as further types of Kalman-network hybrids87,88.

In the second class of weak hybrids, the model and AI tasks are transposed, such that the information

flow is directed from the model towards the AI tool. Here, neural networks are trained directly with model
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state variables, their trajectories, or with more abstract information like seasonal signals, interannual

cycles, or coupling mechanisms. The goal of the ML application might not only be model emulation,

but also inverting non-linear geophysical processes33, learning geophysical causation89, or predicting

extreme events90,91. In addition to these inference and generalization tasks, a key question in this sub-

discipline is whether a neural network can learn to outperform the utilized process-based trainer model

in terms of physical consistency or predictive power. ESOs play a vital role in this context, as they can

serve as additional training constraints for a neural network training, allowing it to build independent

self-evaluation measures34.

The given examples generally work well for validation and prediction scenarios within the given

training distribution. Out-of-distribution samples, in contrast, pose a huge challenge for supervised

learning, which renders the “learning from the past” principle particularly ill-posed for prediction tasks

in NESYM. As a consequence, purely data-driven AI methods will not be able to perform accurate

climate projections on their own, because of the both naturally and anthropogenically induced non-

stationarity of the climate and Earth system. Overcoming these limitations requires a deeper holistic

integration in terms of strongly coupled hybrids and the consideration of further, less constrained training

techniques like unsupervised training92 and generative AI methods73,93,94. For example, problems of

pure AI methods with non-stationary training data can be attenuated by combining them with physical

equations describing the changing energy-balance of the Earth system due to anthropogenic greenhouse-

gas emissions95. In addition, first steps towards physics-informed AI have been made by ML-based and

data-driven discovery of physical equations96 and by the implementation of neural partial differential

equations97,98 into the context of climate modelling99.

Continuous maturing of the methodological fusion process will allow building hybrids of neural net-

works, ESMs and ESOs that dynamically exchange information. ESMs will soon utilize output from

supervised and unsupervised neural networks to optimize their physical consistency and, in turn, feed

back improved information content to the ML component. ESOs form another core element and function

as constraining ground truth of the AI-infused process prediction. Similar to the adversarial game of

generative networks100, or coupling mechanisms in an ESM101, also strongly coupled NESYM hybrids

will require innovative interfaces that control the exchange of information that are, so far, not available.

In addition, we formulate key characteristics and goals of this next stage:

(1) Hybrids can better reproduce and predict out-of-distribution samples and extreme events,

(2) hybrids perform constrained and consistent simulations that obey physical conservation laws de-

spite potential shortcomings of the hybrids’ individual components,

(3) hybrids include integrated adaptive measures for self-validation and self-correction, and

(4) NESYM allows replicability and interpretability.

We believe that cross-discipline collaborations between Earth system and AI scientists will become

more important than ever to achieve these milestones. Frontier applications of Neural Earth system

models are manifold. Yet, ultimately, NESYM hybrids need to drastically improve the current forecast

limits of geophysical processes and contribute towards understanding the Earth’s susceptible state in a

changing climate. Consequently, not only the fusion of ESM and AI will be in the research focus, but
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also AI interpretability and resolving the common notion of a black box (Fig. 3).

Peering into the Black Box

ML has emerged as a set of methods based on the combination of statistics, applied mathematics and

computer science, but it comes with a unique set of hurdles. Peering into the black box and understanding

the decision making process of the ML method, termed explainable AI (XAI), is critical to the use of

these tools. Especially in the physical sciences, adaptation of ML suffers from a lack of interpretability,

particularly supervised ML. In contrast and in addition to XAI stands the call for interpretable AI

(IAI), i.e., building specifically interpretable ML models from the beginning on, instead of explaining ML

predictions through post-process diagnostics102.

Ensuring that what is ‘learned’ by the machine is physically tractable or causal, and not due to trivial

coincidences103, is important before ML tools are used, e.g., in an ESM setting targeted at decision

making. Thus, explainability provides the user with trust in the ML output, improving its transparency.
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This is critical for ML use in the policy-relevant area of climate science as society is making it increasingly

clear that understanding the source of AI predictive skill is of crucial importance104,105. Ensuring the

ML method is getting the right answers for the right reasons is essential given the transient nature of the

climate system. As the climate continues to respond to anthropogenic climate change, NESYM will be

required to make predictions of continually evolving underlying distributions and XAI/IAI will be critical

to ensuring that the skill of the ML method can be explained, and inspire trust in its extrapolation to

future climate regimes. There are many ML tools at our disposal, and XAI can assist researchers in

choosing the optimal ML architecture, inputs, outputs, etc. By analyzing the decision making process,

climate scientists will be able to better incorporate their own physical knowledge into the ML method,

ultimately leading to improved results. Perhaps least appreciated in geoscientific applications thus far is

the use of XAI to discover new science106. When the ML method is capable of making a prediction, XAI

allows us to ask “what did it learn?”. In this way, ML becomes more than just a prediction and allows

scientists to ask “why?” as they normally would, but now with the power of ML.

Explaining the source of an ML applications skill can be done retrospectively102. The power of

XAI for climate and weather applications has very recently been demonstrated106–108. For example,

neural networks coupled with the XAI attribution method known as layerwise relevance propagation

(LRP)109,110 have revealed modes of variability within the climate system, sources of predictability across

a range of timescales, and indicator patterns of climate change61,106. There is also evidence that XAI

methods can be used to evaluate climate models against observations, identifying the most important

climate model biases for the specific prediction task111. However, these methods are in their infancy and

there is vast room for advancements in their application, making it explicitly appropriate to employ them

within the physical sciences.

Unsupervised ML can be intuitively IAI through the design of experiments. For example, applying

clustering on closed model budgets of momentum ensures all relevant physics are represented, and can

be interpreted in terms of the statistically dominant balances. In this manner, different regimes can be

discovered92,112. Adversarial learning has been an effective tool for generating super-resolution fields of

atmospheric variables in climate models94. Furthermore, unsupervised ML approaches have been pro-

posed for discovering and quantifying causal interdependencies and dynamical links inside a system, such

as the Earth’s climate89,113. The development of ESMs is increasingly turning to process-oriented diag-

nostics (PODs)114, where a certain process is targeted and used as a benchmark for model improvement.

A revolution of analysis tools has been called for, and ML is poised to be part of this change66,115,116.

For instance, the POD approach has been applied to evaluate the ability of ESM projections to simulate

atmospheric interactions and to constrain climate projection uncertainties117.

Given the importance of both explainability and interpretability for improving ML generalization and

scientific discovery, we need climate scientists working together with AI scientists to develop methods that

are tailored to the field’s needs. This is not just an interesting exercise - it is essential for the proper use

of AI for NESYM development and use (Fig. 3). Earth and climate scientists can aid the development

of consistent benchmarks that allow evaluating both stand-alone ML and NESYM hybrids in terms

of geophysical consistency118. However, help of the AI community is needed to resolve other recently

11



highlighted ML pitfalls, for instance, translating the concepts of adversarial examples and deep learning

artifacts119 into the ESM context or finding new measures to identify and avoid shortcut learning45 in

NESYM hybrids. In summary, only combined efforts and continuous development of both ESM and AI

will evolve Neural Earth System Modelling.

Our perspective should not only be seen as the outline of a promising scientific pathway to achieve a

better understanding of the Earth’s present and future state, but also as an answer to the recent support

call from the AI community120. Based on the recent advances in applying AI to Earth system and climate

sciences, it seems to be a logical succession that AI will take over more and more tasks of traditional

statistical and numerical ESM methods. Yet, in its current stage, it also seems unthinkable that AI alone

can solve the climate prediction problem. In the forthcoming years, AI will necessarily need to rely on the

geophysical determinism of process-based modelling and on careful human evaluation. However, once we

find solutions to the foreseeable limitations described above and can build interpretable and geophysically

consistent AI tools, this next evolutionary step will seem much more likely.
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